Combined Permutation Tests for Pairwise Comparison of Scale Parameters Using Deviances
Abstract
:1. Introduction
2. Methods for Comparing Scale Parameters
2.1. Brown–Forsythe (W50) Test
2.2. Higgins’ (RMD) Test
2.3. O’Brien’s (OB) Test
2.4. Permutation Tests
3. Combined Tests
- Step 1. Analyze the data using the tests of interest, referred to as partial tests;
- Step 2. Combine the partial tests to assess the global hypothesis.
- The Fisher combining function is ;
- The Liptak combining function is ;
- The Tippett combining function is .
- Compute the observed test statistic value (, , ) according to the above definitions, using the permutation p-values of RMD, W50 and OB.
- To compute the permutation test p-value associated with each combined statistic:
- For the ith statistic in the permutation distributions constructed for RMD, W50 and OB, compute the ith partial p-value as the proportion of test statistic values at least as large as the ith statistic value.
- Using the partial p-values for RMD, W50 and OB, use the respective combining function to compute a test statistic value (, , ) for each permutation. This results in a permutation distribution for each of the combined statistics.
- For each combined test, the permutation p-value is then the proportion of values in the permutation distribution at least as large as the observed statistic value.
4. Strong Familywise Error Rate Control for Pairwise Comparisons
5. Simulation Study
5.1. Procedures Studied
- RMD: Higgins RMD procedure.
- W50: Brown and Forsyth’s W50 test.
- OB: O’Brien’s method using means.
- Fisher’s combination test of RMD, W50 and OB.
- Fisher’s combination test of RMD and W50.
- Liptak’s combination test of RMD, W50 and OB.
- Liptak’s combination test of RMD and W50.
- Tippett’s combination test of RMD, W50 and OB.
- Tippett’s combination test of RMD and W50.
5.2. Sample Sizes and Differences in Scale Parameters
- 1. 2. 3. 4. 5..
5.3. Distributions
- g = 0, h = 0—Normally distributed (symmetric, light tails);
- g = 0, h = 0.4—Symmetric, moderately heavy tails;
- g = 0, h = 0.8—Symmetric, very heavy tails;
- g = 0.4, h = 0—Moderately skewed, light tails;
- g = 0.8, h = 0—Heavily skewed, light tails;
- g = 0.4, h = 0.4—Moderately skewed, moderately heavy tails;
- g = 0.8, h = 0.4—Heavily skewed, moderately heavy tails.
6. Simulation Results
6.1. Familywise Type I Error
6.2. Any-Pair Power
Distribution | Scale | Method | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
W50 | OB | RMD | F3 | F2 | L3 | L2 | T3 | T2 | ||
g = 0, h = 0 | 11111 | 0.040 | 0.016 | 0.039 | 0.039 | 0.042 | 0.041 | 0.043 | 0.025 | 0.034 |
31111 | 0.669 | 0.620 | 0.742 | 0.708 | 0.726 | 0.708 | 0.727 | 0.689 | 0.710 | |
32111 | 0.609 | 0.466 | 0.689 | 0.648 | 0.692 | 0.655 | 0.697 | 0.604 | 0.632 | |
51111 | 0.911 | 0.850 | 0.965 | 0.935 | 0.954 | 0.933 | 0.950 | 0.944 | 0.957 | |
53111 | 0.889 | 0.697 | 0.970 | 0.925 | 0.956 | 0.924 | 0.957 | 0.929 | 0.944 | |
g = 0, h = 0.4 | 11111 | 0.010 | 0.000 | 0.065 | 0.020 | 0.034 | 0.014 | 0.031 | 0.030 | 0.043 |
31111 | 0.099 | 0.028 | 0.244 | 0.155 | 0.205 | 0.126 | 0.204 | 0.191 | 0.202 | |
32111 | 0.084 | 0.016 | 0.274 | 0.141 | 0.212 | 0.112 | 0.205 | 0.197 | 0.225 | |
51111 | 0.285 | 0.090 | 0.476 | 0.378 | 0.445 | 0.331 | 0.446 | 0.411 | 0.433 | |
53111 | 0.192 | 0.046 | 0.495 | 0.332 | 0.434 | 0.247 | 0.421 | 0.409 | 0.433 | |
g = 0, h = 0.8 | 11111 | 0.004 | 0.000 | 0.071 | 0.014 | 0.031 | 0.005 | 0.024 | 0.036 | 0.051 |
31111 | 0.017 | 0.003 | 0.140 | 0.057 | 0.098 | 0.032 | 0.084 | 0.092 | 0.110 | |
32111 | 0.011 | 0.001 | 0.182 | 0.060 | 0.110 | 0.034 | 0.088 | 0.108 | 0.133 | |
51111 | 0.053 | 0.011 | 0.237 | 0.130 | 0.192 | 0.079 | 0.174 | 0.189 | 0.208 | |
53111 | 0.034 | 0.007 | 0.286 | 0.129 | 0.208 | 0.070 | 0.182 | 0.214 | 0.240 | |
g = 0.4, h = 0 | 11111 | 0.042 | 0.020 | 0.049 | 0.037 | 0.053 | 0.036 | 0.056 | 0.031 | 0.037 |
31111 | 0.620 | 0.552 | 0.656 | 0.660 | 0.681 | 0.665 | 0.686 | 0.627 | 0.630 | |
32111 | 0.549 | 0.402 | 0.637 | 0.597 | 0.630 | 0.599 | 0.638 | 0.553 | 0.585 | |
51111 | 0.891 | 0.816 | 0.942 | 0.933 | 0.943 | 0.928 | 0.942 | 0.931 | 0.935 | |
53111 | 0.842 | 0.614 | 0.931 | 0.900 | 0.928 | 0.889 | 0.928 | 0.889 | 0.906 | |
g = 0.4, h = 0.4 | 11111 | 0.007 | 0.001 | 0.062 | 0.015 | 0.029 | 0.011 | 0.028 | 0.023 | 0..030 |
31111 | 0.090 | 0.028 | 0.240 | 0.146 | 0.204 | 0.118 | 0.200 | 0.184 | 0.200 | |
32111 | 0.081 | 0.014 | 0.272 | 0.130 | 0.216 | 0.099 | 0.201 | 0.195 | 0.222 | |
51111 | 0.251 | 0.090 | 0.442 | 0.343 | 0.418 | 0.301 | 0.415 | 0.384 | 0.406 | |
53111 | 0.182 | 0.040 | 0.477 | 0.310 | 0.406 | 0.248 | 0.390 | 0.374 | 0.406 | |
g = 0.8, h = 0 | 11111 | 0.034 | 0.014 | 0.058 | 0.042 | 0.047 | 0.036 | 0.052 | 0.033 | 0.042 |
31111 | 0.426 | 0.359 | 0.472 | 0.514 | 0.490 | 0.513 | 0.497 | 0.465 | 0.458 | |
32111 | 0.346 | 0.236 | 0.468 | 0.432 | 0.451 | 0.430 | 0.459 | 0.413 | 0.413 | |
51111 | 0.765 | 0.658 | 0.800 | 0.835 | 0.826 | 0.826 | 0.828 | 0.813 | 0.802 | |
53111 | 0.640 | 0.426 | 0.801 | 0.780 | 0.791 | 0.754 | 0.799 | 0.755 | 0.762 | |
g = 0.8, h = 0.4 | 11111 | 0.011 | 0.002 | 0.063 | 0.015 | 0.030 | 0.009 | 0.027 | 0.028 | 0.038 |
31111 | 0.074 | 0.025 | 0.195 | 0.138 | 0.168 | 0.104 | 0.164 | 0.154 | 0.171 | |
32111 | 0.064 | 0.014 | 0.231 | 0.131 | 0.179 | 0.089 | 0.167 | 0.156 | 0.185 | |
51111 | 0.186 | 0.065 | 0.384 | 0.294 | 0.348 | 0.242 | 0.346 | 0.313 | 0.338 | |
53111 | 0.138 | 0.032 | 0.430 | 0.272 | 0.356 | 0.204 | 0.346 | 0.333 | 0.364 |
Distribution | Scale | Method | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
W50 | OB | RMD | F3 | F2 | L3 | L2 | T3 | T2 | ||
g = 0, h = 0 | 11111 | 0.044 | 0.023 | 0.045 | 0.041 | 0.047 | 0.042 | 0.047 | 0.038 | 0.041 |
g = 0, h = 0.4 | 11111 | 0.007 | 0.001 | 0.060 | 0.014 | 0.030 | 0.012 | 0.028 | 0.030 | 0.034 |
31111 | 0.276 | 0.076 | 0.419 | 0.318 | 0.392 | 0.272 | 0.395 | 0.372 | 0.389 | |
32111 | 0.225 | 0.050 | 0.450 | 0.309 | 0.402 | 0.242 | 0.399 | 0.384 | 0.401 | |
51111 | 0.619 | 0.224 | 0.702 | 0.643 | 0.716 | 0.585 | 0.715 | 0.681 | 0.692 | |
53111 | 0.461 | 0.134 | 0.730 | 0.601 | 0.706 | 0.512 | 0.704 | 0.684 | 0.698 | |
g = 0, h = 0.8 | 11111 | 0.002 | 0.000 | 0.075 | 0.013 | 0.029 | 0.009 | 0.019 | 0.033 | 0.043 |
31111 | 0.026 | 0.007 | 0.155 | 0.074 | 0.112 | 0.053 | 0.097 | 0.116 | 0.132 | |
32111 | 0.023 | 0.003 | 0.199 | 0.070 | 0.124 | 0.042 | 0.103 | 0.143 | 0.167 | |
51111 | 0.078 | 0.015 | 0.278 | 0.183 | 0.241 | 0.124 | 0.228 | 0.241 | 0.252 | |
53111 | 0.059 | 0.008 | 0.339 | 0.187 | 0.274 | 0.110 | 0.245 | 0.289 | 0.299 | |
g = 0.4, h = 0 | 11111 | 0.029 | 0.020 | 0.049 | 0.037 | 0.044 | 0.034 | 0.044 | 0.033 | 0.040 |
g = 0.4, h = 0.4 | 11111 | 0.004 | 0.001 | 0.073 | 0.014 | 0.030 | 0.011 | 0.022 | 0.035 | 0.045 |
31111 | 0.222 | 0.068 | 0.380 | 0.280 | 0.349 | 0.228 | 0.346 | 0.332 | 0.352 | |
32111 | 0.168 | 0.041 | 0.409 | 0.264 | 0.349 | 0.199 | 0.340 | 0.338 | 0.360 | |
51111 | 0.533 | 0.174 | 0.635 | 0.561 | 0.660 | 0.506 | 0.664 | 0.613 | 0.628 | |
53111 | 0.394 | 0.099 | 0.671 | 0.546 | 0.642 | 0.448 | 0.636 | 0.613 | 0.634 | |
g = 0.8, h = 0 | 11111 | 0.026 | 0.016 | 0.053 | 0.034 | 0.038 | 0.034 | 0.039 | 0.039 | 0.043 |
31111 | 0.935 | 0.793 | 0.921 | 0.917 | 0.942 | 0.903 | 0.943 | 0.913 | 0.923 | |
32111 | 0.861 | 0.584 | 0.912 | 0.865 | 0.919 | 0.852 | 0.923 | 0.862 | 0.892 | |
g = 0.8, h = 0.4 | 11111 | 0.005 | 0.001 | 0.084 | 0.012 | 0.035 | 0.009 | 0.031 | 0.036 | 0.050 |
31111 | 0.138 | 0.046 | 0.303 | 0.215 | 0.265 | 0.170 | 0.263 | 0.256 | 0.276 | |
32111 | 0.103 | 0.024 | 0.336 | 0.200 | 0.274 | 0.154 | 0.262 | 0.267 | 0.296 | |
51111 | 0.371 | 0.118 | 0.526 | 0.456 | 0.514 | 0.392 | 0.517 | 0.490 | 0.507 | |
53111 | 0.264 | 0.067 | 0.573 | 0.436 | 0.533 | 0.325 | 0.528 | 0.510 | 0.531 |
Distribution | Scales | Method | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
W50 | OB | RMD | F3 | F2 | L3 | L2 | T3 | T2 | ||
g = 0, h = 0 | 11111 | 0.046 | 0.006 | 0.022 | 0.025 | 0.038 | 0.027 | 0.038 | 0.017 | 0.024 |
31111 | 0.331 | 0.288 | 0.128 | 0.322 | 0.294 | 0.336 | 0.301 | 0.268 | 0.258 | |
32111 | 0.320 | 0.222 | 0.048 | 0.302 | 0.275 | 0.317 | 0.297 | 0.235 | 0.232 | |
51111 | 0.502 | 0.451 | 0.348 | 0.543 | 0.525 | 0.557 | 0.546 | 0.470 | 0.460 | |
53111 | 0.507 | 0.330 | 0.244 | 0.512 | 0.541 | 0.546 | 0.575 | 0.413 | 0.416 | |
g = 0, h = 0.4 | 11111 | 0.006 | 0.004 | 0.047 | 0.007 | 0.026 | 0.005 | 0.023 | 0.022 | 0.029 |
31111 | 0.053 | 0.024 | 0.060 | 0.052 | 0.075 | 0.056 | 0.077 | 0.048 | 0.053 | |
32111 | 0.050 | 0.023 | 0.056 | 0.051 | 0.069 | 0.051 | 0.083 | 0.030 | 0.039 | |
51111 | 0.120 | 0.053 | 0.132 | 0.144 | 0.186 | 0.140 | 0.195 | 0.109 | 0.124 | |
53111 | 0.120 | 0.046 | 0.114 | 0.137 | 0.184 | 0.141 | 0.196 | 0.093 | 0.122 | |
g = 0, h = 0.8 | 11111 | 0.003 | 0.003 | 0.068 | 0.006 | 0.023 | 0.006 | 0.017 | 0.026 | 0.037 |
g = 0.8, h = 0 | 11111 | 0.027 | 0.005 | 0.032 | 0.019 | 0.039 | 0.018 | 0.042 | 0.020 | 0.032 |
31111 | 0.217 | 0.181 | 0.090 | 0.220 | 0.210 | 0.222 | 0.217 | 0.181 | 0.177 | |
32111 | 0.224 | 0.141 | 0.040 | 0.221 | 0.205 | 0.227 | 0.223 | 0.174 | 0.165 | |
51111 | 0.409 | 0.318 | 0.216 | 0.431 | 0.415 | 0.430 | 0.433 | 0.365 | 0.370 | |
53111 | 0.421 | 0.251 | 0.143 | 0.402 | 0.428 | 0.415 | 0.453 | 0.327 | 0.344 | |
g = 0.4, h = 0 | 11111 | 0.036 | 0.009 | 0.024 | 0.026 | 0.042 | 0.027 | 0.044 | 0.018 | 0.028 |
31111 | 0.306 | 0.257 | 0.114 | 0.286 | 0.280 | 0.304 | 0.282 | 0.232 | 0.234 | |
32111 | 0.304 | 0.196 | 0.044 | 0.274 | 0.270 | 0.291 | 0.287 | 0.220 | 0.221 | |
51111 | 0.483 | 0.415 | 0.306 | 0.523 | 0.501 | 0.532 | 0.519 | 0.434 | 0.436 | |
53111 | 0.421 | 0.277 | 0.180 | 0.423 | 0.427 | 0.440 | 0.461 | 0.345 | 0.353 | |
g = 0.4, h = 0.4 | 11111 | 0.007 | 0.001 | 0.056 | 0.005 | 0.023 | 0.007 | 0.023 | 0.027 | 0.032 |
31111 | 0.046 | 0.022 | 0.061 | 0.058 | 0.065 | 0.051 | 0.074 | 0.047 | 0.051 | |
32111 | 0.054 | 0.019 | 0.054 | 0.050 | 0.073 | 0.053 | 0.082 | 0.046 | 0.050 | |
51111 | 0.116 | 0.054 | 0.127 | 0.132 | 0.169 | 0.123 | 0.180 | 0.108 | 0.124 | |
53111 | 0.084 | 0.040 | 0.070 | 0.089 | 0.114 | 0.094 | 0.127 | 0.069 | 0.077 | |
g = 0.8, h = 0.4 | 11111 | 0.006 | 0.003 | 0.064 | 0.004 | 0.027 | 0.004 | 0.020 | 0.033 | 0.035 |
31111 | 0.037 | 0.017 | 0.052 | 0.047 | 0.058 | 0.045 | 0.063 | 0.039 | 0.041 | |
32111 | 0.045 | 0.020 | 0.053 | 0.051 | 0.073 | 0.049 | 0.074 | 0.045 | 0.057 | |
51111 | 0.104 | 0.044 | 0.126 | 0.116 | 0.147 | 0.108 | 0.159 | 0.097 | 0.119 | |
53111 | 0.097 | 0.040 | 0.104 | 0.113 | 0.146 | 0.118 | 0.156 | 0.097 | 0.107 |
Distribution | Scales | Method | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
W50 | OB | RMD | F3 | F2 | L3 | L2 | T3 | T2 | ||
g = 0, h = 0 | 11111 | 0.039 | 0.014 | 0.029 | 0.034 | 0.036 | 0.034 | 0.038 | 0.024 | 0.030 |
31111 | 0.813 | 0.777 | 0.771 | 0.830 | 0.816 | 0.834 | 0.823 | 0.770 | 0.769 | |
32111 | 0.735 | 0.591 | 0.746 | 0.792 | 0.789 | 0.800 | 0.806 | 0.667 | 0.687 | |
51111 | 0.965 | 0.920 | 0.977 | 0.974 | 0.984 | 0.975 | 0.984 | 0.963 | 0.967 | |
53111 | 0.948 | 0.769 | 0.990 | 0.975 | 0.987 | 0.975 | 0.989 | 0.960 | 0.972 | |
g = 0, h = 0.4 | 11111 | 0.005 | 0.002 | 0.049 | 0.010 | 0.019 | 0.008 | 0.017 | 0.022 | 0.030 |
31111 | 0.105 | 0.033 | 0.176 | 0.134 | 0.179 | 0.124 | 0.181 | 0.129 | 0.145 | |
32111 | 0.063 | 0.026 | 0.181 | 0.106 | 0.158 | 0.092 | 0.176 | 0.113 | 0.142 | |
51111 | 0.296 | 0.110 | 0.412 | 0.336 | 0.417 | 0.322 | 0.422 | 0.350 | 0.374 | |
53111 | 0.184 | 0.062 | 0.410 | 0.289 | 0.399 | 0.263 | 0.412 | 0.316 | 0.346 | |
g = 0, h = 0.8 | 11111 | 0.003 | 0.001 | 0.062 | 0.009 | 0.022 | 0.005 | 0.013 | 0.028 | 0.034 |
31111 | 0.016 | 0.008 | 0.064 | 0.029 | 0.055 | 0.023 | 0.054 | 0.036 | 0.044 | |
32111 | 0.011 | 0.007 | 0.074 | 0.021 | 0.050 | 0.019 | 0.046 | 0.040 | 0.049 | |
51111 | 0.041 | 0.012 | 0.122 | 0.080 | 0.114 | 0.069 | 0.117 | 0.089 | 0.106 | |
53111 | 0.026 | 0.008 | 0.122 | 0.063 | 0.100 | 0.060 | 0.104 | 0.086 | 0.096 | |
g = 0.8, h = 0 | 11111 | 0.030 | 0.009 | 0.035 | 0.030 | 0.039 | 0.031 | 0.041 | 0.025 | 0.030 |
31111 | 0.489 | 0.391 | 0.443 | 0.525 | 0.525 | 0.529 | 0.536 | 0.479 | 0.449 | |
32111 | 0.378 | 0.258 | 0.389 | 0.445 | 0.451 | 0.446 | 0.472 | 0.371 | 0.366 | |
51111 | 0.843 | 0.710 | 0.827 | 0.863 | 0.860 | 0.862 | 0.865 | 0.832 | 0.826 | |
53111 | 0.680 | 0.477 | 0.803 | 0.795 | 0.833 | 0.786 | 0.840 | 0.726 | 0.758 | |
g = 0.4, h = 0 | 11111 | 0.007 | 0.001 | 0.055 | 0.012 | 0.027 | 0.013 | 0.020 | 0.026 | 0.032 |
31111 | 0.732 | 0.687 | 0.682 | 0.763 | 0.742 | 0.769 | 0.753 | 0.714 | 0.686 | |
32111 | 0.633 | 0.484 | 0.630 | 0.679 | 0.699 | 0.690 | 0.719 | 0.584 | 0.590 | |
51111 | 0.948 | 0.887 | 0.955 | 0.961 | 0.959 | 0.963 | 0.965 | 0.942 | 0.946 | |
53111 | 0.886 | 0.686 | 0.956 | 0.936 | 0.960 | 0.936 | 0.965 | 0.918 | 0.928 | |
g = 0.4, h = 0.4 | 11111 | 0.019 | 0.007 | 0.045 | 0.021 | 0.035 | 0.020 | 0.038 | 0.023 | 0.026 |
31111 | 0.080 | 0.039 | 0.161 | 0.117 | 0.159 | 0.111 | 0.161 | 0.120 | 0.137 | |
32111 | 0.056 | 0.023 | 0.166 | 0.099 | 0.146 | 0.089 | 0.155 | 0.101 | 0.130 | |
51111 | 0.265 | 0.097 | 0.375 | 0.316 | 0.383 | 0.293 | 0.384 | 0.307 | 0.339 | |
53111 | 0.169 | 0.059 | 0.382 | 0.277 | 0.371 | 0.259 | 0.375 | 0.285 | 0.315 | |
g = 0.8, h = 0.4 | 11111 | 0.006 | 0.001 | 0.064 | 0.011 | 0.027 | 0.010 | 0.024 | 0.029 | 0.031 |
31111 | 0.060 | 0.025 | 0.128 | 0.095 | 0.116 | 0.087 | 0.120 | 0.091 | 0.103 | |
32111 | 0.043 | 0.022 | 0.140 | 0.075 | 0.118 | 0.075 | 0.122 | 0.084 | 0.097 | |
51111 | 0.189 | 0.063 | 0.287 | 0.242 | 0.296 | 0.232 | 0.300 | 0.238 | 0.255 | |
53111 | 0.113 | 0.045 | 0.299 | 0.213 | 0.274 | 0.195 | 0.280 | 0.221 | 0.248 |
Distribution | Scales | Method | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
W50 | OB | RMD | F3 | F2 | L3 | L2 | T3 | T2 | ||
g = 0, h = 0 | 11111 | 0.046 | 0.006 | 0.022 | 0.025 | 0.038 | 0.027 | 0.038 | 0.017 | 0.024 |
31111 | 0.539 | 0.008 | 0.493 | 0.518 | 0.614 | 0.544 | 0.655 | 0.413 | 0.469 | |
32111 | 0.511 | 0.003 | 0.461 | 0.468 | 0.589 | 0.504 | 0.614 | 0.383 | 0.445 | |
51111 | 0.781 | 0.016 | 0.915 | 0.854 | 0.929 | 0.861 | 0.940 | 0.815 | 0.850 | |
53111 | 0.764 | 0.011 | 0.888 | 0.818 | 0.901 | 0.822 | 0.916 | 0.780 | 0.819 | |
g = 0, h = 0.4 | 11111 | 0.006 | 0.004 | 0.047 | 0.007 | 0.026 | 0.005 | 0.023 | 0.022 | 0.029 |
31111 | 0.014 | 0.000 | 0.215 | 0.049 | 0.131 | 0.029 | 0.116 | 0.130 | 0.147 | |
32111 | 0.008 | 0.000 | 0.255 | 0.032 | 0.128 | 0.022 | 0.097 | 0.145 | 0.167 | |
51111 | 0.038 | 0.000 | 0.455 | 0.153 | 0.333 | 0.091 | 0.284 | 0.327 | 0.357 | |
53111 | 0.019 | 0.000 | 0.490 | 0.127 | 0.316 | 0.054 | 0.240 | 0.343 | 0.374 | |
g = 0, h = 0.8 | 11111 | 0.003 | 0.003 | 0.068 | 0.006 | 0.023 | 0.006 | 0.017 | 0.026 | 0.037 |
31111 | 0.000 | 0.000 | 0.127 | 0.110 | 0.058 | 0.003 | 0.025 | 0.079 | 0.092 | |
32111 | 0.000 | 0.002 | 0.172 | 0.012 | 0.012 | 0.070 | 0.002 | 0.027 | 0.105 | |
51111 | 0.002 | 0.000 | 0.238 | 0.052 | 0.148 | 0.009 | 0.078 | 0.170 | 0.190 | |
53111 | 0.000 | 0.001 | 0.314 | 0.045 | 0.163 | 0.004 | 0.058 | 0.212 | 0.241 | |
g = 0.8, h = 0 | 11111 | 0.027 | 0.005 | 0.032 | 0.019 | 0.039 | 0.018 | 0.042 | 0.020 | 0.032 |
31111 | 0.213 | 0.004 | 0.364 | 0.250 | 0.382 | 0.231 | 0.403 | 0.269 | 0.313 | |
32111 | 0.161 | 0.000 | 0.375 | 0.217 | 0.361 | 0.188 | 0.366 | 0.269 | 0.306 | |
51111 | 0.370 | 0.013 | 0.690 | 0.563 | 0.728 | 0.505 | 0.739 | 0.616 | 0.664 | |
53111 | 0.281 | 0.004 | 0.691 | 0.486 | 0.682 | 0.392 | 0.684 | 0.582 | 0.627 | |
g = 0.4, h = 0 | 11111 | 0.036 | 0.009 | 0.024 | 0.026 | 0.042 | 0.027 | 0.044 | 0.018 | 0.028 |
31111 | 0.442 | 0.006 | 0.450 | 0.440 | 0.566 | 0.442 | 0.595 | 0.395 | 0.449 | |
32111 | 0.380 | 0.004 | 0.436 | 0.378 | 0.521 | 0.373 | 0.544 | 0.352 | 0.409 | |
51111 | 0.652 | 0.015 | 0.853 | 0.774 | 0.899 | 0.757 | 0.909 | 0.755 | 0.796 | |
53111 | 0.605 | 0.006 | 0.832 | 0.714 | 0.856 | 0.680 | 0.867 | 0.714 | 0.759 | |
g = 0.4, h = 0.4 | 11111 | 0.007 | 0.001 | 0.056 | 0.005 | 0.023 | 0.007 | 0.023 | 0.027 | 0.032 |
31111 | 0.007 | 0.000 | 0.214 | 0.050 | 0.134 | 0.031 | 0.101 | 0.138 | 0.156 | |
32111 | 0.007 | 0.001 | 0.249 | 0.035 | 0.136 | 0.019 | 0.098 | 0.148 | 0.180 | |
51111 | 0.030 | 0.000 | 0.430 | 0.158 | 0.314 | 0.090 | 0.275 | 0.315 | 0.337 | |
53111 | 0.014 | 0.000 | 0.479 | 0.133 | 0.303 | 0.056 | 0.231 | 0.331 | 0.366 | |
g = 0.8, h = 0.4 | 11111 | 0.006 | 0.003 | 0.064 | 0.004 | 0.027 | 0.004 | 0.020 | 0.033 | 0.035 |
31111 | 0.006 | 0.000 | 0.211 | 0.036 | 0.125 | 0.018 | 0.089 | 0.133 | 0.149 | |
32111 | 0.003 | 0.001 | 0.246 | 0.031 | 0.131 | 0.016 | 0.074 | 0.156 | 0.179 | |
51111 | 0.017 | 0.000 | 0.377 | 0.137 | 0.283 | 0.057 | 0.236 | 0.301 | 0.302 | |
53111 | 0.010 | 0.001 | 0.437 | 0.119 | 0.288 | 0.035 | 0.197 | 0.330 | 0.362 |
Distribution | Scales | Method | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
W50 | OB | RMD | F3 | F2 | L3 | L2 | T3 | T2 | ||
g = 0, h = 0 | 11111 | 0.039 | 0.014 | 0.029 | 0.034 | 0.036 | 0.034 | 0.038 | 0.024 | 0.030 |
31111 | 0.959 | 0.361 | 0.977 | 0.968 | 0.983 | 0.971 | 0.983 | 0.946 | 0.961 | |
32111 | 0.936 | 0.319 | 0.960 | 0.944 | 0.970 | 0.949 | 0.971 | 0.912 | 0.934 | |
g = 0, h = 0.4 | 11111 | 0.005 | 0.002 | 0.049 | 0.010 | 0.019 | 0.008 | 0.017 | 0.022 | 0.030 |
31111 | 0.019 | 0.000 | 0.332 | 0.123 | 0.239 | 0.066 | 0.204 | 0.243 | 0.268 | |
32111 | 0.011 | 0.000 | 0.355 | 0.107 | 0.231 | 0.048 | 0.175 | 0.256 | 0.285 | |
51111 | 0.057 | 0.000 | 0.620 | 0.381 | 0.569 | 0.205 | 0.515 | 0.560 | 0.570 | |
53111 | 0.023 | 0.000 | 0.65 | 0.305 | 0.539 | 0.122 | 0.424 | 0.577 | 0.602 | |
g = 0, h = 0.8 | 11111 | 0.003 | 0.001 | 0.062 | 0.009 | 0.022 | 0.005 | 0.013 | 0.028 | 0.034 |
31111 | 0.000 | 0.000 | 0.156 | 0.024 | 0.089 | 0.004 | 0.042 | 0.113 | 0.122 | |
32111 | 0.000 | 0.000 | 0.210 | 0.029 | 0.104 | 0.006 | 0.038 | 0.143 | 0.163 | |
51111 | 0.000 | 0.000 | 0.290 | 0.095 | 0.199 | 0.013 | 0.119 | 0.232 | 0.257 | |
53111 | 0.000 | 0.000 | 0.369 | 0.092 | 0.230 | 0.009 | 0.116 | 0.287 | 0.314 | |
g = 0.8, h = 0 | 11111 | 0.030 | 0.009 | 0.035 | 0.030 | 0.039 | 0.031 | 0.041 | 0.025 | 0.030 |
31111 | 0.372 | 0.034 | 0.662 | 0.550 | 0.677 | 0.496 | 0.695 | 0.566 | 0.617 | |
32111 | 0.271 | 0.007 | 0.651 | 0.458 | 0.610 | 0.382 | 0.622 | 0.512 | 0.558 | |
51111 | 0.607 | 0.065 | 0.952 | 0.917 | 0.970 | 0.820 | 0.970 | 0.924 | 0.936 | |
53111 | 0.484 | 0.020 | 0.944 | 0.857 | 0.941 | 0.716 | 0.946 | 0.905 | 0.921 | |
g = 0.4, h = 0 | 11111 | 0.007 | 0.001 | 0.055 | 0.012 | 0.027 | 0.013 | 0.020 | 0.026 | 0.032 |
31111 | 0.807 | 0.170 | 0.921 | 0.889 | 0.942 | 0.876 | 0.951 | 0.864 | 0.889 | |
32111 | 0.748 | 0.111 | 0.892 | 0.825 | 0.903 | 0.805 | 0.911 | 0.811 | 0.844 | |
51111 | 0.947 | 0.242 | 0.999 | 0.997 | 0.999 | 0.989 | 0.999 | 0.996 | 0.998 | |
53111 | 0.936 | 0.189 | 0.998 | 0.991 | 0.999 | 0.975 | 0.999 | 0.993 | 0.993 | |
g = 0.4, h = 0.4 | 11111 | 0.019 | 0.007 | 0.045 | 0.021 | 0.035 | 0.020 | 0.038 | 0.023 | 0.026 |
31111 | 0.009 | 0.000 | 0.316 | 0.098 | 0.216 | 0.040 | 0.180 | 0.228 | 0.252 | |
32111 | 0.005 | 0.000 | 0.349 | 0.086 | 0.217 | 0.030 | 0.171 | 0.240 | 0.266 | |
51111 | 0.043 | 0.000 | 0.582 | 0.346 | 0.528 | 0.180 | 0.461 | 0.507 | 0.529 | |
53111 | 0.015 | 0.000 | 0.627 | 0.299 | 0.511 | 0.106 | 0.396 | 0.550 | 0.575 | |
g = 0.8, h = 0.4 | 11111 | 0.006 | 0.001 | 0.064 | 0.011 | 0.027 | 0.010 | 0.024 | 0.029 | 0.031 |
31111 | 0.002 | 0.000 | 0.259 | 0.071 | 0.164 | 0.023 | 0.128 | 0.188 | 0.208 | |
32111 | 0.001 | 0.000 | 0.301 | 0.067 | 0.167 | 0.016 | 0.112 | 0.208 | 0.235 | |
51111 | 0.016 | 0.000 | 0.503 | 0.277 | 0.438 | 0.115 | 0.360 | 0.434 | 0.455 | |
53111 | 0.005 | 0.000 | 0.569 | 0.235 | 0.432 | 0.064 | 0.310 | 0.488 | 0.518 |
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marozzi, M. Levene type tests for the ratio of two scales. J. Statist. Comput. Simul. 2011, 81, 815–826. [Google Scholar] [CrossRef]
- Bartlett, M.S. Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. A 1937, 268–282. [Google Scholar]
- Cochran, W.G. Problems arising in the analysis of a series of similar experiments. J. R. Statist. Soc. 1937, 4, 102–118. [Google Scholar] [CrossRef]
- Hartley, H.O. The use of range in analysis of variance. Biometrika 1950, 37, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Kibria, B.M. On some test statistics for testing homogeneity of variances: A comparative study. J. Statist. Comput. Simul. 2013, 83, 1944–1963. [Google Scholar] [CrossRef]
- Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics; Olkin, I., Hotelling, H., Eds.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Brown, M.B.; Forsythe, A.B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 1974, 69, 364–367. [Google Scholar] [CrossRef]
- Keselman, H.J.; Games, P.A.; Clinch, J.J. Tests for homogeneity of variance. Commun. Stat. Simul. Comput. 1979, 8, 113–119. [Google Scholar] [CrossRef]
- Conover, W.J.; Johnson, M.E.; Johnson, M.M. A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 1981, 23, 351–361. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Ma, C.W. A comparative study of various tests for the equality of two population variances. J. Stat. Comput. Simul. 1990, 35, 41–89. [Google Scholar] [CrossRef]
- O’Brien, R.G. A general ANOVA method for robust tests of additive models for variances. J. Am. Stat. Assoc. 1979, 74, 877–880. [Google Scholar] [CrossRef]
- Olejnik, S.F.; Algina, J. Tests of variance equality when distributions differ in form and location. Educ. Psychol. Meas. 1988, 48, 317–329. [Google Scholar] [CrossRef]
- Higgins, J.J. Introduction to Modern Nonparametric Statistics; Duxbury: Pacific Grove, CA, USA, 2004. [Google Scholar]
- Richter, S.J.; McCann, M.H. Permutation tests of scale using deviances. Commun. Stat. Simul. Comput. 2017, 46, 5553–5565. [Google Scholar] [CrossRef]
- Marozzi, M. A modified Hall-Padmanabhan test for the homogeneity of scales. Commun. Stat. Theory Methods 2012, 41, 3068–3078. [Google Scholar] [CrossRef]
- Pesarin, F.; Salmaso, L. Permutation Tests for Complex Data; Wiley: Chichester, UK, 2001. [Google Scholar]
- Richter, S.J.; McCann, M.H. Multiple Comparison of Medians Using Permutation Tests. J. Mod. Appl. Stat. Methods 2007, 6, 399–412. [Google Scholar] [CrossRef]
- Hoaglin, D.C. Summarizing shape numerically: The g-and-h distributions. In Exploring Data Tables, Trends, and Shapes; Hoaglin, D.C., Mosteller, F., Tukey, J.W., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1985. [Google Scholar]
- Marozzi, M. Multivariate tests based on interpoint distances with application to magnetic resonance imaging. Stat. Methods Med. Res. 2016, 25, 2593–2610. [Google Scholar] [CrossRef]
- Keller-McNulty, S.; Higgins, J.J. Effect of tail weight and outliers on power and Type-I error of robust permutation tests for location. Comm. Statist. Simulation Comput. 1987, 16, 17–36. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, S.J.; McCann, M.H. Combined Permutation Tests for Pairwise Comparison of Scale Parameters Using Deviances. Stats 2024, 7, 350-360. https://doi.org/10.3390/stats7020021
Richter SJ, McCann MH. Combined Permutation Tests for Pairwise Comparison of Scale Parameters Using Deviances. Stats. 2024; 7(2):350-360. https://doi.org/10.3390/stats7020021
Chicago/Turabian StyleRichter, Scott J., and Melinda H. McCann. 2024. "Combined Permutation Tests for Pairwise Comparison of Scale Parameters Using Deviances" Stats 7, no. 2: 350-360. https://doi.org/10.3390/stats7020021
APA StyleRichter, S. J., & McCann, M. H. (2024). Combined Permutation Tests for Pairwise Comparison of Scale Parameters Using Deviances. Stats, 7(2), 350-360. https://doi.org/10.3390/stats7020021