Quantum-like Data Modeling in Applied Sciences: Review
Abstract
:1. Introduction
2. Quantum Ideas and Applications in Statistical Tools
3. Quantum Description of Cognition and Decision Making
4. Examples of Application
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weidlich, W. Sociodynamics: A Systematic Approach to Mathematical Modelling in the Social Sciences; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- McCauley, J. Dynamics of Markets: Econophysics and Finance; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Chatterjee, A.; Chakrabarti, B.K.; Yarlagadda, S. (Eds.) Econophysics of Wealth Distributions; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Kuznetsov, D.V.; Mandel, I. Statistical physics of media processes: Mediaphysics. Phys. A Stat. Mech. Its Appl. 2007, 377, 253–268. [Google Scholar] [CrossRef]
- Galam, S. Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Ying, M. Quantum computation, quantum theory and AI. Artif. Intell. 2010, 174, 162–176. [Google Scholar] [CrossRef] [Green Version]
- Brandenburger, A.; La Mura, P. Team decision problems with classical and quantum signals. Philos. Trans. R. Soc. A 2016, 374, 20150096. [Google Scholar] [CrossRef] [Green Version]
- Grumbling, E.; Horowitz, M. (Eds.) Quantum Computing: Progress and Prospects; The National Academies Press: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Loredo, R. Learn Quantum Computing with Python and IBM Quantum; Packt Publishing: Birmingham, UK, 2020. [Google Scholar]
- Hidary, J.D. Quantum Computing: An Applied Approach, 2nd ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Techplore. Using a Quantum-Like Model to Enable Perception in Robots with Limited Sensing Capabilities. Available online: Techxplore.com (accessed on 13 July 2020).
- Patra, S. Nickeled & Dimed: Quantum-Like Modelling and Complex Adaptive Systems: Policy Implications–Nickeled and Dimed. Available online: Nickledanddimed.com (accessed on 15 February 2022).
- She, L.; Han, S.; Liu, X. Application of quantum-like Bayesian network and belief entropy for interference effect in multi-attribute decision making problem. Comput. Ind. Eng. 2021, 157, 107307. [Google Scholar] [CrossRef]
- Science, United States Establishes a Dozen AI and Quantum Information Science Research Centers | Science | AAAS. Available online: http://resp.llas.ac.cn/C666/handle/2XK7JSWQ/291784 (accessed on 26 August 2020).
- Physorg, A Simple Laser for Quantum-Like Classical Light. Available online: https://phys.org/ (accessed on 23 March 2021).
- Aiello, A.; Töppel, F.; Marquardt, C.; Giacobino, E.; Leuchs, G. Quantum-like polarization metrology with classical light. Available online: https://spie.org/ (accessed on 19 March 2015).
- Khrennikov, A.; Haven, E. Quantum-like Modeling: From Economics to Social Laser. Asian J. Econ. Bank. 2020, 4, 87–99. [Google Scholar]
- Khrennikov, A. Social laser model: From color revolutions to Brexit and election of Donald Trump. Kybernetes 2018, 47, 273–288. [Google Scholar] [CrossRef]
- Marais, A.; Adams, B.; Ringsmuth, A.K.; Ferretti, M.; Gruber, J.M.; Hendrikx, R.; Schuld, M.; Smith, S.L.; Sinayskiy, I.; Krüger, T.P. The future of quantum biology. J. R. Soc. Interface 2018, 15, 20180640. [Google Scholar] [CrossRef] [Green Version]
- Melkikh, A.V. Quantum information and the problem of mechanisms of biological evolution. Biosystems 2014, 115, 33–45. [Google Scholar] [CrossRef]
- Emani, P.S.; Warrell, J.; Anticevic, A.; Bekiranov, S.; Gandal, M.; McConnell, M.J.; Sapiro, J.; Aspuru-Guzik, A.; Baker, J.; Bastiani, M.; et al. Quantum computing at the frontiers of biological sciences. Nat. Methods 2021, 18, 701–709. [Google Scholar] [CrossRef]
- Fedorov, A.K.; Gelfand, M.S. Towards practical applications in quantum computational biology. Nat. Comput. Sci. 2021, 1, 114–119. [Google Scholar] [CrossRef]
- Marx, V. Biology begins to tangle with quantum computing. Nat. Methods 2021, 18, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Low, G.H.; Steiger, D.S.; Häner, T.; Reiher, M.; Troyer, M. Prospects of quantum computing for molecular sciences. Mater. Theory 2022, 6, 11. [Google Scholar] [CrossRef]
- Melkikh, A.V.; Khrennikov, A. Nontrivial quantum and quantum-like effects in biosystems: Unsolved questions and paradoxes. Prog. Biophys. Mol. Biol. 2015, 119, 137–161. [Google Scholar] [CrossRef] [PubMed]
- Auffray, C.; Nottale, L. Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws. Prog. Biophys. Mol. Biol. 2008, 97, 79–114. [Google Scholar] [CrossRef] [PubMed]
- Nottale, L.; Auffray, C. Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics. Prog. Biophys. Mol. Biol. 2008, 97, 115–157. [Google Scholar] [CrossRef] [PubMed]
- Basieva, I.; Khrennikov, A.; Ozawa, M. Quantum-like modeling in biology with open quantum systems and instruments. Biosystems 2021, 201, 104328. [Google Scholar] [CrossRef]
- Kurian, P.; Dunston, G.; Lindesay, J. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases. J. Theor. Biol. 2016, 391, 102–112. [Google Scholar] [CrossRef] [Green Version]
- D’Acunto, M. Protein-DNA target search relies on quantum walk. Biosystems 2021, 201, 104340. [Google Scholar] [CrossRef]
- Fowler, G. Quantum Computing and Healthcare. Available online: https://www.forbes.com/ (accessed on 5 July 2022).
- Busemeyer, J.R.; Bruza, P.D. Quantum Models of Cognition and Decision; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Khrennikov, A.Y.; Haven, E. Quantum Social Science; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Dzhafarov, E.N.; Jordan, S.; Zhang, R.; Cervantes, V. (Eds.) Contextuality from Quantum Physics to Psychology; World Scientific: Hackensack, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Filk, T.H. ‘Quantum’ and ‘Quantum-like’: An Introduction to Quantum Theory and Its Applications in Cognitive and Social Sciences; University of Freiburg, Institute of Advanced Studies: Freiburg im Breisgau, Germany, 2020; Available online: https://www.researchgate.net/ (accessed on 1 February 2023).
- Newnham, S. Quantum Probability: A Solution for the Persistent Divergence of Classical Economics and Human Behaviour; School of Economics, University of Edinburgh: Edinburgh, UK, 2021. [Google Scholar] [CrossRef]
- Busemeyer, J.R.; Wang, Z. Hilbert Space Multi-dimensional Modeling. arXiv 2017, arXiv:1704.04623. [Google Scholar]
- Khrennikov, A.; Alodjants, A. Classical (Local and Contextual) Probability Model for Bohm–Bell Type Experiments: No-Signaling as Independence of Random Variables. Entropy 2019, 21, 157. [Google Scholar] [CrossRef] [Green Version]
- Broekaert, J.; Busemeyer, J.; Pothos, E. The Disjunction Effect in two-stage simulated gambles. An experimental study and comparison of a heuristic logistic, Markov and quantum-like model. Cogn. Psychol. 2020, 117, 101262. [Google Scholar] [CrossRef] [PubMed]
- Holik, F.H. Non-Kolmogorovian Probabilities and Quantum Technologies. Entropy 2022, 24, 1666. [Google Scholar] [CrossRef] [PubMed]
- Dilmegani, C. Quantum Software in 2023: What It Is & How It Works. Available online: https://aimultiple.com/ (accessed on 23 January 2023).
- Biamonte, J.; Wittek, P.; Pancotti, N.; Robentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.Y.-C.; Yang, C.-H.H.; Qi, J.; Chen, P.-Y.; Ma, X.; Goan, H.-S. Variational Quantum Circuits for Deep Reinforcement Learning. IEEE Access 2020, 8, 141007–141024. [Google Scholar] [CrossRef]
- Laskar, S.R.; Swain, B. Analysis of document clustering using pseudo dynamic quantum clustering approach. Int. Res. J. Eng. Technol. 2016, 3, 1420–1425. [Google Scholar]
- Scott, T.C.; Therani, M.; Wang, X.M. Data Clustering with Quantum Mechanics. Mathematics 2017, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Nghiem, N.A.; Chen, S.Y.-C.; Wei, T.-C. Unified framework for quantum classification. Phys. Rev. Res. 2021, 3, 033056. [Google Scholar] [CrossRef]
- Blanzieri, E.; Leporini, R.; Pastorello, D. Local Approach to Quantum-inspired Classification. Int. J. Theor. Phys. 2023, 62, 4. [Google Scholar] [CrossRef]
- Giuntini, R.; Holik, F.; Park, D.K.; Freytes, H.; Blank, C.; Sergioli, G. Quantum-inspired algorithm for direct multi-class classification. Appl. Soft Comput. 2023, 134, 109956. [Google Scholar] [CrossRef]
- Tucci, R.R. Quantum circuit for discovering from data the structure of classical Bayesian networks. arXiv 2014, arXiv:1404.0055. [Google Scholar]
- Chiribella, G.; Ebler, D. Optimal quantum networks and one-shot entropies. New J. Phys. 2016, 18, 1–32. [Google Scholar] [CrossRef]
- Evans, P.W. Quantum Causal Models, Faithfulness, and Retrocausality. Br. J. Philos. Sci. 2017, 69, 745–774. [Google Scholar] [CrossRef] [Green Version]
- Biamonte, J.; Faccin, M.; De Domenico, M. Complex networks: From classical to quantum. arXiv 2017, arXiv:1702.08459. [Google Scholar] [CrossRef] [Green Version]
- Moreira, C.; Wichert, A. Are quantum-like Bayesian networks more powerful than classical Bayesian networks? J. Math. Psychol. 2018, 82, 75–83. [Google Scholar] [CrossRef]
- Yukalov, V.I.; Yukalova, E.P.; Sornette, D. Information processing by networks of quantum decision makers. Phys. A 2018, 492, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Piotrowski, E.W.; Stadkowski, J. Quantum market games. Phys. A 2002, 312, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Pelosse, Y. The intrinsic quantum nature of Nash equilibrium mixtures. J. Philos. Log. 2016, 45, 25–64. [Google Scholar] [CrossRef]
- Lipovetsky, S.; Conklin, M. Analysis of regression in game theory approach. Appl. Stoch. Model. Bus. Ind. 2001, 17, 319–330. [Google Scholar] [CrossRef]
- Lipovetsky, S. Game theory in regression modeling: A brief review on Shapley value regression. Model Assist. Stat. Appl. 2021, 16, 165–168. [Google Scholar] [CrossRef]
- Lipovetsky, S. Statistics in marketing research: A brief review on special methods and applications. Model Assist. Stat. Appl. 2022, 17, 213–216. [Google Scholar] [CrossRef]
- Burge, I.; Barbeau, M.; Garcia-Alfaro, J. A quantum algorithm for Shapley value estimation. arXiv 2023, arXiv:2301.04727. [Google Scholar]
- Wang, Z.; Busemeyer, J.R. Comparing quantum versus Markov random walk models of judgements measured by rating scales. Philos. Trans. R. Soc. A 2016, 374, 20150098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furioli, G.; Pulvirenti, A.; Terraneo, E.; Toscani, G. Fokker–Planck equations in the modeling of socio-economic phenomena. Math. Model. Methods Appl. Sci. 2017, 27, 115–158. [Google Scholar] [CrossRef] [Green Version]
- Bruza, P.; Gabora, L. Special issue: Quantum cognition. J. Math. Psychol. 2009, 53, 303–452. [Google Scholar] [CrossRef] [Green Version]
- Dzhafarov, E.N.; Haven, E.; Khrennikov, A.; Sozzo, S. Special issue: Quantum probability and contextuality in psychology and economics. J. Math. Psychol. 2017, 78, 1–106. [Google Scholar] [CrossRef]
- Pothos, E.M.; Busemeyer, J.R.; Shiffrin, R.M.; Yearsley, J.M. The rational status of quantum cognition. J. Exp. Psychol. Gen. 2017, 146, 968–987. [Google Scholar] [CrossRef]
- Yukalov, V.I.; Sornette, D. Quantum Probabilities as Behavioral Probabilities. Entropy 2017, 19, 112. [Google Scholar] [CrossRef] [Green Version]
- Costello, F.; Watts, P.; Fisher, C. Surprising rationality in probability judgment: Assessing two competing models. Cognition 2018, 170, 280–297. [Google Scholar] [CrossRef]
- Yearsley, J.M.; Trueblood, J.S. A Quantum theory account of order effects and conjunction fallacies in political judgments. Psychon. Bull. Rev. 2018, 25, 1517–1525. [Google Scholar] [CrossRef] [Green Version]
- Aerts, D.; Arguelles, J.A.; Beltran, L.S.; Beltran, L.N.; Distrito, I.; de Bianchi, M.S.; Sozzo, S.; Veloz, T. Towards a quantum World Wide Web. Theor. Comput. Sci. 2018, 752, 116–131. [Google Scholar] [CrossRef] [Green Version]
- Vision, Belief, Change. What Is Quantum Linguistics And How To Use It-Vision, Belief, Change. Available online: Vbchange.com (accessed on 27 October 2020).
- Heunen, C.; Sadrzadeh, M.; Grefenstette, E. (Eds.) Linguistics-Quantum Interaction; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Institute of Applied Psychology. The Heart of Quantum Linguistics-Institute of Applied Psychology. 2022. Available online: Iap.edu.au (accessed on 1 February 2023).
- Aerts, D.; Beltran, L. Are Words the Quanta of Human Language? Extending the Domain of Quantum Cognition. Entropy 2022, 24, 6. [Google Scholar] [CrossRef]
- Ashtiani, M.; Azgomi, M.A. A survey of quantum-like approaches to decision making and cognition. Math. Soc. Sci. 2015, 75, 49–80. [Google Scholar] [CrossRef]
- Haven, E.; Khrennikov, A. Quantum probability and the mathematical modelling of decision-making. Philos. Trans. R. Soc. A 2016, 374, 20150105. [Google Scholar] [CrossRef] [PubMed]
- Lawless, W.F. The entangled nature of interdependence. Bistability, irreproducibility and uncertainty. J. Math. Psychol. 2017, 78, 51–64. [Google Scholar] [CrossRef]
- Bagarello, F.; Basieva, I.; Khrennikov, A. Quantum field inspired model of decision making: Asymptotic stabilization of belief state via interaction with surrounding mental environment. J. Math. Psychol. 2018, 82, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Kovalenko, T.; Sornette, D. The conjunction fallacy in quantum decision theory. In Credible Asset Allocation, Optimal Transport Methods, and Related Topics; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Khrennikov, A. On Applicability of Quantum Formalism to Model Decision Making: Can Cognitive Signaling Be Compatible with Quantum Theory? Entropy 2022, 24, 1592. [Google Scholar] [CrossRef]
- Vitetta, A. A quantum utility model for route choice in transport systems. Travel Behav. Soc. 2016, 3, 29–37. [Google Scholar] [CrossRef]
- Basieva, I.; Khrennikova, P.; Pothos, E.M.; Asano, M.; Khrennikov, A. Quantum-like model of subjective expected utility. J. Math. Econ. 2018, 78, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Choustova, O. Toward Quantum Behavioral Finances: Bohmian Approach. arXiv 2007, arXiv:quant-ph/0109122. [Google Scholar]
- Crease, R.P. Quantum of Culture–Physics World. Available online: https://iopscience.iop.org/article/10.1088/2058-7058/21/09/26/meta (accessed on 1 September 2008).
- Lewis, P.J. Quantum Ontology: A Guide to the Metaphysics of Quantum Mechanics; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Evans, P. Quantum philosophy: Four ways physics will challenge your reality. Science 2020. [Google Scholar]
- Hancock, T.O.; Broekaert, J.; Hess, S.; Choudhury, C.F. Quantum choice models: A flexible new approach for understanding moral decision-making. J. Choice Model. 2020, 37, 100235. [Google Scholar] [CrossRef]
- Haven, E.; Khrennikov, A. (Eds.) The Palgrave Handbook of Quantum Models in Social Science: Applications and Grand Challenges; Palgrave Macmillan: London, UK, 2017. [Google Scholar]
- Lipovetsky, S. The review on the book: “The Palgrave Handbook of Quantum Models in Social Science, by Haven, E.; Khrennikov, A., Eds.”. Technometrics 2017, 59, 545–547. [Google Scholar]
- Lipovetsky, S. Supercritical Pitchfork Bifurcation in Implicit Regression Modeling. Int. J. Artif. Life Res. 2010, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kahneman, D.; Tversky, A. Subjective probability: A judgment of representativeness. Cogn. Psychol. 1972, 3, 430–454. [Google Scholar] [CrossRef]
- Kahneman, D.; Slovic, P.; Tversky, A. (Eds.) Judgment under Uncertainty: Heuristics and Biases; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Tversky, A.; Kahneman, D. Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychol. Rev. 1983, 90, 293–315. [Google Scholar] [CrossRef]
- Gilovich, T.; Griffin, D.; Kahneman, D. (Eds.) Heuristics and Biases: The Psychology of Intuitive Judgment; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Thaler, R.H. Misbehaving: The Making of Behavioral Economics; W.W. Norton & Co.: New York, NY, USA, 2015. [Google Scholar]
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus & Giroux: London, UK, 2011. [Google Scholar]
- Lipovetsky, S. Express analysis for prioritization: Best–Worst Scaling alteration to System 1. J. Manag. Anal. 2019, 7, 12–27. [Google Scholar] [CrossRef]
- Camparo, J. A geometrical approach to the ordinal data of Likert scaling and attitude measurements: The density matrix in psychology. J. Math. Psychol. 2013, 57, 29–42. [Google Scholar] [CrossRef]
- Camparo, J.; Camparo, L.B. The analysis of Likert scales using state multipoles: An application of quantum methods to behavioral sciences data. J. Educ. Behav. Stat. 2013, 38, 81–101. [Google Scholar] [CrossRef]
- Lipovetsky, S.; Conklin, M. Decreasing Respondent Heterogeneity by Likert Scales Adjustment via Multipoles. Stats 2018, 1, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Lipovetsky, S. PCA and SVD with nonnegative loadings. Pattern Recognit. 2009, 42, 68–76. [Google Scholar] [CrossRef]
- Lipsky, L.; Russek, A. Auto-ionizing states in Helium. Phys. Rev. 1966, 142, 59–71. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory, 2nd ed.; Pergamon: London, UK, 1965; Chapter 50; pp. 176–177. [Google Scholar]
- Lipovetsky, S. Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling. J. Choice Model. 2018, 27, 62–73. [Google Scholar] [CrossRef]
- Freire, E. (Ed.) The Oxford Handbook of the History of Quantum Interpretations; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Zohar, D. Zero Distance: Management in the Quantum Age; Palgrave Macmillan: Singapore, 2022. [Google Scholar]
- Miranda, E.R. (Ed.) Quantum Computing in the Arts and Humanities; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Pastorello, D. Concise Guide to Quantum Machine Learning; Springer: Singapore, 2023. [Google Scholar]
- Plotnitsky, A.; Haven, E. (Eds.) The Quantum-Like Revolution: A Festschrift for Andrei Khrennikov; Springer International Publishing: Cham, Switzerland, 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipovetsky, S. Quantum-like Data Modeling in Applied Sciences: Review. Stats 2023, 6, 345-353. https://doi.org/10.3390/stats6010021
Lipovetsky S. Quantum-like Data Modeling in Applied Sciences: Review. Stats. 2023; 6(1):345-353. https://doi.org/10.3390/stats6010021
Chicago/Turabian StyleLipovetsky, Stan. 2023. "Quantum-like Data Modeling in Applied Sciences: Review" Stats 6, no. 1: 345-353. https://doi.org/10.3390/stats6010021
APA StyleLipovetsky, S. (2023). Quantum-like Data Modeling in Applied Sciences: Review. Stats, 6(1), 345-353. https://doi.org/10.3390/stats6010021