On Weak Convergence of the Bootstrap Copula Empirical Process with Random Resample Size
Abstract
:1. Introduction
2. Some Useful Results on Empirical Copulas
3. Main Resuts
- (C.1)
- Let denote a sequence of positive integer-valued random variables, in such a way that
- (C.2)
- is independent of the ’s;
- (C.3)
- for all , , and
- (C.4)
- either is a degenerate random variable for all n or ,
- (1)
- is Poisson random variable, in this case ;
- (2)
- is a binomial random variable with parameter , then
4. Applications
5. Concluding Remarks
6. Proof
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2006; pp. xiv+269. [Google Scholar] [CrossRef]
- Joe, H. Multivariate Models and Dependence Concepts; Monographs on Statistics and Applied Probability; Chapman & Hall: London, UK, 1997; Volume 73, pp. xviii+399. [Google Scholar] [CrossRef]
- Schweizer, B. Thirty years of copulas. In Advances in Probability Distributions with Given Marginals; Mathematics and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991; Volume 67, pp. 13–50. [Google Scholar]
- Sklar, A. Random variables, joint distribution functions, and copulas. Kybernetika 1973, 9, 449–460. [Google Scholar]
- Frees, E.W.; Valdez, E.A. Understanding relationships using copulas. N. Am. Actuar. J. 1998, 2, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Sun, Y. Checking for the gamma frailty distribution under the marginal proportional hazards frailty model. Stat. Sin. 2004, 14, 249–267. [Google Scholar]
- Cherubini, U.; Luciano, E.; Vecchiato, W. Copula Methods in Finance; Wiley Finance Series; John Wiley & Sons, Ltd.: Chichester, UK, 2004; pp. xvi+293. [Google Scholar] [CrossRef]
- McNeil, A.J.; Frey, R.; Embrechts, P. Quantitative Risk Management: Concepts, Techniques and Tools; Princeton Series in Finance; Princeton University Press: Princeton, NJ, USA, 2005; pp. xvi+538. [Google Scholar]
- Deheuvels, P. La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Bull. Acad. R. Belg. 1979, 65, 274–292. [Google Scholar] [CrossRef]
- Stute, W. The oscillation behavior of empirical processes: The multivariate case. Ann. Probab. 1984, 12, 361–379. [Google Scholar] [CrossRef]
- Gaenssler, P.; Stute, W. Seminar on Empirical Processes; DMV Seminar; Birkhäuser Verlag: Basel, Switzerland, 1987; Volume 9, pp. vi+110. [Google Scholar] [CrossRef]
- Rüschendorf, L. On the empirical process of multivariate, dependent random variables. J. Multivar. Anal. 1974, 4, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Rüschendorf, L. Asymptotic distributions of multivariate rank order statistics. Ann. Stat. 1976, 4, 912–923. [Google Scholar] [CrossRef]
- Deheuvels, P. A multivariate Bahadur-Kiefer representation for the empirical copula process. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 2009, 364, 120–147, 237. [Google Scholar] [CrossRef]
- Segers, J. Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 2012, 18, 764–782. [Google Scholar] [CrossRef]
- van der Vaart, A.W.; Wellner, J.A. Weak Convergence and Empirical Processes: With Applications to Statistics; Springer Series in Statistics; Springer: New York, NY, USA, 1996; pp. xvi+508. [Google Scholar] [CrossRef]
- Ghoudi, K.; Rémillard, B. Empirical processes based on pseudo-observations II: The multivariate case. In Asymptotic Methods in Stochastics; Fields Institute Communications; American Mathematical Society: Providence, RI, USA, 2004; Volume 44, pp. 381–406. [Google Scholar]
- Tsukahara, H. Semiparametric estimation in copula models. Canad. J. Stat. 2005, 33, 357–375. [Google Scholar] [CrossRef]
- van der Vaart, A.W.; Wellner, J.A. Empirical processes indexed by estimated functions. In Asymptotics: Particles, Processes and Inverse Problems; IMS Lecture Notes-Monograph Series; Institute of Mathematical Statistics: Beachwood, OH, USA, 2007; Volume 55, pp. 234–252. [Google Scholar] [CrossRef] [Green Version]
- Scaillet, O. A Kolmogorov-Smirnov type test for positive quadrant dependence. Canad. J. Stat. 2005, 33, 415–427. [Google Scholar] [CrossRef] [Green Version]
- Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Monographs on Statistics and Applied Probability; Chapman and Hall: New York, NY, USA, 1993; Volume 57, pp. xvi+436. [Google Scholar] [CrossRef] [Green Version]
- Bouzebda, S. Bootstrap de l’estimateur de Hill: Théorèmes limites. Ann. I.S.U.P. 2010, 54, 61–72. [Google Scholar]
- Alvarez-Andrade, S.; Bouzebda, S. Some selected topics for the bootstrap of the empirical and quantile processes. Theory Stoch. Process. 2019, 24, 19–48. [Google Scholar]
- Soukarieh, I.; Bouzebda, S. Renewal type bootstrap for increasing degree U-process of a Markov chain. J. Multivar. Anal. 2023, 195, 105143. [Google Scholar] [CrossRef]
- Bouzebda, S.; Soukarieh, I. Renewal type bootstrap for U-process Markov chains. Markov Process. Relat. Fields 2022, 28, 673–735. [Google Scholar]
- Soukarieh, I.; Bouzebda, S. Exchangeably Weighted Bootstraps of General Markov U-Process. Mathematics 2022, 10, 3745. [Google Scholar] [CrossRef]
- Tsukahara, H. Empirical Copulas and Some Applications; Research Report 27; The Institute for Economic Studies, Seijo University: Tokyo, Japan, 2000. [Google Scholar] [CrossRef]
- Bouzebda, S.; Zari, T. Strong approximation of empirical copula processes by Gaussian processes. Statistics 2013, 47, 1047–1063. [Google Scholar] [CrossRef] [Green Version]
- Bouzebda, S. On the strong approximation of bootstrapped empirical copula processes with applications. Math. Methods Stat. 2012, 21, 153–188. [Google Scholar] [CrossRef]
- Bouzebda, S. Kac’s representation for empirical copula process from an asymptotic viewpoint. Stat. Probab. Lett. 2017, 123, 107–113. [Google Scholar] [CrossRef]
- Bouzebda, S. Some applications of the strong approximation of the integrated empirical copula processes. Math. Methods Stat. 2016, 25, 281–303. [Google Scholar] [CrossRef]
- Bouzebda, S. Some new multivariate tests of independence. Math. Methods Stat. 2011, 20, 192–205. [Google Scholar] [CrossRef]
- Bouzebda, S.; Zari, T. Asymptotic behavior of weighted multivariate Cramér-von Mises-type statistics under contiguous alternatives. Math. Methods Stat. 2013, 22, 226–252. [Google Scholar] [CrossRef]
- Bouzebda, S. Asymptotic properties of pseudo maximum likelihood estimators and test in semi-parametric copula models with multiple change points. Math. Methods Stat. 2014, 23, 38–65. [Google Scholar] [CrossRef]
- Kosorok, M.R. Introduction to Empirical Processes and Semiparametric Inference; Springer Series in Statistics; Springer: New York, NY, USA, 2008; pp. xiv+483. [Google Scholar] [CrossRef]
- Toan, N.V. On weak convergence of the bootstrap general empirical process with random resample size. Vietnam J. Math. 2014, 42, 233–245. [Google Scholar] [CrossRef]
- Schmid, F.; Schmidt, R. Multivariate extensions of Spearman’s rho and related statistics. Stat. Probab. Lett. 2007, 77, 407–416. [Google Scholar] [CrossRef]
- Joe, H. Multivariate concordance. J. Multivar. Anal. 1990, 35, 12–30. [Google Scholar] [CrossRef] [Green Version]
- Dall’Aglio, G. Fréchet classes: The beginnings. In Advances in Probability Distributions with Given Marginals; Mathematics and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991; Volume 67, pp. 1–12. [Google Scholar]
- Schmid, F.; Schmidt, R.; Blumentritt, T.; Gaiß er, S.; Ruppert, M. Copula-based measures of multivariate association. In Copula Theory and Its Applications; Lecture Notes in Statistics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 198, pp. 209–236. [Google Scholar] [CrossRef]
- Behboodian, J.; Dolati, A.; Úbeda Flores, M. A multivariate version of Gini’s rank association coefficient. Stat. Pap. 2007, 48, 295–304. [Google Scholar] [CrossRef]
- Úbeda Flores, M. Multivariate versions of Blomqvist’s beta and Spearman’s footrule. Ann. Inst. Stat. Math. 2005, 57, 781–788. [Google Scholar] [CrossRef]
- Genest, C.; Nešlehová, J.; Ben Ghorbal, N. Spearman’s footrule and Gini’s gamma: A review with complements. J. Nonparametr. Stat. 2010, 22, 937–954. [Google Scholar] [CrossRef]
- Bouzebda, S.; Cherfi, M. Test of symmetry based on copula function. J. Stat. Plann. Inference 2012, 142, 1262–1271. [Google Scholar] [CrossRef]
- Schmid, F.; Schmidt, R. Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence. Metrika 2007, 66, 323–354. [Google Scholar] [CrossRef]
- Bouzebda, S.; Zari, T. Strong approximation of multidimensional P-P plots processes by Gaussian processes with applications to statistical tests. Math. Methods Stat. 2014, 23, 210–238. [Google Scholar] [CrossRef]
- Radulović, D.; Wegkamp, M.; Zhao, Y. Weak convergence of empirical copula processes indexed by functions. Bernoulli 2017, 23, 3346–3384. [Google Scholar] [CrossRef] [Green Version]
- Rémillard, B.; Scaillet, O. Testing for equality between two copulas. J. Multivar. Anal. 2009, 100, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Bouzebda, S. General Tests of Conditional Independence Based on Empirical Processes Indexed by Functions. Jpn. J. Stat. Data Sci. 2023, 21, 1–59. [Google Scholar] [CrossRef]
- Bouzebda, S. General tests of independence based on empirical processes indexed by functions. Stat. Methodol. 2014, 21, 59–87. [Google Scholar] [CrossRef]
- Bücher, A.; Dette, H. A note on bootstrap approximations for the empirical copula process. Stat. Probab. Lett. 2010, 80, 1925–1932. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Gijbels, I. Local Polynomial Modelling and Its Applications; Monographs on Statistics and Applied Probability; Chapman & Hall: London, UK, 1996; Volume 66, pp. xvi+341. [Google Scholar]
- Jordan, A.; Ivanoff, B.G. Multidimensional p–p plots and precedence tests for point processes on d. J. Multivar. Anal. 2013, 115, 122–137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzebda, S. On Weak Convergence of the Bootstrap Copula Empirical Process with Random Resample Size. Stats 2023, 6, 365-380. https://doi.org/10.3390/stats6010023
Bouzebda S. On Weak Convergence of the Bootstrap Copula Empirical Process with Random Resample Size. Stats. 2023; 6(1):365-380. https://doi.org/10.3390/stats6010023
Chicago/Turabian StyleBouzebda, Salim. 2023. "On Weak Convergence of the Bootstrap Copula Empirical Process with Random Resample Size" Stats 6, no. 1: 365-380. https://doi.org/10.3390/stats6010023
APA StyleBouzebda, S. (2023). On Weak Convergence of the Bootstrap Copula Empirical Process with Random Resample Size. Stats, 6(1), 365-380. https://doi.org/10.3390/stats6010023