Methodology for Optimizing Factors Affecting Road Accidents in Poland
Abstract
:1. Characteristics of the Issue
- Good atmospheric conditions are as follows:
- ○
- air temperature > 3 deg;
- ○
- no precipitation;
- ○
- wind < 5.5 m/s;
- ○
- visibility > 10 km;
- ○
- daily differential pressure < 8 hPa.
- Bad weather conditions (if one of the following factors is met) are as follows:
- ○
- slippery pavement (temperature < 3 °C and occurrence of precipitation);
- ○
- driving rain (temperature >0 °C, precipitation > 3 mm);
- ○
- snowstorm (temperature <0 °C, precipitation > 3 mm);
- ○
- strong wind (wind > 10 ms/s);
- ○
- dense fog (visibility < 300 m).
2. Multi-Criteria Optimization Model
- A—the space of solutions;
- B—the space of solution evaluations;
- F: A ⇒B—a criterion function, assigning to each solution X⊂A its grade Z∈B and assuming that the set of possible solutions A is not empty, a certain subset X (the set of acceptable solutions) can be selected, whereby
- maximize the function,
- maximize the function,
x ∈X1; x ∈X1
x ∈X1 x∈X1
3. Optimization of Factors Affecting the Number of Traffic Accidents
- x1,1—good weather;
- x1,2—fog, smoke;
- x1,3—rainfall;
- x1,4—snowfall, hail;
- x1,5—blinding sun;
- x1,6—cloudy;
- x1,7—strong wind;
- x1,8—Monday;
- x1,9—Tuesday;
- x1,10—Wednesday;
- x1,11—Thursday;
- x1,12—Friday;
- x1,13—Saturday;
- x1,14—Sunday;
- x1,15—Lower Silesia;
- x1,16—Kujawsko-pomorskie;
- x1,17—Lubelskie;
- x1,18—Lubuskie;
- x1,19—Lodzkie;
- x1,20—Lesser Poland;
- x1,21—Mazovian;
- x1,22—Opolskie;
- x1,23—Subcarpathian;
- x1,24—Podlaskie;
- x1,25—Pomeranian;
- x1,26—Silesian;
- x1,27—Swietokrzyskie;
- x1,28—Warmian-Masurian;
- x1,29—Greater Poland;
- x1,30—Zachodniopomorskie.
- x1,31—highway;
- x1,32—expressway;
- x1,33 –with two one-way roadways;
- x1,34—road—one-way;
- x1,35—two-way, single carriageway.
- Normalization of criterion space—space D*
- 2.
- Determination of the coordinates of the ideal point—d**.
d1** = max f *1,1(x), d2** = max f *1,2(x)
d3** = max f *1,3(x), x ∈ X1
- 3.
- Calculation of the value of the standard with parameter p = 2—rj (D*).
4. Example of Optimization of Factors Affecting the Number of Road Accidents in Poland
- the presentation of a set Xj and selection of elements xi Xj;
- the presentation of the set Fj and selection, by the computer program operator, of the elements fi Fj and the dominance relation i j;
- data entry according to two options (option 1—manual data entry (fi Fj values), option 2—calculation of fi Fj values) based on data obtained during experimental or simulation studies;
- fog, smoke;
- rainfall;
- snowfall or hail;
- cloud cover;
- Monday;
- Tuesday;
- Wednesday;
- Thursday;
- Friday;
- Saturday;
- Sunday;
- Lower Silesian;
- Lubelskie;
- Lodzkie;
- Małopolskie;
- Mazovian;
- Opolskie;
- Podkarpackie;
- Pomeranian;
- Silesian;
- Warmian-Masurian;
- Greater Poland;
- with two one-way carriageways;
- a two-way, single carriageway road.
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Status Report on Road Safety 2020; World Health Organization: Geneva, Switzerland, 2018; Available online: https://www.who.int/violence_injury_prevention/road_safety_status/report/en/ (accessed on 2 May 2022).
- Eurostat. 2022. Available online: https://ec.europa.eu/eurostat (accessed on 2 May 2022).
- Police Statistics. 2022. Available online: https://statystyka.policja.pl/ (accessed on 2 May 2022).
- Zhai, X.; Huang, H.; Sze, N.N.; Song, Z.; Hon, K.K. Diagnostic analysis of the effects of weather condition on pedestrian crash severity. Accid. Anal. Prev. 2019, 122, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Holland, C.; Hill, R. The effect of age, gender and driver status on pedestrians’ intentions to cross the road in risky situations. Accid. Anal. Prev. 2007, 39, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Favarò, F.M.; Nader, N.; Eurich, S.O.; Tripp, M.; Varadaraju, N. Examining accident reports involving autonomous vehicles in California. PLoS ONE 2017, 12, e0184952. [Google Scholar] [CrossRef] [PubMed]
- Amini, R.E.; Katrakazas, C.; Antoniou, C. Negotiation and Decision-Making for a Pedestrian Roadway Crossing: A Literature Review. Sustainability 2019, 11, 6713. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, F.; Sheikh, U.U.; Al-Shammari, S.; Hamid, M.; Khakwani, A.B.K.; Arfeen, Z.A. Comparative analysis of influencing factors on pedestrian road accidents. Bull. Electr. Eng. Inform. 2023, 12, 257–267. [Google Scholar] [CrossRef]
- Mesquitela, J.; Elvas, L.B.; Ferreira, J.C.; Nunes, L. Data Analytics Process over Road Accidents Data—A Case Study of Lisbon City. ISPRS Int. J. Geo-Inf. 2022, 11, 143. [Google Scholar] [CrossRef]
- Becker, N.; Rust, H.W.; Ulbrich, U. Predictive modeling of hourly probabilities for weather-related road accidents. Nat. Hazards Earth Syst. Sci. 2020, 20, 2857–2871. [Google Scholar] [CrossRef]
- Mills, B.; Andrey, J.; Doberstein, B.; Doherty, S.; Yessis, J. Changing patterns of motor vehicle collision risk during winter storms: A new look at a pervasive problem. Accid. Anal. Prev. 2019, 127, 186–197. [Google Scholar] [CrossRef]
- Karlaftis, M.; Yannis, G. Weather effects on daily traffic accidents and fatalities: A time series count data approach. In Proceedings of the 89th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 10–14 January 2010. [Google Scholar]
- Scott, P. Modelling time-series of British road accident data. Accid. Anal. Prev. 1986, 18, 109–117. [Google Scholar] [CrossRef]
- Fridstrøm, L.; Ifver, J.; Ingebrigtsen, S.; Kulmala, R.; Thomsen, L.K. Measuring the contribution of randomness, exposure, weather, and daylight to the variation in road accident counts. Accid. Anal. Prev. 1995, 27, 1–20. [Google Scholar] [CrossRef]
- Shankar, V.; Mannering, F.; Barfield, W. Effect of roadway geometrics and environmental factors on rural freeway accident frequencies. Accid. Anal. Prev. 1995, 27, 371–389. [Google Scholar] [CrossRef]
- Eisenberg, D. The mixed effects of precipitation on traffic accidents. Accid. Anal. Prev. 2004, 36, 637–647. [Google Scholar] [CrossRef]
- Bergel-Hayat, R.; Depire, A. Climate, road traffic and road risk—An aggregate approach. In Proceedings of the 10th World Conference on Transport Research (CD-ROM), Istanbul, Turkey, 4–8 July 2004. [Google Scholar]
- Hermans, E.; Wets, G.; Van Den Bossche, F. Frequency and severity of belgian road traffic accidents studied by state-space methods. J. Transp. Stat. 2006, 9, 63–76. [Google Scholar]
- Bijleveld, F.; Churchill, T. The Influence of Weather Conditions on Road Safety: An Assessment of the Effect of Precipitation and Temperature. 2009. Available online: https://www.swov.nl/sites/default/files/publicaties/rapport/r2009-09.pdf (accessed on 2 May 2022).
- Bucsuházy, K.; Matuchová, E.; Zůvala, R.; Moravcová, P.; Kostíková, M.; Mikulec, R. Human factors contributing to the road traffic accident occurrence. Transp. Res. Procedia 2020, 45, 555–561. [Google Scholar] [CrossRef]
- Schlögl, M. A multivariate analysis of environmental effects on road accident occurrence using a balanced bagging approach. Accid. Anal. Prev. 2020, 136, 105398. [Google Scholar] [CrossRef]
- Kim, D.; Jung, S.; Yoon, S. 2021 Risk Prediction for Winter Road Accidents on Expressways. Appl. Sci. 2021, 11, 9534. [Google Scholar] [CrossRef]
- Kim, D.; Yoon, S.; Kim, B. Comparison of spatial interpolation methods for producing road weather information in winter. J. Korean Data Inf. Sci. Soc. 2020, 23, 541–551. [Google Scholar] [CrossRef]
- Onesimu, J.A.; Kadam, A.; Sagayam, K.M.; Elngar, A.A. Internet of things based intelligent accident avoidance system for adverse weather and road conditions. J. Reliab. Intell. Environ. 2021, 7, 299–313. [Google Scholar] [CrossRef]
- Tubis, A. Risk Assessment in Road Transport—Strategic and Business Approach. J. KONBiN 2018, 45, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Safety Cube; Project Co-Funded by Horizon 2020 Framework Programmes; European Commission: Brussels, Belgium, 2016.
- Reurings, M.; Jannsen, T.; Eenink, R.; Elvik, R.; Cardoso, J.; Stefan, C. Accident Prediction Models and Road Safety Impact Assessment a state of the art; Ripcord–ISERET; Institute for Road Safety Research: Leidschendam, The Netherlands, 2005. [Google Scholar]
- SWOV. Road Infrastructure Safety Management Evaluation Tools (RISMET); Govert Schermers: Stockholm, Sweden, 2012. [Google Scholar]
- Bergel-Hayat, R.; Debbarh, M.; Antoniou, C.; Yannis, G. Explaining the road accident risk: Weather effects. Accid. Anal. Prev. 2013, 60, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Hermans, E.; Brijs, T.; Stiers, T.; Offermans, C. The impact of weather conditions on road safety investigated on an hourly basis. In Proceedings of the 85th Transportation Research Board (TRB) Annual Meeting, Washington, DC, USA, 22–26 January 2006. [Google Scholar]
- Brodsky, H.; Hakkert, A. Risk of a road accident in rainy weather. Accid. Anal. Prev. 1988, 20, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Sabir, M. Weather and Travel Behaviour. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2011. [Google Scholar]
- Masello, L.; Castignani, G.; Sheehan, B.; Murphy, F.; McDonnell, K. On the road safety benefits of advanced driver assistance systems in different driving contexts. Transp. Res. Interdiscip. Perspect. 2022, 15, 100670. [Google Scholar] [CrossRef]
- Čubranić-Dobrodolac, M.; Švadlenka, L.; Čičević, S.; Dobrodolac, M. Modelling driver propensity for traffic accidents: A comparison of multiple regression analysis and fuzzy approach. Int. J. Inj. Control. Saf. Promot. 2020, 27, 156–167. [Google Scholar] [CrossRef]
- Čubranić-Dobrodolac, M.; Švadlenka, L.; Čičević, S.; Trifunović, A.; Dobrodolac, M. Using the Interval Type-2 Fuzzy Inference Systems to Compare the Impact of Speed and Space Perception on the Occurrence of Road Traffic Accidents. Mathematics 2020, 8, 1548. [Google Scholar] [CrossRef]
- Ismail, S.N.; Ramli, A.; Aziz, H.A. Research trends in mining accidents study: A systematic literature review. Saf. Sci. 2021, 143, 105438. [Google Scholar] [CrossRef]
- Helgason, A. Fractional integration methods and short Time series: Evidence from asimulation study. Polit. Anal. 2016, 24, 59–68. Available online: https://www.jstor.org/stable/24573204 (accessed on 2 May 2022). [CrossRef]
- Lavrenz, S.; Vlahogianni, E.; Gkritza, K.; Ke, Y. Time series modeling in traffic safetyresearch. Accid. Anal. Prev. 2018, 117, 368–380. [Google Scholar] [CrossRef]
- Prognosis Based on Time Series. 2022. Available online: http://pis.rezolwenta.eu.org/Materialy/PiS-W-5.pdf (accessed on 2 May 2022).
- Procházka, J.; Flimmel, S.; Čamaj, M.; Bašta, M. Modelling the Number of Road Accidents; Publishing House of the University of Economics in Wrocław: Wrocław, Poland, 2017. [Google Scholar] [CrossRef] [Green Version]
- Sunny, C.M.; Nithya, S.; Sinshi, K.S.; Vinodini, V.M.D.; Lakshmi, A.K.G.; Anjana, S.; Manojkumar, T.K. Forecasting of Road Accident in Kerala: A Case Study. In Proceedings of the International Conference on Data Science and Engineering (ICDSE), Kochi, India, 7–9 August 2018. [Google Scholar] [CrossRef]
- Dudek, G. Forecasting Time Series with Multiple Seasonal Cycles Using Neural Networks with Local Learning. In ICAISC 2013: Artificial Intelligence and Soft Computing; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7894. [Google Scholar] [CrossRef]
- Szmuksta-Zawadzka, M.; Zawadzki, J. Forecasting on the Basis of Holt-Winters Models for Complete and Incomplete Data; Research Papers of the Wrocław University of Economics: Wrocław, Poland, 2009; Volume 38. [Google Scholar]
- Wójcik, A. Autoregressive Vector Models as a Response to the Critique of Multi-Equation Structural Econometric Models; Publishing House of the University of Economics in Katowice: Katowice, Poland, 2014; Volume 193. [Google Scholar]
- Monedero, B.D.; Gil-Alana, L.A.; Martínez, M.C.V. Road accidents in Spain: Are they persistent? IATSS Res. 2021, 45, 317–325. [Google Scholar] [CrossRef]
- Al-Madani, H. Global road fatality trends’estimations based on country-wise microlevel data. Accid. Anal. Prev. 2018, 111, 297–310. [Google Scholar] [CrossRef]
- Mamczur, M. Machine Learning How Does Linear Regression Work? And Is It Worth Using? 2022. Available online: https://miroslawmamczur.pl/jak-dziala-regresja-liniowa-i-czy-warto-ja-stosowac/ (accessed on 2 May 2022).
- Piłatowska, M. The choice of the order of autoregression depending on the parameters of the generating model. Econometrics 2012, 4, 16–35. [Google Scholar]
- In What Weather Are Accidents Most Common? 2022. Available online: https://moto.pl/MotoPL/7,88389,25510393,przy-jakiej-pogodzie-najczesciej-dochodzi-do-wypadkow-wcale.html (accessed on 2 May 2022).
- Ameljańczyk, A. Multi-Criteria Optimization; Military University of Technology Publishing: Warsaw, Poland, 1986. [Google Scholar]
- Tylicki, H. Optimization of the anthropotechnical system. In Proceedings of the Materials of the XXXVII Winter School of Reliability, Szczyrk, Poland, 22–23 March 2009; pp. 349–354. [Google Scholar]
- Tylicki, H.; Gorzelańczyk, P. The use of condition forecasting methods in the logistics of means of transport. Logistics 2013, 1, 2–6. [Google Scholar]
- Tylicki, H.; Gorzelańczyk, P. Automation of the process of monitoring the condition of means of transport. Logistics 2014, 6, 10766–10775. [Google Scholar]
- Bhandari, B.; Lee, K.; Lee, G.; Cho, Y.M.; Ahn, S. Optimization of hybrid renewable energy power systems: A review. Int. J. Precis. Eng. Manuf. Green Technol. 2015, 2, 99–112. [Google Scholar] [CrossRef]
- Tylicki, H. A model of optimizing the energy management of a company. In Materials GWDA Piła; GWDA Piła: Piła, Poland, 2022. [Google Scholar]
- Tylicki, H.; Wojciechowski, T. Report on the implementation of topic 4, stage 1 Optimization of energy management in the conditions of a municipal wastewater treatment company. In Materials GWDA Piła; GWDA Piła: Piła, Poland, 2022. [Google Scholar]
- Gorzelanczyk, P.; Tylicki, H.; Kalina, T.; Jurkovič, M. Optimizing the Choice of Means of Transport using Operational Research. Commun. Sci. Lett. Univ. Zilina 2021, 23, A193–A207. [Google Scholar] [CrossRef]
x1,1 | x1,2 | x1,3 | x1,4 | x1,5 | x1,6 | x1,7 | x1,8 | x1,9 | x1,10 | x1,11 | x1,12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
f1,1 | 0.73 | 0.53 | 0.70 | 0.50 | 0.78 | 0.68 | 0.53 | 0.73 | 0.74 | 0.74 | 0.74 | 0.75 |
f1,2 | 1622.45 | 132.20 | 700.40 | 539.85 | 69.15 | 1541.80 | 62.50 | 305.60 | 297.50 | 323.70 | 261.55 | 338.45 |
f1,3 | 9721.62 | 0.53 | 2041.29 | 1188.33 | 178.81 | 3600.67 | 269.00 | 2162.38 | 1911.57 | 1993.81 | 1981.33 | 2168.48 |
x1,13 | x1,14 | x1,15 | x1,16 | x1,17 | x1,18 | x1,19 | x1,20 | x1,21 | x1,22 | x1,23 | x1,24 | |
f1,1 | 0.70 | 0.72 | 0.74 | 0.59 | 0.60 | 0.78 | 0.85 | 0.75 | 0.61 | 0.23 | 0.77 | 0.43 |
f1,2 | 397.00 | 277.75 | 229.80 | 96.50 | 146.25 | 40.65 | 224.60 | 406.60 | 431.40 | 247.20 | 148.80 | 96.75 |
f1,3 | 2492.81 | 1935.95 | 914.71 | 1100.14 | 1205.62 | 223.14 | 726.57 | 1267.81 | 3399.33 | 3942.71 | 543.86 | 1301.67 |
x1,25 | x1,26 | x1,27 | x1,28 | x1,29 | x1,30 | x1,31 | x1,32 | x1,33 | x1,34 | x1,35 | Φ1 | |
f1,1 | 0.76 | 0.69 | 0.71 | 0.73 | 0.68 | 0.73 | 0.64 | 0.49 | 0.76 | 0.83 | 0.73 | MAX |
f1,2 | 184.05 | 297.05 | 81.20 | 140.05 | 392.75 | 103.20 | 40.70 | 23.60 | 294.25 | 81.40 | 1732.15 | MAX |
f1,3 | 883.10 | 2189.29 | 631.62 | 599.95 | 1709.76 | 598.05 | 171.05 | 229.05 | 1620.90 | 253.00 | 12,116.14 | MAX |
F/X | f1,1 | MAX (f1,1) | f1,1* | f1,1** | f1,2 | MAX (f1,2) | f1,2* | f1,2** | f1,3 | MAX (f1,3) | f1,3* | f1,3** |
---|---|---|---|---|---|---|---|---|---|---|---|---|
x1,1 | 0.73 | 0.85 | 1.17 | 3.66 | 1622.4 | 1732.15 | 1.07 | 73.4 | 9721.62 | 12,116.14 | 0.8 | 1 |
x1,2 | 0.53 | 1.61 | 132.2 | 13.1 | 0.53 | 0 | ||||||
x1,3 | 0.7 | 1.21 | 700.4 | 2.47 | 2041.29 | 0.17 | ||||||
x1,4 | 0.5 | 1.7 | 539.85 | 3.21 | 1188.33 | 0.1 | ||||||
x1,5 | 0.78 | 1.09 | 69.15 | 25.05 | 178.81 | 0.01 | ||||||
x1,6 | 0.68 | 1.25 | 1541.8 | 1.12 | 3600.67 | 0.3 | ||||||
x1,7 | 0.53 | 1.59 | 62.5 | 27.71 | 269 | 0.02 | ||||||
x1,8 | 0.73 | 1.16 | 305.6 | 5.67 | 2162.38 | 0.18 | ||||||
x1,9 | 0.74 | 1.14 | 297.5 | 5.82 | 1911.57 | 0.16 | ||||||
x1,10 | 0.74 | 1.15 | 323.7 | 5.35 | 1993.81 | 0.16 | ||||||
x1,11 | 0.74 | 1.15 | 261.55 | 6.62 | 1981.33 | 0.16 | ||||||
x1,12 | 0.75 | 1.13 | 338.45 | 5.12 | 2168.48 | 0.18 | ||||||
x1,13 | 0.7 | 1.22 | 397 | 4.36 | 2492.81 | 0.21 | ||||||
x1,14 | 0.72 | 1.19 | 277.75 | 6.24 | 1935.95 | 0.16 | ||||||
x1,15 | 0.74 | 1.14 | 229.8 | 7.54 | 914.71 | 0.08 | ||||||
x1,16 | 0.59 | 1.45 | 96.5 | 17.95 | 1100.14 | 0.09 | ||||||
x1,17 | 0.6 | 1.41 | 146.25 | 11.84 | 1205.62 | 0.1 | ||||||
x1,18 | 0.78 | 1.1 | 40.65 | 42.61 | 223.14 | 0.02 | ||||||
x1,19 | 0.85 | 1 | 224.6 | 7.71 | 726.57 | 0.06 | ||||||
x1,20 | 0.75 | 1.14 | 406.6 | 4.26 | 1267.81 | 0.1 | ||||||
x1,21 | 0.61 | 1.39 | 431.4 | 4.02 | 3399.33 | 0.28 | ||||||
x1,22 | 0.23 | 3.66 | 247.2 | 7.01 | 3942.71 | 0.33 | ||||||
x1,23 | 0.77 | 1.1 | 148.8 | 11.64 | 543.86 | 0.04 | ||||||
x1,24 | 0.43 | 1.97 | 96.75 | 17.9 | 1301.67 | 0.11 | ||||||
x1,25 | 0.76 | 1.12 | 184.05 | 9.41 | 883.1 | 0.07 | ||||||
x1,26 | 0.69 | 1.23 | 297.05 | 5.83 | 2189.29 | 0.18 | ||||||
x1,27 | 0.71 | 1.19 | 81.2 | 21.33 | 631.62 | 0.05 | ||||||
x1,28 | 0.73 | 1.16 | 140.05 | 12.37 | 599.95 | 0.05 | ||||||
x1,29 | 0.68 | 1.25 | 392.75 | 4.41 | 1709.76 | 0.14 | ||||||
x1,30 | 0.73 | 1.17 | 103.2 | 16.78 | 598.05 | 0.05 | ||||||
x1,31 | 0.64 | 1.32 | 40.7 | 42.56 | 171.05 | 0.01 | ||||||
x1,32 | 0.49 | 1.75 | 23.6 | 73.4 | 229.05 | 0.02 | ||||||
x1,33 | 0.76 | 1.11 | 294.25 | 5.89 | 1620.9 | 0.13 | ||||||
x1,34 | 0.83 | 1.03 | 81.4 | 21.28 | 253 | 0.02 | ||||||
x1,35 | 0.73 | 1.16 | 1732.15 | 1 | 12116,14 | 1 |
x1,1 | x1,2 | x1,3 | x1,4 | x1,5 | x1,6 | x1,7 | x1,8 | x1,9 | x1,10 | x1,11 | x1,12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
rj | 72.37 | 13.20 | 2.76 | 3.63 | 25.07 | 1.70 | 27.76 | 5.79 | 5.94 | 5.48 | 6.72 | 5.24 |
x1,13 | x1,14 | x1,15 | x1,16 | x1,17 | x1,18 | x1,19 | x1,20 | x1,21 | x1,22 | x1,23 | x1,24 | |
rj | 4.53 | 6.35 | 7.62 | 18.01 | 11.93 | 42.63 | 7.78 | 4.41 | 4.26 | 7.91 | 11.69 | 18.01 |
x1,25 | x1,26 | x1,27 | x1,28 | x1,29 | x1,30 | x1,31 | x1,32 | x1,33 | x1,34 | x1,35 | ||
rj | 9.48 | 5.96 | 21.37 | 12.42 | 4.59 | 16.83 | 42.58 | 73.42 | 5.99 | 21.30 | 1.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorzelanczyk, P.; Tylicki, H. Methodology for Optimizing Factors Affecting Road Accidents in Poland. Forecasting 2023, 5, 336-350. https://doi.org/10.3390/forecast5010018
Gorzelanczyk P, Tylicki H. Methodology for Optimizing Factors Affecting Road Accidents in Poland. Forecasting. 2023; 5(1):336-350. https://doi.org/10.3390/forecast5010018
Chicago/Turabian StyleGorzelanczyk, Piotr, and Henryk Tylicki. 2023. "Methodology for Optimizing Factors Affecting Road Accidents in Poland" Forecasting 5, no. 1: 336-350. https://doi.org/10.3390/forecast5010018
APA StyleGorzelanczyk, P., & Tylicki, H. (2023). Methodology for Optimizing Factors Affecting Road Accidents in Poland. Forecasting, 5(1), 336-350. https://doi.org/10.3390/forecast5010018