Does Google Analytics Improve the Prediction of Tourism Demand Recovery?
Abstract
:1. Introduction
Countries | Author | Web Search Engine | Data Frequency | Estimation Method |
---|---|---|---|---|
Spain | Artola et al. (2015) [7] | Monthly | ARIMAX | |
Maximo and Jose (2018) [8] | Monthly | AR-X | ||
South Korea | Park et al. (2016) [9] | Monthly | ARIMAX | |
China | Lv et al. (2018) [10] | Google and Baidu | Weekly and Monthly | SEAN * regression |
Wang et al. (2020) [13] | Monthly | ANN-based, SARIMA | ||
USA | Lv et al. (2018) [10] | Google and Baidu | Weekly and Monthly | SEAN * regression |
Wang et al. (2020) [13] | Monthly | ANN-based, SARIMA | ||
Turkey | Wang et al. (2020) [13] | Monthly | ANN-based, SARIMA | |
Austria | Önder (2017) [29] | Monthly | ADLM, Naïve, AR, Holt-Winters | |
Spain | Önder (2017) [29] | Monthly | ADLM, Naïve, AR, Holt-Winters | |
Germany | Bokelman and Lessmann (2019) [12] | Monthly | SARIMA, DLM * |
Regions/Provinces | Author | Web Search Engine | Data Frequency | Estimation Method |
---|---|---|---|---|
Hong Kong | Gawlik et al. (2011) [14] | Monthly | Weighted linear regression | |
Choi and Varian (2012) [5] | Monthly | AR-X | ||
Wen et al. (2019) [6] | Baidu | Monthly | ARIMA, ARIMAX, NAR, NARX, Hybrid | |
Bai and Hao (2021) [15] | Baidu and Google | Monthly | Random Walk, ARIMAX, SVR, ANN, Two-step DB-ensemble DBN | |
Li and Law (2020) [16] | Monthly | AR, Empirical Mode Decomposition ARX | ||
Wen et al. (2021) [17] | Baidu | Monthly | Naïve, ETS, SARIMA, SARIMAX, MIDAS | |
Xie et al. (2021) [4] | Baidu and Google | Monthly | ARIMA, BPNN, SVR, LSSVR, MA-LSSVR | |
Hainan, China | Yang et al. (2015) [2] | Baidu and Google | Monthly | ARIMAX |
Macau, China | Hu and Song (2021) [18] | Monthly | ANN | |
Taiwan | Huarng and Yu (2019) [19] | Monthly | Algorithms | |
Caribbean | Bangwayo–Skeete and Skeete (2015) [20] | Monthly | AR-MIDAS |
Cities | Author | Web Search Engine | Data Frequency | Estimation Method |
---|---|---|---|---|
Beijing | Li et al. (2017) [21] | Baidu | Monthly | ARMA, Dynamic Factor Model |
Li et al. (2018b) [22] | Baidu | Monthly | BPNN | |
Sun et al. (2019) [23] | Baidu and Google | Monthly | Extreme Machine Learning (EML), ARIMA, ARIMAX, ANN, SVR, LSSVR | |
Li et al. (2021) [24] | Baidu | Monthly | ARIMA, ARMIAX, ML | |
Sun et al. (2022) [25] | Monthly | SN, SARIMA, SES, ARDL, SARIMAX, MLP, B-MLP, KELM, B-KELM, and SAKE | ||
Wu et al. (2023) [35] | Baidu | Monthly | SARIMA-MIDAS, DFM, ETS, SNaive | |
Taiwan cities | Hu & Wu (2022) [26] | Monthly | Grey models (AI) and combinations | |
Prague | Havranek and Zeynalov (2019) [27] | Weekly and Monthly | MIDAS | |
Vienna | Önder and Günter (2016) [28] | Monthly | ADLM, Naïve, AR, Holt-Winters | |
Önder (2017) [29] | Monthly | ADLM, Naïve, AR, Holt-Winters | ||
Barcelona | Önder (2017) [29] | Monthly | ADLM, Naïve, AR, Holt-Winters |
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Xu, L.; Tang, L.; Wang, S.; Li, L. Big data in tourism research: A literature review. Tour. Manag. 2018, 68, 301–323. [Google Scholar] [CrossRef]
- Yang, X.; Pan, B.; Evans, J.A.; Lv, B. Forecasting Chinese tourist volume with search engine data. Tour. Manag. 2015, 46, 386–397. [Google Scholar] [CrossRef]
- Wu, D.C.; Zhong, S.; Qiu, R.T.; Wu, J. Are customer reviews just reviews? Hotel forecasting using sentiment analysis. Tour. Econ. 2021, 28, 795–816. [Google Scholar] [CrossRef]
- Xie, G.; Li, X.; Qian, Y.; Wang, S. Forecasting tourism demand with KPCA-based web search indexes. Tour. Econ. 2021, 27, 721–743. [Google Scholar] [CrossRef]
- Choi, H.; Varian, H. Predicting the present with Google Trends. Econ. Rec. 2012, 88, 2–9. [Google Scholar] [CrossRef]
- Wen, L.; Liu, C.; Song, H. Forecasting tourism demand using search query data: A hybrid modelling approach. Tour. Econ. 2019, 25, 309–329. [Google Scholar] [CrossRef]
- Artola, C.; Pinto, F.; de Pedraza García, P. Can internet searches forecast tourism inflows? Int. J. Manpow. 2015, 36, 103–116. [Google Scholar] [CrossRef]
- Camacho, M.; Pacce, M.J. Forecasting travellers in Spain with google search volume indices. Tour. Econ. 2018, 24, 434–448. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Song, W. Short-term forecasting of Japanese tourist inflow to South Korea using Google trends data. J. Travel Tour. Mark. 2016, 34, 357–368. [Google Scholar] [CrossRef]
- Lv, S.-X.; Peng, L.; Wang, L. Stacked autoencoder with echo-state regression for tourism demand forecasting using search query data. Appl. Soft Comput. 2018, 73, 119–133. [Google Scholar] [CrossRef]
- Önder, I.; Gunter, U.; Scharl, A. Forecasting Tourist Arrivals with the Help of Web Sentiment: A Mixed-frequency Modeling Approach for Big Data. Tour. Anal. 2019, 24, 437–452. [Google Scholar] [CrossRef]
- Bokelmann, B.; Lessmann, S. Spurious patterns in Google Trends data—An analysis of the effects on tourism demand forecasting in Germany. Tour. Manag. 2019, 75, 1–12. [Google Scholar] [CrossRef]
- Wang, L.; Wu, B.; Zhu, Q.; Zeng, Y.R. Forecasting Monthly Tourism Demand Using Enhanced Backpropagation Neural Network. Neural Process. Lett. 2020, 52, 2607–2636. [Google Scholar] [CrossRef]
- Gawlik, E.; Kabaria, H.; Kaur, S. Predicting tourism trends with Google Insights. Accessed Dec. 2011, 1, 2012. [Google Scholar]
- Bai, H.; Hao, H. A novel two-step procedure for tourism demand forecasting. Curr. Issues Tour. 2021, 24, 1199–1210. [Google Scholar]
- Li, X.; Law, R. Forecasting Tourism Demand with Decomposed Search Cycles. J. Travel Res. 2019, 59, 52–68. [Google Scholar] [CrossRef]
- Wen, L.; Liu, C.; Song, H.; Liu, H. Forecasting Tourism Demand with an Improved Mixed Data Sampling Model. J. Travel Res. 2021, 60, 336–353. [Google Scholar] [CrossRef]
- Hu, M.; Song, H. Data source combination for tourism demand forecasting. Tour. Econ. 2019, 26, 1248–1265. [Google Scholar] [CrossRef]
- Huarng, K.-H.; Yu, T.H.-K. Application of Google trends to forecast tourism demand. J. Internet Technol. 2019, 20, 1273–1280. [Google Scholar]
- Bangwayo-Skeete, P.F.; Skeete, R.W. Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tour. Manag. 2015, 46, 454–464. [Google Scholar] [CrossRef]
- Li, X.; Pan, B.; Law, R.; Huang, X. Forecasting tourism demand with composite search index. Tour. Manag. 2017, 59, 57–66. [Google Scholar] [CrossRef]
- Li, S.; Chen, T.; Wang, L.; Ming, C. Effective tourist volume forecasting supported by PCA and improved BPNN using Baidu index. Tour. Manag. 2018, 68, 116–126. [Google Scholar] [CrossRef]
- Sun, S.; Wei, Y.; Tsui, K.L.; Wang, S. Forecasting tourist arrivals with machine learning and internet search index. Tour. Econ. 2019, 70, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Law, R.; Xie, G.; Wang, S. Review of tourism forecasting research with internet data. Tour. Manag. 2021, 83, 104245. [Google Scholar] [CrossRef]
- Sun, S.; Li, Y.; Guo, J.E.; Wang, S. Tourism demand forecasting: An ensemble deep learning approach. Tour. Econ. 2022, 28, 2021–2049. [Google Scholar] [CrossRef]
- Hu, Y.-C.; Wu, G. The impact of Google Trends index and encompassing tests on forecast combinations in tourism. Tour. Rev. 2022, 77, 1276–1298. [Google Scholar] [CrossRef]
- Havranek, T.; Zeynalov, A. Forecasting tourist arrivals: Google Trends meets mixed-frequency data. Tour. Econ. 2021, 27, 129–148. [Google Scholar] [CrossRef]
- Önder, I.; Gunter, U. Forecasting Tourism Demand with Google Trends For a Major European City Destination. Tour. Anal. 2016, 21, 203–220. [Google Scholar] [CrossRef]
- Önder, I. Forecasting tourism demand with Google trends: Accuracy comparison of countries versus cities. Int. J. Tour. Res. 2017, 19, 648–660. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Tseng, F.-M.; Tseng, Y.-H. Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model. Technol. Forecast. Soc. Chang. 2018, 130, 123–134. [Google Scholar] [CrossRef]
- Volchek, K.; Liu, A.; Song, H.; Buhalis, D. Forecasting tourist arrivals at attractions: Search engine empowered methodologies. Tour. Econ. 2018, 25, 425–447. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Pan, B.; Law, R. Machine Learning in Internet Search Query Selection for Tourism Forecasting. J. Travel Res. 2020, 60, 1213–1231. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Ding, Y. The Baidu Index: Uses in predicting tourism flows–A case study of the Forbidden City. Tour. Manag. 2017, 58, 301–306. [Google Scholar] [CrossRef]
- Peng, L.; Wang, L.; Ai, X.Y.; Zeng, Y.R. Forecasting Tourist Arrivals via Random Forest and Long Short-term Memory. Cogn. Comput. 2020, 13, 125–138. [Google Scholar] [CrossRef]
- Wu, J.; Li, M.; Zhao, E.; Sun, S.; Wang, S. Can multi-source heterogeneous data improve the forecasting performance of tourist arrivals amid COVID-19? Mixed-data sampling approach. Tour. Manag. 2023, 98, 104759. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, Y.; Jiang, L.; Liu, X. Search query and tourism forecasting during the pandemic: When and where can digital footprints be helpful as predictors? Ann. Tour. Res. 2022, 93, 103365. [Google Scholar] [CrossRef]
- Li, H.; Hu, M.; Li, G. Forecasting tourism demand with multisource big data. Ann. Tour. Res. 2020, 83, 102912. [Google Scholar] [CrossRef]
US | UK | NED | GER | FR | AUS | IND | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model (h) | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE |
ARIMA (1) | 9340.14 | 7.59 | 34,115.51 | 34.38 | 12,110.48 | 35.69 | 36,647.78 | 40.43 | 9507.99 | 19.60 | 2741.76 | 7.59 | 5725.67 | 20.87 |
MIDAS_W (1) | 10,766.81 | 9.14 | 24,671.46 | 26.06 | 12,188.95 | 33.10 | 32,639.61 | 35.37 | 11,797.02 | 22.52 | 3624.73 | 10.92 | 5920.53 | 25.04 |
MIDAS_WN (1) | 12,570.69 | 10.96 | 23,483.75 | 23.08 | 12,578.82 | 32.57 | 34,803.48 | 38.16 | 15,109.35 | 29.65 | 3842.60 | 11.93 | 5736.33 | 22.98 |
NAÏVE (1) | 11,312.74 | 11.72 | 45,592.31 | 44.69 | 14,677.95 | 42.07 | 45,848.42 | 59.32 | 12,342.69 | 28.88 | 4230.02 | 13.77 | 7741.25 | 31.09 |
ARDL (1) | 9676.32 | 9.12 | 19,307.34 | 18.92 | 8109.22 | 19.00 | 18,601.41 | 21.30 | 5891.18 | 10.13 | 3757.25 | 11.78 | 5078.68 | 20.10 |
ARDL_M_W (1) | 9339.28 | 7.64 | 16,136.01 | 16.16 | 7585.71 | 19.30 | 53,268.64 | 52.03 | 8634.47 | 16.25 | 3737.74 | 11.08 | 7047.20 | 27.69 |
ARDL_M_WN (1) | 10,015.28 | 7.93 | 15,435.09 | 16.15 | 7709.16 | 16.71 | 17,344.43 | 13.56 | 22,164.22 | 28.09 | 3812.20 | 11.08 | 6036.20 | 21.98 |
ARIMA (2) | 13,666.86 | 11.42 | 29,986.97 | 33.32 | 11,076.54 | 31.73 | 35,086.80 | 35.55 | 13,481.69 | 23.58 | 3211.15 | 9.53 | 5555.57 | 20.04 |
MIDAS_W (2) | 12,900.84 | 11.23 | 23,974.93 | 25.88 | 11,484.43 | 30.81 | 30,017.28 | 31.95 | 13,326.65 | 24.73 | 3982.69 | 11.92 | 5645.99 | 23.86 |
MIDAS_WN (2) | 14,087.51 | 12.68 | 22,081.21 | 23.01 | 12,545.68 | 32.63 | 32,485.73 | 34.13 | 17,467.34 | 35.62 | 3981.28 | 12.23 | 5552.10 | 21.50 |
NAÏVE (2) | 15,332.95 | 15.37 | 56,297.86 | 64.21 | 17,667.42 | 50.52 | 63,392.45 | 93.90 | 17,701.98 | 44.00 | 5905.77 | 18.25 | 6767.45 | 26.49 |
ARDL (2) | 17,798.92 | 16.40 | 16,086.84 | 16.80 | 8370.16 | 19.20 | 17,839.68 | 21.59 | 9279.06 | 17.43 | 4972.26 | 15.62 | 7165.35 | 28.58 |
ARDL_M_W (2) | 16,626.00 | 13.55 | 15,385.83 | 16.06 | 7422.50 | 19.16 | 53,241.51 | 51.73 | 13,045.63 | 25.77 | 4692.26 | 14.43 | 8064.61 | 32.55 |
ARDL_M_WN (2) | 15,815.72 | 15.12 | 15,063.49 | 15.82 | 7361.22 | 18.42 | 15,956.93 | 14.66 | 71,419.60 | 77.89 | 4653.94 | 13.86 | 8174.69 | 30.60 |
ARIMA (4) | 15,041.06 | 13.22 | 31,730.99 | 35.79 | 11,271.36 | 31.74 | 36,487.34 | 36.62 | 13,912.48 | 24.49 | 3187.85 | 9.13 | 5364.08 | 19.89 |
MIDAS_W (4) | 14,072.53 | 12.54 | 22,350.26 | 23.86 | 11,498.17 | 29.50 | 30,526.86 | 32.19 | 13,545.01 | 24.30 | 3994.05 | 12.00 | 4948.78 | 20.97 |
MIDAS_WN (4) | 14,656.01 | 12.44 | 20,857.73 | 21.32 | 12,374.06 | 30.26 | 34,779.25 | 36.60 | 19,197.83 | 37.88 | 4077.77 | 12.67 | 5106.68 | 18.99 |
NAÏVE (4) | 8654.72 | 8.26 | 14,617.32 | 15.96 | 6322.82 | 16.35 | 14,178.86 | 15.25 | 7528.58 | 14.18 | 3092.59 | 9.35 | 7111.56 | 28.08 |
ARDL (4) | 23,459.99 | 21.95 | 16,149.71 | 17.43 | 8590.86 | 19.68 | 14,896.67 | 16.72 | 8759.78 | 17.50 | 4200.52 | 13.15 | 17,574.33 | 64.98 |
ARDL_M_W (4) | 15,986.33 | 14.87 | 14,554.14 | 15.33 | 6162.75 | 16.35 | 52,555.51 | 52.22 | 11,153.65 | 21.93 | 4231.38 | 13.18 | 22,020.73 | 64.61 |
ARDL_M_WN (4) | 16,091.54 | 15.94 | 14,535.31 | 16.01 | 7709.26 | 20.90 | 16,781.78 | 16.58 | 78,005.33 | 89.63 | 3880.18 | 11.86 | 16,796.86 | 53.97 |
ARIMA (8) | 16,944.37 | 15.53 | 31,409.02 | 35.99 | 11,352.43 | 31.76 | 37,427.31 | 36.33 | 14,684.05 | 25.65 | 3343.95 | 9.50 | 5411.06 | 21.03 |
MIDAS_W (8) | 15,112.25 | 13.20 | 24,396.88 | 26.68 | 11,995.02 | 30.46 | 28,868.17 | 31.35 | 14,274.77 | 24.73 | 3917.88 | 11.52 | 4833.94 | 19.50 |
MIDAS_WN (8) | 13,391.50 | 10.63 | 21,959.86 | 21.39 | 13,155.43 | 31.97 | 31,306.56 | 31.53 | 22,547.10 | 43.17 | 3954.93 | 12.00 | 5345.51 | 22.11 |
NAÏVE (8) | 15,111.98 | 15.02 | 18,064.61 | 17.32 | 6974.64 | 16.14 | 17,305.35 | 18.74 | 11,841.61 | 21.16 | 5904.45 | 16.99 | 10,265.24 | 41.23 |
ARDL (8) | 43,885.71 | 42.17 | 23,986.18 | 22.03 | 8396.99 | 19.11 | 21,572.60 | 24.62 | 11,368.28 | 23.34 | 5191.58 | 15.65 | 215,099.40 | 449.20 |
ARDL_M_W (8) | 40,544.77 | 38.24 | 21,176.89 | 22.66 | 5582.41 | 14.15 | 52,950.23 | 51.36 | 14,080.18 | 26.53 | 5071.77 | 15.89 | 500,417.80 | 694.51 |
ARDL_M_WN (8) | 29,829.86 | 29.60 | 80,196.38 | 41.48 | 11,433.78 | 31.00 | 26,149.52 | 28.32 | 49,880.15 | 71.85 | 4690.12 | 15.13 | 140,245.80 | 297.99 |
ARIMA (12) | 18,675.02 | 17.81 | 31,834.41 | 37.40 | 11,526.17 | 31.99 | 38,082.59 | 36.03 | 15,714.93 | 27.33 | 3645.85 | 10.09 | 4548.83 | 16.55 |
MIDAS_W (12) | 16,041.41 | 14.24 | 25,010.19 | 27.77 | 12,295.17 | 31.63 | 30,165.89 | 32.40 | 15,616.38 | 27.07 | 3964.81 | 12.42 | 5531.31 | 23.40 |
MIDAS_WN (12) | 13,208.65 | 11.35 | 23,090.43 | 21.47 | 13,363.16 | 36.34 | 33,954.87 | 32.96 | 349,789.80 | 354.50 | 3909.07 | 11.93 | 5127.93 | 22.78 |
NAÏVE (12) | 17,332.90 | 17.63 | 20,790.71 | 21.15 | 8653.09 | 19.32 | 17,842.00 | 19.45 | 10,559.46 | 19.32 | 7311.32 | 21.62 | 13,147.40 | 48.62 |
ARDL (12) | 51,931.92 | 50.10 | 29,942.77 | 28.08 | 11,499.01 | 22.48 | 34,454.61 | 29.65 | 11,704.10 | 22.03 | 5579.41 | 17.81 | 11,866,709.00 | 14,434.61 |
ARDL_M_W (12) | 73,970.88 | 56.49 | 26,409.89 | 27.95 | 5518.42 | 13.76 | 53,219.89 | 52.96 | 12,182.12 | 23.13 | 5510.79 | 16.93 | 122,000,000.00 | 86,532.82 |
ARDL_M_WN (12) | 53,446.39 | 51.02 | 1,063,032.00 | 237.46 | 20,931.14 | 63.09 | 41,463.31 | 39.27 | 34,217.98 | 62.11 | 13,027.68 | 27.84 | 2,936,087.00 | 3535.15 |
US | UK | NED | GER | FR | AUS | IND | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model (h) | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE |
ARIMA (1) | 18,538.82 | 20.62 | 25,257.54 | 30.48 | 9285.18 | 27.93 | 16,942.56 | 31.81 | 4066.95 | 14.39 | 5135.67 | 23.67 | 4390.72 | 17.07 |
MIDAS_W (1) | 11,535.91 | 11.64 | 28,700.64 | 24.16 | 8642.96 | 28.27 | 30,763.67 | 36.79 | 4831.81 | 14.03 | 4552.72 | 25.02 | 4633.43 | 23.60 |
MIDAS_WN (1) | 17,347.02 | 23.59 | 27,083.50 | 27.27 | 6168.09 | 21.24 | 28,086.56 | 39.69 | 5778.08 | 20.66 | 4664.22 | 29.51 | 4772.80 | 23.70 |
NAÏVE (1) | 14,248.33 | 14.35 | 32,447.43 | 36.04 | 9714.54 | 29.97 | 33,201.44 | 57.71 | 4662.24 | 17.60 | 3431.84 | 22.84 | 4976.74 | 20.20 |
ARDL (1) | 17,286.30 | 22.97 | 37,650.28 | 45.98 | 11,015.34 | 37.70 | 20,297.54 | 32.43 | 7086.91 | 30.94 | 7741.15 | 48.58 | 5755.94 | 30.99 |
ARDL_M_W (1) | 19,602.71 | 25.18 | 35,133.23 | 43.31 | 11,373.61 | 39.75 | 24,889.00 | 39.66 | 5054.96 | 19.98 | 6544.16 | 34.27 | 10,351.96 | 63.02 |
ARDL_M_WN (1) | 17,842.67 | 24.93 | 21,843.20 | 22.67 | 13,344.15 | 44.39 | 12,531.25 | 25.91 | 4277.10 | 17.32 | 6823.18 | 35.53 | 8206.87 | 48.55 |
ARIMA (2) | 21,276.87 | 24.13 | 35,781.85 | 34.95 | 11,132.86 | 35.89 | 30,100.94 | 55.71 | 6874.01 | 23.81 | 5457.94 | 35.09 | 5005.01 | 24.20 |
MIDAS_W (2) | 14,122.50 | 16.65 | 29,197.14 | 28.83 | 10,963.10 | 37.15 | 36,803.52 | 50.74 | 6118.87 | 24.14 | 6618.71 | 40.48 | 2923.34 | 13.94 |
MIDAS_WN (2) | 15,048.74 | 23.26 | 33,101.99 | 35.55 | 7568.91 | 26.69 | 35,778.43 | 54.13 | 8633.62 | 31.22 | 6845.54 | 48.24 | 4329.37 | 19.71 |
NAÏVE (2) | 22,079.80 | 22.05 | 45,426.83 | 54.88 | 11,859.61 | 38.30 | 46,051.58 | 84.48 | 7383.02 | 32.26 | 6046.95 | 40.21 | 5890.47 | 28.37 |
ARDL (2) | 21,822.64 | 30.50 | 79,331.40 | 85.36 | 12,857.40 | 44.59 | 23,287.12 | 42.19 | 10252.61 | 46.90 | 14,178.16 | 76.19 | 31,868.72 | 176.04 |
ARDL_M_W (2) | 27,307.05 | 38.57 | 31,795.89 | 42.97 | 11,521.74 | 42.98 | 24,931.05 | 44.61 | 7875.97 | 37.74 | 16,884.15 | 85.78 | 21,875.07 | 125.68 |
ARDL_M_WN (2) | 22,050.08 | 34.20 | 20,849.30 | 24.11 | 12,982.47 | 42.18 | 18,945.96 | 34.52 | 8515.58 | 38.99 | 16,094.28 | 80.42 | 12,472.70 | 66.53 |
ARIMA (4) | 28,522.66 | 38.59 | 32,692.53 | 34.25 | 12,577.83 | 41.85 | 23,028.54 | 32.91 | 8626.11 | 35.66 | 9649.47 | 56.58 | 7186.19 | 39.05 |
MIDAS_W (4) | 17,721.52 | 25.67 | 30,664.56 | 30.91 | 9429.09 | 28.50 | 38,509.38 | 57.66 | 7736.59 | 32.08 | 10,102.54 | 63.14 | 3770.90 | 23.31 |
MIDAS_WN (4) | 14,886.65 | 22.85 | 37,064.55 | 43.60 | 7793.72 | 23.54 | 35,582.21 | 56.56 | 12,201.69 | 55.13 | 10,061.26 | 69.49 | 5460.50 | 33.29 |
NAÏVE (4) | 34,732.12 | 45.48 | 44,552.87 | 50.46 | 13,109.98 | 46.77 | 26,443.24 | 47.36 | 11,517.27 | 48.62 | 11,196.49 | 64.89 | 7846.23 | 45.23 |
ARDL (4) | 27,717.13 | 30.90 | 125,580.70 | 144.46 | 12,669.79 | 44.80 | 21,675.13 | 42.56 | 10,836.47 | 49.45 | 15,308.15 | 81.38 | 18,505.67 | 92.58 |
ARDL_M_W (4) | 36,063.88 | 48.96 | 41,712.73 | 55.36 | 14,793.45 | 44.61 | 31,793.02 | 55.43 | 11,457.86 | 55.46 | 59,729.03 | 218.19 | 44,004.82 | 181.03 |
ARDL_M_WN (4) | 34,395.43 | 47.23 | 37,826.01 | 48.98 | 14,522.65 | 45.69 | 15,076.94 | 25.17 | 12,280.52 | 58.85 | 37,890.29 | 119.88 | 13,672.11 | 69.91 |
ARIMA (8) | 45,673.55 | 58.75 | 37,879.24 | 44.11 | 16,081.81 | 55.97 | 30,751.06 | 67.20 | 17,186.57 | 79.05 | 18,088.86 | 124.01 | 10,740.38 | 65.39 |
MIDAS_W (8) | 30,622.84 | 39.05 | 34,423.48 | 36.15 | 13,233.33 | 47.67 | 36,236.18 | 50.96 | 19,876.99 | 92.93 | 18,391.15 | 126.96 | 8409.17 | 53.83 |
MIDAS_WN (8) | 38,869.97 | 51.58 | 36,189.51 | 42.68 | 9624.35 | 42.59 | 23,400.78 | 40.20 | 14,268.06 | 56.27 | 14,889.71 | 106.04 | 11,123.09 | 74.99 |
NAÏVE (8) | 62,978.51 | 79.88 | 71,861.94 | 85.61 | 24,560.51 | 85.95 | 51,642.60 | 90.16 | 22,768.90 | 97.60 | 17,855.14 | 106.35 | 14,375.42 | 81.64 |
ARDL (8) | 56,106.12 | 74.97 | 976,554.90 | 750.16 | 14,403.45 | 49.52 | 30,499.09 | 44.98 | 82,333.98 | 296.21 | 23,248.57 | 177.85 | 10,194.18 | 46.83 |
ARDL_M_W (8) | 64,799.95 | 88.28 | 79,718.41 | 97.37 | 14,572.83 | 49.03 | 30,205.95 | 50.41 | 22,243.91 | 82.70 | 14,896.69 | 103.56 | 15,079.56 | 66.73 |
ARDL_M_WN (8) | 61,708.79 | 87.75 | 75,923.78 | 88.08 | 25,822.05 | 69.04 | 30,624.56 | 43.49 | 21,880.37 | 85.01 | 10,673.86 | 86.08 | 12,037.69 | 72.40 |
ARIMA (12) | 33,607.25 | 36.59 | 31,500.39 | 41.25 | 9756.03 | 39.84 | 30,277.04 | 74.71 | 14,704.83 | 68.84 | 13,764.52 | 98.84 | 8175.77 | 52.15 |
MIDAS_W (12) | 17,458.13 | 22.60 | 45,837.80 | 52.36 | 9425.45 | 37.73 | 18,291.95 | 23.74 | 17,184.68 | 79.76 | 16,302.95 | 123.72 | 8762.34 | 57.27 |
MIDAS_WN (12) | 18,240.52 | 26.93 | 44,778.36 | 57.18 | 7768.55 | 33.53 | 12,134.32 | 23.99 | 6258.72 | 31.65 | 16,191.22 | 134.78 | 10,780.02 | 75.08 |
NAÏVE (12) | 59,634.82 | 72.17 | 57,772.93 | 65.55 | 21,855.22 | 65.11 | 46,476.41 | 77.85 | 28,116.80 | 122.90 | 16,719.66 | 107.60 | 14,301.56 | 74.07 |
ARDL (12) | 55,295.05 | 67.53 | 139,857.70 | 169.99 | 11,441.40 | 40.85 | 58,948.40 | 101.32 | 60,801.60 | 203.31 | 14,938.24 | 99.69 | 6796.39 | 38.64 |
ARDL_M_W (12) | 56,460.36 | 70.45 | 917,644.60 | 382.17 | 10,569.65 | 41.57 | 28,924.18 | 37.66 | 19,873.47 | 73.92 | 9811.49 | 76.42 | 8343.48 | 49.32 |
ARDL_M_WN (12) | 58,416.17 | 78.46 | 238,076.60 | 222.72 | 11,482.70 | 38.81 | 32,620.85 | 68.24 | 19,714.61 | 79.65 | 11,137.16 | 94.44 | 60,629.92 | 341.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botha, I.; Saayman, A. Does Google Analytics Improve the Prediction of Tourism Demand Recovery? Forecasting 2024, 6, 908-924. https://doi.org/10.3390/forecast6040045
Botha I, Saayman A. Does Google Analytics Improve the Prediction of Tourism Demand Recovery? Forecasting. 2024; 6(4):908-924. https://doi.org/10.3390/forecast6040045
Chicago/Turabian StyleBotha, Ilsé, and Andrea Saayman. 2024. "Does Google Analytics Improve the Prediction of Tourism Demand Recovery?" Forecasting 6, no. 4: 908-924. https://doi.org/10.3390/forecast6040045
APA StyleBotha, I., & Saayman, A. (2024). Does Google Analytics Improve the Prediction of Tourism Demand Recovery? Forecasting, 6(4), 908-924. https://doi.org/10.3390/forecast6040045