Precise Tensor Product Smoothing via Spectral Splines
Abstract
:1. Introduction
2. Smoothing Spline Foundations
2.1. Reproducing Kernel Hilbert Spaces
2.2. Representer Theorem
2.3. Scalable Computation
3. Tensor Product Smoothing
3.1. Marginal Function Space Notation
3.2. Tensor Product Function Spaces
3.3. Representation and Computation
4. Refined Tensor Product Smoothing
4.1. Smoothing Spline Like Estimators
4.2. Tensor Product Formulation
4.3. Scalable Computation
5. Tensor Product Spectral Smoothing
5.1. Spectral Representater Theorem
5.2. Tensor Product Formulation
5.3. Scalable Computation
6. Simulated Example
7. Real Data Example
8. Discussion
Supplementary Materials
Name | Type | Description |
smooth2d | R function (.R) | Function for 2-dimensional smoothing |
tpss_ex | R script (.R) | Script for the bike sharing analyses and Figure 6 |
tpss_figs | R script (.R) | Script for reproducing Figure 1 and Figure 2 |
tpss_sim | R script (.R) | Script for the simulation study and Figure 3, Figure 4 and Figure 5 |
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Helwig, N.E. Multiple and Generalized Nonparametric Regression. In SAGE Research Methods Foundations; Atkinson, P., Delamont, S., Cernat, A., Sakshaug, J.W., Williams, R.A., Eds.; SAGE Publications Ltd.: London, UK, 2020. [Google Scholar] [CrossRef]
- Berry, L.N.; Helwig, N.E. Cross-validation, information theory, or maximum likelihood? A comparison of tuning methods for penalized splines. Stats 2021, 4, 701–724. [Google Scholar] [CrossRef]
- Wahba, G. Spline Models for Observational Data; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1990. [Google Scholar]
- de Boor, C. A Practical Guide to Splines; revised ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Gu, C. Smoothing Spline ANOVA Models, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Wang, Y. Smoothing Splines: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman & Hall: Boca Raton, FL, USA, 2017. [Google Scholar]
- Hastie, T.; Tibshirani, R. Generalized Additive Models; Chapman and Hall/CRC: New York, NY, USA, 1990. [Google Scholar]
- Helwig, N.E.; Ma, P. Fast and stable multiple smoothing parameter selection in smoothing spline analysis of variance models with large samples. J. Comput. Graph. Stat. 2015, 24, 715–732. [Google Scholar] [CrossRef]
- Helwig, N.E.; Gao, Y.; Wang, S.; Ma, P. Analyzing spatiotemporal trends in social media data via smoothing spline analysis of variance. Spat. Stat. 2015, 14, 491–504. [Google Scholar] [CrossRef]
- Helwig, N.E.; Shorter, K.A.; Hsiao-Wecksler, E.T.; Ma, P. Smoothing spline analysis of variance models: A new tool for the analysis of cyclic biomechaniacal data. J. Biomech. 2016, 49, 3216–3222. [Google Scholar] [CrossRef] [PubMed]
- Helwig, N.E.; Ruprecht, M.R. Age, gender, and self-esteem: A sociocultural look through a nonparametric lens. Arch. Sci. Psychol. 2017, 5, 19–31. [Google Scholar] [CrossRef]
- Helwig, N.E.; Sohre, N.E.; Ruprecht, M.R.; Guy, S.J.; Lyford-Pike, S. Dynamic properties of successful smiles. PLoS ONE 2017, 12, e0179708. [Google Scholar] [CrossRef]
- Helwig, N.E.; Snodgress, M.A. Exploring individual and group differences in latent brain networks using cross-validated simultaneous component analysis. NeuroImage 2019, 201, 116019. [Google Scholar] [CrossRef] [PubMed]
- Hammell, A.E.; Helwig, N.E.; Kaczkurkin, A.N.; Sponheim, S.R.; Lissek, S. The temporal course of over-generalized conditioned threat expectancies in posttraumatic stress disorder. Behav. Res. Ther. 2020, 124, 103513. [Google Scholar] [CrossRef]
- Almquist, Z.W.; Helwig, N.E.; You, Y. Connecting Continuum of Care point-in-time homeless counts to United States Census areal units. Math. Popul. Stud. 2020, 27, 46–58. [Google Scholar] [CrossRef]
- Helwig, N.E. Efficient estimation of variance components in nonparametric mixed-effects models with large samples. Stat. Comput. 2016, 26, 1319–1336. [Google Scholar] [CrossRef]
- Helwig, N.E.; Ma, P. Smoothing spline ANOVA for super-large samples: Scalable computation via rounding parameters. Stat. Its Interface 2016, 9, 433–444. [Google Scholar] [CrossRef]
- Demmler, A.; Reinsch, C. Oscillation matrices with spline smoothing. Numer. Math. 1975, 24, 375–382. [Google Scholar] [CrossRef]
- Wood, S.N.; Scheipl, F.; Faraway, J.J. Straightforward intermediate rank tensor product smoothing in mixed models. Stat. Comput. 2013, 23, 341–360. [Google Scholar] [CrossRef]
- Kimeldorf, G.; Wahba, G. Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 1971, 33, 82–95. [Google Scholar] [CrossRef]
- Gu, C.; Kim, Y.J. Penalized likelihood regression: General formulation and efficient approximation. Can. J. Stat. 2002, 30, 619–628. [Google Scholar] [CrossRef]
- Kim, Y.J.; Gu, C. Smoothing spline Gaussian regression: More scalable computation via efficient approximation. J. R. Stat. Soc. Ser. B 2004, 66, 337–356. [Google Scholar] [CrossRef]
- Moore, E.H. On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 1920, 26, 394–395. [Google Scholar] [CrossRef]
- Penrose, R. A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 1955, 51, 406–413. [Google Scholar] [CrossRef]
- Wang, Y. Mixed effects smoothing spline analysis of variance. J. R. Stat. Soc. Ser. B 1998, 60, 159–174. [Google Scholar] [CrossRef]
- Wang, Y. Smoothing spline models with correlated random errors. J. Am. Stat. Assoc. 1998, 93, 341–348. [Google Scholar] [CrossRef]
- Helwig, N.E. Regression with ordered predictors via ordinal smoothing splines. Front. Appl. Math. Stat. 2017, 3, 15. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; R version 4.3.1. [Google Scholar]
- Helwig, N.E. grpnet: Group Elastic Net Regularized GLM, R package version 0.2; Comprehensive R Archive Network: Vienna, Austria, 2023. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Wood, S.; Scheipl, F. gamm4: Generalized Additive Mixed Models Using ‘mgcv’ and ‘lme4’, R package version 0.2-6; Comprehensive R Archive Network: Vienna, Austria, 2020. [Google Scholar]
- Wood, S.N. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation and GAMMs by REML/PQL, R package version 1.9-1; Comprehensive R Archive Network: Vienna, Austria, 2023. [Google Scholar]
- Helwig, N.E. Spectrally sparse nonparametric regression via elastic net regularized smoothers. J. Comput. Graph. Stat. 2021, 30, 182–191. [Google Scholar] [CrossRef]
- Fanaee-T, H.; Gama, J. Event labeling combining ensemble detectors and background knowledge. Prog. Artif. Intell. 2013, 2, 1–15. [Google Scholar] [CrossRef]
- Kelly, M.; Longjohn, R.; Nottingham, K. The University of California Irvine (UCI) Machine Learning Repository. Available online: https://archive.ics.uci.edu/ (accessed on 26 December 2023).
- Helwig, N.E. Robust Permutation Tests for Penalized Splines. Stats 2022, 5, 916–933. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helwig, N.E. Precise Tensor Product Smoothing via Spectral Splines. Stats 2024, 7, 34-53. https://doi.org/10.3390/stats7010003
Helwig NE. Precise Tensor Product Smoothing via Spectral Splines. Stats. 2024; 7(1):34-53. https://doi.org/10.3390/stats7010003
Chicago/Turabian StyleHelwig, Nathaniel E. 2024. "Precise Tensor Product Smoothing via Spectral Splines" Stats 7, no. 1: 34-53. https://doi.org/10.3390/stats7010003
APA StyleHelwig, N. E. (2024). Precise Tensor Product Smoothing via Spectral Splines. Stats, 7(1), 34-53. https://doi.org/10.3390/stats7010003