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Abstract: We start with a review on classical probability representations of quantum states and
observables. We show that the correlations of the observables involved in the Bohm–Bell type
experiments can be expressed as correlations of classical random variables. The main part of the
paper is devoted to the conditional probability model with conditioning on the selection of the
pairs of experimental settings. From the viewpoint of quantum foundations, this is a local contextual
hidden-variables model. Following the recent works of Dzhafarov and collaborators, we apply our
conditional probability approach to characterize (no-)signaling. Consideration of the Bohm–Bell
experimental scheme in the presence of signaling is important for applications outside quantum
mechanics, e.g., in psychology and social science. The main message of this paper (rooted to
Ballentine) is that quantum probabilities and more generally probabilities related to the Bohm–Bell
type experiments (not only in physics, but also in psychology, sociology, game theory, economics,
and finances) can be classically represented as conditional probabilities.

Keywords: quantum versus classical probability; Bohm–Bell type experiments in physics and
psychology; localty; contextual hidden-variables models; (no-)signaling; random generators;
selection of experimental settings, conditional probability

1. Introduction

This paper is directed to resolution of the old foundational problem of quantum mechanics:
whether it is possible to represent quantum states by classical probability (CP) distributions and quantum
observables by random variables [1]. In fact, we analyze the general measurement scheme involving
compatible and incompatible observables which need not be described by the quantum formalism.
However, our starting point is construction of the CP-representation for quantum mechanics.

Throughout the paper, we use capital Latin letters, A, B, R (with indexes) to denote observables
and small letters a, b, r (with indexes) to denote classical random variables (RVs).

1.1. Towards CP-Representation

The first CP-representation of quantum mechanics based on of symplectic tomogram was
constructed in works [2–4]. Another construction of the CP-representation of quantum mechanics is
based on so-called prequantum classical statistical field theory [5–10]. It should be honestly said that the
tomographic and random field approaches were practically ignored by the quantum foundational
community. Since the first days of quantum mechanics, it was commonly believed that CP-theory,
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see Kolmogorov [11], cannot serve to represent incompatible quantum observables. At the early stage
of development of quantum theory, this belief was firmly based on the Heisenberg uncertainty principle.
By the straightforward interpretation of the Heisenberg uncertainty relation, position and momentum
cannot be jointly assigned to an individual quantum system. Under such an interpretation, it was
meaningless even to speak about the joint probability distribution (jpd) for position and momentum.
For example, for Wigner [12], p. 749, it was clear that

“In quantum theory there does not exist any similar simple expression for the probability because
one cannot ask for the simultaneous probability for the coordinates and momenta.”

Here “similar” is related to the case of classical statistical mechanics and the Gibbs–Boltzmann
formula for statistical equilibrium. We also cite Feynman [13] (italic shrift was added by the authors of
this paper):

“From about the beginning of the twentieth century experimental physics amassed an impressive
array of strange phenomena which demonstrated the inadequacy of classical physics. The attempts to
discover a theoretical structure for the new phenomena led at first to a confusion in which it appeared
that light and electrons sometimes behaved like waves and sometimes like particles. This apparent
inconsistency was completely resolved in 1926 and 1927 in the theory called quantum mechanics.
The new theory asserts that there are experiments for which the exact outcome is fundamentally
unpredictable, and that, in these cases, one has to be satisfied with computing probabilities of various
outcomes. But far more fundamental was the discovery that in nature the laws of combining probabilities were
not those of the classical probability theory of Laplace.”

1.2. No-Go Statements

The main argument against the possibility to proceed with the CP-representation is based on
no-go theorems. The first no-go theorem was proven by von Neumann [14] (German edition -1932):
the theorem on nonexistence of dispersion free states. This theorem was strongly criticized by Bell [15]
who pointed to non-physicality of von Neumann’s rule for correspondence between classical and
quantum probabilistic structures:

• probabilities→states,
• random variables→ Hermitian operators,

cf. Sections 2.3, 3.4. Bell’s own no-go theorem [15,16] has much better reputation than von Neumann’s
theorem. It has a very big impact on quantum foundations, quantum information, and quantum
technology. At the same time, it generated a plenty of critical papers (see, e.g., [17–23] for some resent
publications). Bell proposed the CP-description of the Bohm–Bell type experiments. This approach
is known as the hidden-variables description. Since it is very difficult to test experimentally the
original Bell inequality (see [24,25] for a discussion), Clauser, Horne, Shimony, and Holt (CHSH) [26]
modified Bell’s approach on the basis of the CHSH-inequality. We denote the CP-model proposed
by them by the symbol MBCHSH (see Section 2.2). We remark that, in spite of a rather common
opinion, this modification is not equivalent to the original Bell approach (see [27] for a discussion and
comparison of the original Bell and CHSH-inequality).

Fine [28,29] showed that the CHSH-inequality is satisfied if and only if the assumption on the
existence of the jpd (for the four observables A1, A2, B1, B2 involved in the experiment—see Section 2.1)
holds true. The latter is equivalent to using CP-theory. Therefore, one can conclude that a violation of
the CHSH-inequality inequality by quantum probabilities implies inapplicability of the CP-theory for
description of quantum observables.

Nevertheless, as was shown by Khrennikov and coauthors [30,31] and by Dzhafarov
and coauthors [32–38], the Bohm–Bell type experiments can be modeled with the aid of the
CP-representation of quantum observables. However, such CP-models are not so straightforward as
MBCHSH . In this paper, we present a general CP-model based on the conditional probability scheme
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which was explored in [31] (in the very concrete situation). Denote the models developed in [32–38]
and in the present article by the symbolsMDZ andMKH , respectively.

After the first version of this paper was submitted to arXiv [39], Khrennikov received an email
from Czachor providing information about his paper [40]. This paper contains a CP-based example of
violation of the CHSH-inequality. Unfortunately, Czachor’s paper did not attract so much attention
and it was practically forgotten. We also point to the recent paper of by Dzhafarov and Kon [38] on
general applicability of CP in quantum physics and on Khrennikov’s comment on this paper [41].

We now turn to Fine’s theorem. Fine showed that the following two statements are equivalent:

1. There is one jpd for all observables of the experiment.
2. There is a deterministic hidden-variables model for the experiment.

We postpone the general discussion on the relation of our CP-modelMKH to the hidden-variables
theory to Section 5. Here, we just stress that Fine’s statement is about noncontextual hidden variables
models. Our model is deterministic, but contextual. Thus, Fine’s theorem is inapplicable to it.

1.3. Can Experimental Violation of Bell Type Inequalities Be Checked in the Absence of Classical
Probabilistic Representation?

We point out that CP-models for quantum experiments are important for justification of applicability
of the methods of classical statistics to analyze experimental data collected in quantum physics. We stress
that, to check statistical significance of a violation of a Bell type inequality, experimenters always
use classical mathematical statistics, e.g., p-values or Chebyshov inequality, e.g., [42–47]. However,
by demonstrating that a violation of this Bell type inequality is statistically significant, one has to
remember that the standard CP-representation based on model MBCHSH is impossible by Fine’s
theorem. Therefore, the preceding CP-based statistical analysis justifying the hypothesis on the
experimental violation of the Bell type inequality was meaningless. We understood that this is the
strong claim. We are not able to proceed further with its justification. This problem deserves a
separate study.

Of course, one can appeal to the quantum theory of decision-making. However, such appealing is
meaningless for comparing classical and quantum descriptions. In contrast, with the CP-modelMKH
(or other CP-models presented, e.g., in [1–4,32–38]), one can apply the standard methods of (CP-based)
statistics. Although these models are different both from the foundational and technical viewpoints,
they can serve the same purpose. In particular, analysis of data with the aid of modelMKH can be
used to justify statistical significance of violation of the CHSH-inequality for experimental probabilities
which are interpreted as classical probabilities conditional on selection of experimental settings.

1.4. Conditional Probability Approach

The basic distinguishing feature ofMKH takes into account the conditional nature of quantum
probabilities. Generally, we follow Ballentine [48,49], especially his paper [50]. In the present paper,
conditioning is modeled with the aid of the random generators selecting the experimental settings. They are
represented as random variables (RVs) ra, rb which are supplementary to the “basic” RVs a1, a2, b1, b2

(see Sections 2.2, 3.2). These RVs are absent inMBCHSH .At the same time, the random generators
play the crucial role in the real experimental design of such experiments. (These are physical
devices generating random numbers or computers generating pseudo-random numbers.) Hence,
their mathematical realization by RVs has to added toMBCHSH . We remark that Bohr emphasized
that, in modeling quantum phenomena, all components of the experimental arrangement should be
taken into account [51–55]. Thus, ignoring RVs representing mathematically the random generators
makes a model without them (as, e.g.,MBCHSH) inadequate for the real physical situation.

We remark that, in Khrennikov’s work [31], the random generators were also present and played
the fundamentals, but not explicitly as in the present paper, in modelMKH . The explicit presentation
of random generators inMKH makes the structure of probability space more complicated. However,
this increase of mathematical complexity is compensated by clarification of physics behindMKH .



Entropy 2019, 21, 157 4 of 20

Other models mentioned in this paper (see [1,2,5–8,15–20,23–26,28,29,32–38,40] are based on
unconditional probability representation. (Although prequantum classical statistical field theory
is based on unconditional probabilities, to connect it with the quantum mechanical observations,
conditioning on coincidence detection has to be used [9,10]). Ballentine [48,49] emphasized the role of
conditional probabilities in quantum mechanics, but without presenting a formal mathematical model.
We remark that, in the first part of his analysis of the two slit experiment, Feynman [13] discussed its
contextual structure. However, he did not proceed to a formal contextual probabilistic model. He used
the path integral formalism to explain a violation of additivity of probability.

Finally, we point to a series of papers on nonclassical conditioning (“contextual probability
theory”) and its applications to quantum physics and psychology [56–64]. This approach was based
on operating with a bunch of Kolmogorov probability spaces related to experimental contexts and
coupled via (generally nonclassical) conditioning. In the contextual probability framework, it is evident
that the Bell type inequalities can be violated. The main point of this paper (see also [31]) is that such
inequalities can be violated even with CP-conditioning, and such CP-models can be local and realistic.

1.5. CP-Representations in the Presence of Signaling

ModelMDZ is based on contextual coupling of RVs corresponding to the choice of experimental
settings. This model was applied to study contextuality in the CP-framework with the especial emphasis
of the possibility to proceed in the presence of signaling [32–38]. (Contextuality studied by Dzhafarov
and the coauthors is the natural extension of the notion of quantum contextuality based on the Bell
type tests.) We remark that signaling is absent in quantum mechanics. Therefore, contextuality theory,
developed in [32–38] and known as contextuality by default (CbD), is more general than the standard
theory of quantum contextuality. In particular, the standard Bell type inequalities are modified by
including the signaling contribution. They are known as the Bell–Dzhafarov–Kujala (BDK) inequalities.
This generality provides the possibility to apply CbD outside physics, especially in psychology [63–66],
where the condition of no-signaling is generally violated [33,36]. From the quantum foundation
viewpoint, CbD is about a special class of (generally) nonlocal contextual hidden-variables models
(see Section 5).

Refs. [30,31] aimed to show the existence of the CP-representation for the Bohm–Bell experiment
with genuine quantum systems. In these papers, modelMKH was presented in the very concrete
framework coupled to classical versus quantum discussion on the CHSH-inequality. This rigid
coupling with quantum mechanics led to ignoring the possibility to use model MKH even in the
presence of signaling. Consistent CP-treatment of (no-)signaling in modelMDZ motivated the authors
of this paper to analyze (no-)signaling issue on the basis ofMKH . In addition, we found very clear
CP-interpretation of no-signaling: independence of RVs a1, a2, ra representing Alice’s observables and random
generator from RV rb representing the random generator for selecting Bob’s observables. Thus, no-signaling has
clear probabilistic meaning. In contrast to Refs. [30,31], in this paper, we proceed in a very general
abstract framework which can be used both in physics and outside it, e.g., in psychology. (see [63–66]
for consideration of the Bell type inequalities in psychology.)

2. Bohm–Bell Type Experiment: Traditional Description

In this paper, we restrict our consideration to deterministic models with hidden variables
(Section 5). We recall that, in a deterministic hidden variables theory, the value of the hidden variable
uniquely determines the measurement result. Stochastic models with hidden variables were invented
to proceed as generally as possible. Furthermore, such generality is important for “no-go statements”.
In this paper, we are concentrated on “yes-statements.”

2.1. Description of (Four) Observables

In the observational framework for the Bohm–Bell type experiments, four observables A1, A2, B1,
B2 are considered taking values ±1. It is assumed that the pairs of observables (Ai, Bj), i, j = 1, 2,
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can be measured jointly, i.e., A-observables are compatible with B-observables. However,
the observables in pairs A1, A2 and B1, B2 are incompatible, i.e., they cannot be jointly measured.
Thus, probability distributions pAi Bj are well defined theoretically by quantum mechanics and they
can be verified experimentally; probability distributions pA1 A2 and pB1B2 are not defined by quantum
mechanics and, hence, the question of their experimental verification does not arise.

We stress that, although our starting point is quantum mechanics and the Bohm–Bell experiment
for measurement of spin of electrons or polarization of photons, we need not restrict our scheme
to quantum observables. It is applicable to any measurement design involving compatible and
incompatible observables—see, e.g., [63–66] for such experimental design in psychology. Here,
compatibility (incompatibility) is understood as the possibility (impossibility) of joint measurement
and determination of jpd.

2.2. Classical Probability Model (BCHSH) for the Bohm–Bell Experiment: Four Random Variables

Let (Λ,F , P) be some probability space [11]. Here, Λ is the set of hidden variables (or in
mathematics“elementary events”), F is a σ-algebra of events, and P is a probability measure on
F . We remark that, if Λ is finite, then F is the collection of all its subsets. In CP-modeling, with the
CHSH framework, it can be assumed that Λ is finite. Consider two pairs of random variables
a1, a2 : Λ → {±1} and b1, b2 : Λ → {±1}. These random variables are associated with observables
A1, A2, B1, B2. This is the Bell type CP-model for the observational framework presented in Section 2.1.
Denote this CP-model byMBCHSH (see [26]). This is a deterministic model with hidden variables
and hence it is realistic. This model is also local. Following Bell [67] and Einstein [68], Clauser,
Horne, Shimony, and Holt defined locality [26], p. 881, as the possibility to represent observables
A1, A2 by one-indexed RVs a1, a2. In a nonlocal model, a measurement of observable Ai jointly with
a measurement of observable Bj should be represented by a double indexed RV aij (see Section 5 for
further details).

We remark that the jpd of four random variables a1, a2, b1, b2 is well defined:

Pa1a2b1b2(α1, α2, β1, β2)

= P(λ : a1(λ) = α1, a2(λ) = α2, b1(λ) = β1, b2(λ) = β2),

where αi, β j = ±1.
In modelMBCHSH , one can form the CHSH linear combination of the correlations of the pairs of

random variables ai, bj
B = 〈a1b1〉 − 〈a1b2〉+ 〈a2b1〉+ 〈a2b2〉 (1)

and prove the CHSH-inequality:
|B| ≤ 2. (2)

Here,
〈aibj〉 ≡ E(aibj) =

∫
Λ

ai(λ)bj(λ)dP(λ) = ∑
α,β

αβPaibj
(α, β). (3)

We remark that probabilities for the joint measurements of a and b observables can be represented
as the marginal probabilities for the quadruple jpd, e.g., Pa1b1(α, β) = ∑x,y Pa1a2b1b2(α, x, β, y).
This representation plays the crucial role in the derivation of CHSH-inequality (2). Moreover, by Fine’s
theorem [28,29], the existence of the jpd is equivalent to satisfying the CHSH-inequality. In principle,
we can select Λ as the set of vectors λ = (α1, α2, β1, β2) with coordinates ±1. Here, probability P is
given by jpd; events are all possible subsets of this Λ.

Now consider the observational probabilities pAi Bj . The BCHSH-coupling between the
observational and CP descriptions is straightforward; they will be presented in the next section.
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2.3. BCHSH-Rule for Correspondence between Observational and Classical Probabilities

The observational framework (Section 2.1) is coupled with CP-modelMBCHSH by the following
correspondence rule:

The observational probabilities pAi Bj are identified with the CP-probabilities Paibj
.

This coupling leads to contradiction because the CHSH linear combination composed of
observational correlations (either experimental or quantum theoretical):

Bobservational = 〈A1B1〉 − 〈A1B2〉+ 〈A2B1〉+ 〈A2B2〉 (4)

can violate CHSH-inequality (2); generally,

|Bobservational| > 2. (5)

One can conclude that CP-modelMBCHSH is not adequate either to the quantum theoretical model or to
the experimental situation. This mismatching related to concrete CP-modelMBCHSH and the BCHSH
correspondence rule is commonly interpreted too generally:

As the impossibility of the CP-description of quantum phenomena, the impossibility to represent quantum
states by probability measures and quantum observables (generally incompatible) by classical random variables.

2.4. Missed Component of Experimental Arrangement

In the CHSH observational framework, the correlations composing quantity Bobservational cannot
be measured jointly. The concrete experiment can be performed only for one fixed pair of indexes
(i, j), experimental settings (orientations of PBSs). Generally, these settings are selected randomly by
using two random generators RA and RB taking values 1, 2. What are the theoretical counterparts
of these random generators inMBCHSH? They are absent. Thus, CP-modelMBCHSH is inadequate
for the observational framework. One sort of randomness, namely generated by RA, RB, is missed.
We shall present another CP-model corresponding to the real experimental situation: the observational
BCHSH-framework (Section 2.1) with supplementary observables RA, RB. By proceeding in this
way, we follow the Copenhagen interpretation of quantum mechanics. Bohr always emphasized:
all components of the experimental arrangement (context) have to be taken into account [51–55]. In addition,
random generators are the important components of the experimental design, for the Bohm–Bell type
tests. However, these generators are absent in the standard observational framework for the Bohm–Bell
type experiments and in hidden variables modelMBCHSH (see Sections 2.1, 2.2). In the real physical
experiments, settings of PBSs are selected with the aid of random generators. This selection process
is absent in the CHSH-model. The CHSH-model is not a mathematical model of the real random
experiment, but a model of four different experiments.

There are a plenty of publications on the role of random generators in confronting local realism
and quantum mechanics (see, e.g., [45,69–75]). In terms of the foundational and experimental studies
on the impact of the random generators in the Bohm–Bell type experiments, the above discussion is
about

A randomness condition: The inputs that we give to Alice and Bob to select experimental settings must
be random. By this, we mean that Alice and Bob cannot predict the inputs that they will receive and thus adapt
their strategy to the future values of the inputs.

This randomness condition is also called the measurement-independence or freedom of choice loophole.
The most consistent presentation of this issue can be found in the short paper of Pironio [74].
In particular, following Bell, he explains why, without equipping the Bohm–Bell experiment by
a random generation of settings, a violation of the CHSH inequality has no impact.
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3. Bohm–Bell Type Experiments: Taking into Account Random Generators

At the observational level, we plan to complete the standard description of the Bohm–Bell
type experiments (Section 2.1) by taking into account the aforementioned extra components of the
experimental arrangement”. Then, we shall construct a CP-model which will be adequate for the
completed observational framework. It will take into account “extra components of randomness”.
Denote such a CP-model under construction byMKH.

3.1. Description of (Six) Observables

Following Bohr, we treat random generators RA and RB as a part of experimental arrangement.
Instead of the observational framework with four observables (Section 2.1) A1, A2, B1, B2, we consider
the framework with six observables A1, A2, B1, B2, RA, RB. The latter two observables are compatible,
i.e., they can be jointly measurable; moreover, they are compatible with each of four “basic observables”
A1, A2, B1, B2 (see [76] for the mathematical representation of these six observables within the quantum
operator formalism). In principle, in the real experimental situation, one can assume that observables
RA and RB are independent. For the moment, we proceed without this assumption.

To improve the visibility of the role of random generators, in physics, we can consider the
experimental design of the pioneer experiment performed by Aspect (see [77]). In the modern
experimental design, there are two beam splitters, one on the A-side and another on the B-side,
and two devices for random selection of orientations on the corresponding sides. Aspect considered
four beam splitters and two switchers preceding corresponding pairs of beam splitters. The A-switcher
selects randomly one of the beam splitters on the A-side; the B-switcher selects randomly one of the
beam splitters on the B-side (switchers open optical channels to corresponding beam splitters). For this
design, it is natural to introduce the additional value of observables, we set Ai = 0 (Bj = 0) if its input
channel is closed by the random switcher.

We consider the ideal experiment with 100 % of efficiency of the whole experimental scheme, i.e.,
including detector, beam splitters, an optical fibers.

Finally, we remark that typically it is claimed that RA and RB should be quantum random generators
(see [45,69–71]). Thus, RA and RB should be treated as quantum observables. Therefore, it would be
strange if these quantum observables were not counted as a part of the experimental arrangement (see
Bohr [51]).

3.2. Complete CP-Model: Six Random Variables

Let again (Λ,F , P) be some probability space. We want to introduce random variables a1, a2, b1, b2

associated with observables A1, A2, B1, B2, but not so straightforwardly as inMBCHSH. Additionally,
we consider two random variables rA, rB : Λ → {1, 2} associated with the random generators.
Besides values ±1, random variables a1, a2, b1, b2 can take the value zero. The zero-value is determined
by governing selections of measurement settings, i.e., A1, A2, B1, B2, by random generators RA and RB.
In our CP-model, it has the form:

• ai = 0 (with probability one), if the i-setting was not selected, i.e., rA 6= i;
• bj = 0 (with probability one), if the j-setting was not selected, i.e., rB 6= j.

We remark that in our model the zero-value has nothing to do with detection’s inefficiency (as is
often considered in modeling the Bohm–Bell experiment). We model the experimental situation with
detectors having 100% efficiency.

3.3. Constraints on Joint Probabilities Implied by Matching Condition

In terms of probability, the condition of a− ra matching can be written as follows:

P(ai = 0|ra = j) = 1, i 6= j. (6)
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It implies that
P(ai = α|ra = j) = 0, α = ±1, i 6= j. (7)

Thus, RV ai cannot take values ±1 if ra 6= i. This is the CP-presentation of the impossibility to measure
observable Ai if random generator RA 6= i. Equality (7) implies

P(ai = α, ra = j) = 0, α = ±1, i 6= j. (8)

In the same way, the condition of b− ra matching can be written as follows:

P(bi = 0|rb = j) = 1, i 6= j. (9)

This condition implies
P(bi = β, rb = j) = 0, β = ±1, i 6= j. (10)

From equalities (6), (9), we obtain

P(ai = 0, ra = j) = P(ra = j), P(bi = 0, rb = j) = P(rb = j), i 6= j. (11)

In turn, these equalities imply

P(ai = 0, ra = i) = P(ra = i), P(bi = 0, rb = i) = P(rb = i). (12)

The jpd of six random variables a1, a2, b1, b2, rA, rB is well defined:

Pa1a2b1b2rarb
(α1, α2, β1, β2, γ1, γ2)

= P(λ : a1(λ) = α1, a2(λ) = α2, b1(λ) = β1, b2(λ) = β2, rA(λ) = γ1, rB(λ) = γ2),

where αi, β j = 0,±1, γk = 1, 2. The matching condition implies that, e.g., Pa1a2b1b2rarb
(α1,±1,

β1, β2, 1, γ2) = 0. Thus, only 16 components of the jpd are different from zero:

Pa1a2b1b2(α, 0, β, 0, 1, 1), Pa1a2b1b2(α, 0, 0, β, 1, 2),

Pa1a2b1b2(0, α, β, 0, 2, 1), Pa1a2b1b2(0, α, 0, β, 2, 2),

where α, β = ±1. Thus, modelMKH can be realized with the space of hidden variables consisting on
16 points,

Λ = {(α, 0, β, 0, 1, 1), (α, 0, 0, β, 1, 2), (0, α, β, 0, 2, 1), (0, α, 0, β, 2, 2) : αi, β j = ±1}. (13)

This space is endowed with probability given by the jpd

3.4. Correspondence between Observational and Classical Conditional Probabilities

Now consider the observational probabilities pAi ,Bj . These are probabilities for the fixed pair of
experimental settings (i, j). Their counterparts in CP-modelMKH are obtained by conditioning on the
fixed values of random variables rA and rB. The rule of correspondence between observational and
CP-probabilities is based on the following identification (α, β = ±1) :

pAi Bj(α, β) = P(ai = α, bj = β|rA = i, rB = j) (14)

and
pAi (α) = P(ai = α|rA = i), pBj(β) = P(bj = β|rB = j). (15)
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Thus,

pAi Bj(α, β) =
P(λ ∈ Λ : ai(λ) = α, bj(λ) = β, rA(λ) = i, rB(λ) = j)

P(λ ∈ Λ : rA(λ) = i, rB(λ) = j)
. (16)

and

pAi (α) =
P(λ ∈ Λ : ai(λ) = αrA(λ) = i)

P(λ ∈ Λ : rA(λ) = i)
, (17)

pBj(β) =
P(λ ∈ Λ : bj(λ) = β, rB(λ) = j)

P(λ ∈ Λ : rB(λ) = j)
. (18)

This correspondence rule for the “basic observables” is completed by the similar rule for random
generators RA and RB:

pRARB(i, j) = P(λ ∈ Λ : ra(λ) = i, rb(λ) = j}. (19)

3.5. Violation of the CHSH-Inequality by Conditional Correlations

Conditioning on the selection of experimental settings plays the crucial role. The CP-correlations
are based on the conditional probabilities〈

aibj

〉
≡ E(aibj|rA = i, rB = j) (20)

= ∑
α,β=±1

αβP(ai = α, bj = β|rA = i, rB = j).

We can form the CHSH linear combination of conditional correlations of RVs:

B̃ =
〈

a1b1

〉
−

〈
a1b2

〉
+

〈
a2b2

〉
+

〈
a2b2

〉
. (21)

It is possible to find such classical probability spaces that

|B̃| > 2.

Since each conditional probability is also a probability measure and since RVs ai, bj take values in
[–1, +1], the conditional expectations E(aibj|rA = i, rB = j) are bounded by 1, so

|B̃| ≤ 4.

Thus, the common claim on mismatching of the CP-description with quantum mechanics and
experimental data was not justified. In principle, one can consider linear combination B composed of
correlations 〈a1b1〉 which are not conditioned on a selection of experimental settings. Such B satisfies
the CHSH-inequality. However, such correlations cannot be identified with experimental ones.

3.6. Construction of jpd from Observational Probabilities

Correspondence rules (14) and (19) imply

Pa1a2b1b2rarb
(α1, α2, β1, β2, i, j) = pAi Bj(α, β)pRARB(i, j), α, β = ±1. (22)

From this equality, we can determine all nonzero components the jpd:

p(α, 0, β, 0, 1, 1) = pA1B1(α, β)pRARB(1, 1), p(α, 0, 0, β, 1, 2) = pA1B2(α, β)pRARB(1, 2),

p(0, α, β, 0, 2, 1) = pA2B1(α, β)pRARB(2, 1), p(0, α, 0, β, 2, 2) = pA2B2(α, β)pRARB(2, 2).

In modelMKH, the jpd is completely determined by observational probabilities. In contrast toMCHSH,
there are no counterfactual probabilities.
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4. (No-)Signaling

4.1. No-Signaling in Quantum Physics

In the observational framework for the Bohm–Bell type experiment, the condition of no-signaling
is formulated in the probabilistic terms. There is no-signaling, from the B-side to the A-side, if the
A-marginals of jpds pAi Bj

Mij(α) = ∑
β=±1

pAi Bj(α, β), i = 1, 2 (23)

do not depend on the index j. This notion of no-signaling need not be rigidly coupled to quantum
observables. It can be applied to any measurement design in that Ai is compatible with both Bj, j = 1, 2,
but B1 and B2 are incompatible, i.e., we are not able to perform their joint measurement. No-Signaling
from the A-side to the B-side is defined in the same way.

Quantum mechanics obeys the no-signaling condition. The absence of signaling is one of the
mysterious features of this theory. No-Signaling is trivial for CP-models. In the presence of jpd, this is
just the consequence of coupling of marginal probabilities with jpd. However, in the absence of jpd
(see, e.g., Fine [28,29]), no-signaling has no explanation.

One can say that Fine’s theorem is irrelevant to the considered problem because this
theorem presents the CP-characterization of noncontextual hidden-variables models. In addition,
Bell emphasized (see Section 5 for citation) that quantum mechanics has the contextual structure.
However, Mermin rightly remarked [78] that in contextual hidden-variables models no-signaling
is as mysterious as in quantum mechanics by itself (italic shrift was added by the authors of the
present paper):

“If we do the experiment to measure A with B, C, ... on an ensemble of systems prepared in the
state Ψ and ignore the results of the other observables, we get exactly the same statistics for A as we
would have obtained had we instead done the quite different experiment to measure A with L, M, ...
on that same ensemble. The obvious way to account for this, particularly when entertaining the
possibility of a hidden-variables theory, is to propose that both experiments reveal a set of values for
A in the individual systems that is the same, regardless of which experiment we choose to extract
them from. Putting it the other way around, a contextual hidden-variables account of this fact would be as
mysteriously silent as the quantum theory on the question of why nature should conspire to arrange for the
marginal distributions to be the the same for the two different experimental arrangements.”

By using our CP-modelMKH , we clarify the meaning of signaling at the level of RVs of this model
and then at the level of corresponding observables. We remark that another approach to contextual
CP-treating of no-signaling was proposed in a series of papers [32–38].

4.2. No-Signaling as a Condition of Independence of Random Variables

Now we proceed with CP-modelMKH. Let us fix ra = i. For any value rb = j, consider conditional
ai-marginal

mij(α) = ∑
β

P(ai = α, bj = β|ra = i, rb = j), i = 1, 2. (24)

By correspondence rules (14), (19),
Mij(α) = mij(α). (25)

The marginal mij(α) does not depend on the j-settings governed by rb under the following assumption:

Iai The pair of RVs ai, ra does not depend on RV rb. Under this assumption

mij(α) = P(ai = α|ra = i). (26)
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This is the conditional-probability version of no-signaling for ai. To prove equality (26), we first remark

mij(α) = P(ai = α|ra = i, rb = j) (27)

(since the conditional probability is a probability measure). Hence,

mij(α) =
P(ai = α, ra = i, rb = j)

P(ra = i, rb = j)
=

P(ai = α, ra = i)P(rb = j)
P(ra = i)P(rb = j)

(28)

and this proves equality (26).
Now, let us assume that RVs ra and rb are independent. (From the experimental viewpoint, this is

the very natural assumption.) Suppose that, for α = ±1, the marginal mij(α) does not depend on j.
Generally, this marginal can be represented in the form:

mij(α) = P(ai = α|ra = i, rb = j) =
P(ai = α, ra = i|rb = j)

P(ra = i|rb = j)
=

P(ai = α, ra = i|rb = j)
P(ra = i)

. (29)

The right-hand side does not depend on j only if P(ai = α, ra = i|rb = j) = P(ai = α, ra = i) (see
Appendix A). This is the condition of independence of the pair of RVs ai, ra from RV rb.

In the same way, consider the assumption

Ibj The pair of random variables bj, rb does not depend on ra.

Under this assumption,

mij(β) = ∑
α

P(ai = α, bj = β|ra = i, rb = j) = P(bj = β|rb = j).

This is the conditional version of no-signaling for random variable bj.
The CP-presentation of no-signaling in terms of conditional probabilities, see Ia, Ib, explains the

meaning of signaling. For example, b → a signaling means either interdependence of random
generators ra and rb, or dependence of a-RVs on random generator rb.

Under the assumption of independence of RVs ra and rb representing the random generators,
b→ a signaling has the meaning of dependence of a-variables on random generator rb, i.e., the latter
governs not only b-variables, but even the a-variables.

4.3. Interpretation of No-Signaling: From Random Variables to Observables

By using Equation (29), we can lift the CP-interpretation of no-signaling to the level of observables.
Let us consider the case of independent random generators RA and RB represented by independent
RVs ra and rb. The absence of B → A signaling for observables, i.e., independence Mij(α) from
index j, is equivalent to the absence of b → a signaling RVs. Hence, at the observational level B → A,
no-signaling has the meaning of independence of A-observables from a selection of experimental settings governed
by random generator RB. We stress thatMKH can serve as a CP-model for quantum probabilities, i.e.,
probabilities described by the quantum formalism with the aid of the Born rule. Thus, the absence of
signaling in the quantum description of the Bohm–Bell experiment has very natural CP-explanation:
selection of A-settings depends only on the random generator RA and selection of B-settings depends
only on the random generator RB. Thus, no-signaling can peacefully coexist with contextuality.

4.4. (No-) Signaling in Experiments in Quantum Physics and Psychology

In quantum physics, the problem of the presence of signaling patterns in statistical data collected
in the Bohm–Bell type experiments was highlighted in the work [42] (it seems it was the first paper on
this problem). Since the quantum formalism predicts the absence of signaling, such signaling patterns
were considered as a consequence of the improper experimental performance. After the pioneer
paper [42], experimenters started to pay attention to signaling. Tremendous efforts of experimenters to
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eliminate technicalities which may lead to signaling were culminated in the breakdown experiments
of Vienna’s group [43] and NIST’s group [44]. (Unfortunately, the first experiment claiming to be
loophole free [45] suffers from strong signaling—see [46]).

As was found by Dzhafarov and the coauthors, see, e.g., [33,36], the psychological experiments
of the Bohm–Bell type generated statistical data with statistically non-negligible signaling patters.
(These are experiments to test quantum contextuality in the psychological analogs of the Bell–Bohm
type experiments [63,66]. Thus, the issue of nonlocality is not involved.) In psychology, we do not
have theoretical justification of the absence of signaling. Therefore, it is not clear whether the mental
signaling is a consequence of improper experimental design and performance or this is the fundamental
feature of experiments with humans.

5. Hidden-Variables Models: Noncontextual versus Contextual, Local versus Nonlocal

Hidden variables were introduced in the line with von Neumann’s no-go theorem as representing
dispersion free states, see, e.g., Bell [15,16,79] and especially Gudder [80–82]. Each value λ0 of
hidden variable λ determines uniquely the values of all observables. Thus, the observables can be
mathematically represented as functions of λ. Such hidden-variables models are known as deterministic.
Mathematically, they are represented by Kolmogorov probability spaces [11], triples of the form
(Λ,F , P). Here, Λ is the set of hidden variables, F is a σ-algebra of subsets of Λ, and P is a probability
measure on F . Observables are represented by RVs, (measurable) functions on Λ. The ranges of values
of observables and corresponding RVs should coincide (see Mermin [78] for details). Average of
observable A which is represented by RV a is given by

〈A〉 ≡ 〈a〉 =
∫

Λ
a(λ)dP(λ). (30)

More generally, for any set of compatible (jointly measurable) observables A, B, ..., K and any (bounded
and measurable) function f , average of the operator-function f (A, B, ..., K) is given by

〈 f (A, B, ..., K)〉 =
∫

Λ
f (a(λ), b(λ), ..., k(λ))dP(λ). (31)

Such hidden-variables models are known as noncontextual. Model MBCHSH explored by Bell and
Clauser, Horne, Shimony, and Holt (see Section 2.2) is a (deterministic) noncontextual model.

It is well known that Bell argued that “the result of an observation may reasonably depend not
only upon the state of the system (including the hidden variables) but also on the complete disposition
of the apparatus” [79]. Shimony [83] stressed that this is the first statement about contextuality
(although Bell did not use this terminology). Hidden-variables models of such type are known as
contextual. In fact, Bell’s statement is closely coupled with Bohr’s emphasis of the role of experimental
arrangement. However, Bohr considered quantum mechanics as a complete theory. The state of a
system is given by wave function ψ and there is no need in supplementary parameters λ. (We remind
that the name “contextualistic” was introduced by Shimony [84] and a shortening to “contextual” was
performed by Beltrametti and Cassinelli [85].) Shimony made the Bohr–Bell statement concrete on the
role of experimental arrangement as follows [83]:

“John Stewart Bell (1928-90) gave a new lease on life to the program of hidden variables by
proposing contextuality. In the physical example just considered, the complete state λ in a contextual
hidden variables model would indeed ascribe an antecedent element of physical reality to each
squared spin component s2

n but in a complex manner: the outcome of the measurement of s2
n is a

function s2
n(λ, C) of the hidden variable λ and the context C, which is the set of quantities measured

along with s2
n. ... a minimum constraint on the context C is that it consists of quantities that are

quantum mechanically compatible, which is represented by self-adjoint operators which commute
with each other...”
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For a contextual model, average’s representation (31) is modified as follows:

〈 f (A, B, ..., K)〉 =
∫

Λ
f (aC(λ), bC(λ), ..., kC(λ))dPC(λ), (32)

where context C is determined by the set of compatible observables C = {A, B, ..., K} which are
represented by RVs aC, bC, ..., kC. We continue citation of Shimony [83]:

“Another reasonable constraint on C of great conceptual importance was proposed by Bell when
the system of interest consists of two or more spatially separated parts, and the physical quantity of
interest A concerns one of these parts. C should not include quantities whose measurements are events
with space-like separation from the measurement of A, since there would be a violation of relativistic
locality if those measurements affected the outcome of the measurement of A.”

Thus, we have two types of contextuality, local and nonlocal. This local versus nonlocal structure
of contextual models with hidden variables is not so much emphasized in modern studies on
contextuality. Quantum contextuality is identified with a nonlocal one.

ModelMKH is a contextual hidden-variables model. We point out that, by writing paper [31],
its author was unaware about original works on contextual hidden-variable models (Gudder [80–82],
Bell [79], Shimony [83], Mermin [78]). This lack of knowledge led to the statement: “We emphasize
that our construction of the classical probability space for the EPR–Bohm–Bell experiment cannot be
used to support the hidden variable approach to the quantum phenomena. The classical random
parameter involved in our considerations cannot be identified with the hidden variable which is used
the Bell-type considerations.” This statement was a consequence of the very restricted picture of
hidden-variables models borrowed from the original Bell paper [15] (see also [26]). Our model has
three distinguishing features:

1. RVs are context-independent, i.e., the C-index can be omitted:

〈 f (A, B, ..., K)〉 =
∫

Λ
f (a(λ), b(λ), ..., k(λ))dPC(λ), (33)

2. Contextual probabilities {PC} can be selected as conditional probabilities with respect to a single
probability measure P : PC(E) = P(E|C). (In particular, contexts have the set-representation and
conditional probability is given by Bayes’ formula.)

3. The model is locally contextual.

This is the good place to mention the hidden-variables interpretation of CP-modelMDZ:

1. RVs are context-dependent, i.e., the C-index cannot be omitted.
2. Instead of a family of contextual probabilities {PC}, one can proceed with a single probability

measure P :
〈 f (A, B, ..., K)〉 =

∫
Λ

f (aC(λ), bC(λ), ..., kC(λ))dP(λ). (34)

3. The model is nonlocally contextual.

The rest of this section is devoted to analysis of the locality issue. This issue is very complex and it is
not basic for the present paper which is devoted to the analysis of the possibility of construction of the
CP-representation of quantum probabilities. Therefore, the coming analysis cannot be considered as
complete. We come back to it in one of the further publications.

In his seminal paper [16], Bell used the following definition of locality:

Now we make the hypothesis [68], and it seems one at least worth considering, that if the two measure-
ments are made at places remote from one another the orientation of one magnet does not influence the
result obtained with the other.

This definition matches with Einstein’s viewpoint on locality, see Bell’s citation [16] of Einstein [68]:
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But on one supposition we should, in my opinion, absolutely hold fast: the real factual situation of the
system S1 is independent of what is done with the system S2, which is spatially separated from the
former.

Bell concluded his article [16] with the following statement:

In a theory in which parameters are added to quantum mechanics to determine the results of individual
measurements, without changing the statistical predictions, there must be a mechanism whereby the
setting of one measuring device can influence the reading of another instrument, however remote.
Moreover, the signal involved must propagate instantaneously, so that such a theory could not be
Lorentz invariant.

One of the problems with treatment of the locality issue in the Bell-framework is that space-time is
absent in Bell’s mathematical formalization (see [86,87] for a discussion). In the following consideration,
we shall ignore this problem (consideration of locality without using a mathematical model based on
Minkovsky’s space-time, cf. [88].

In the hidden-variables framework, Bell formalized the notion of locality (locality hypothesis)
as follows. To make our notation closer to Bell’s notation, denote by a(i, j, λ) and b(j, i, λ) RVs
corresponding to measurement of observables Ai and Bj, respectively, under selection of settings ra = i
and rb = j. The locality hypothesis is that RV a(i, j, λ) does not depend on the index j and RV b(j, i, λ)

does not depend on the index i (see [67], p. 65, Equations (2) and (3)).
Let us analyze the locality issue for CP-modelMKH. Consider realization of this model based

on the space of hidden variables Λ defined in Equation (13). For reader’s convenience, we list these
16 points once again:

(α, 0, β, 0, 1, 1), (α, 0, 0, β, 1, 2), (0, α, β, 0, 2, 1), (0, α, 0, β, 2, 2),

where αi, β j = ±1. RVs are functions defined on Λ. For α, β = ±1, the following equalities hold:

a1(α, 0, β, 0, 1, 1) = a1(α, 0, 0, β, 1, 2) = α (35)

and
a1(0, α, β, 0, 2, 1) = a1(0, α, 0, β, 2, 2) = 0. (36)

Thus, the values of RV a1 representing observable A1 do not depend on the values of RV rb ruling
selection of experimental settings for S2 nor on the values of b-RVs representing B-observables (“the real
factual situation of system S1 is independent from what is done with system S′′2 ).

The CP-modelMKH is local in the Einstein–Bell sense.
ModelMKH is locally contextual. It is contextual because the values of RV ai depend on outcomes

of RV ra representing observable Ra compatible with observable Ai.
The considered locality condition is the analog of local causality or the locality condition as

considered by Bell [79]. Typically, these conditions are formulated in the probabilistic terms for
stochastic hidden-variables models. The condition of locality is formulated as the probability factorization
condition [79]. Hidden-variables model MKH is deterministic. However, to proceed closer to the
standard framework, we shall also use the probabilistic terminology. We remark that, for a deterministic
model, all conditional probabilities are equal either to zero or to one. In our notation, the factorization
condition can be written as follows (for α, β = ±1):

P(α, β|ra = i, rb = j, λ) = P(α|ra = i, λ)P(β|rb = j, λ) (37)

or
P(ai = α, bj = β, ra = i, rb = j, λ)

P(ra = i, rb = j, λ)
=

P(ai = α, ra = i, λ)

P(ra = i, λ)

P(bj = β, rb = j, λ)

P(rb = j, λ)
. (38)
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Let i = 1, j = 1 and let λ = (α, 0, β, 0, 1, 1). Then,

P(a1 = α, b1 = β, ra = 1, rb = 1, λ) = P(λ),

P(ai = α, ra = 1, λ) = P(λ); P(b1 = β, rb = 1, λ) = P(λ).

P(ra = 1, rb = 1, λ) = P(λ); P(ra = 1, λ) = P(λ); P(rb = j, λ) = P(λ).

Thus, for this λ,

P(α, β|ra = 1, rb = 1, λ) = 1, P(α|ra = 1, λ) = 1, P(β|rb = 1, λ) = 1.

In the same way, we consider all cases of matching the indexes of ai and bj with the last digits of λ:

• i = 1, j = 2 and λ = (α, 0, 0, β, 1, 2),
• i = 2, j = 1 and λ = (0, α, β, 0, 2, 1),
• i = 2, j = 2, and λ = (0, α, 0, β, 2, 2).

The conditional probabilities on the right-hand and left-hand sides of Equation (37) also equal one.
Now, consider mismatching the indexes of RVs ai and bj with the last digits of λ. For example, let

i = 1, j = 1 and λ = (α, 0, 0, β′, 1, 2). Here,

P(a1 = α, b1 = β, ra = 1, rb = 1, λ) = 0,

P(ai = α, ra = 1, λ) = P(λ); P(b1 = β, rb = 1, λ) = 0,

P(ra = 1, rb = 1, λ) = 0; P(ra = 1, λ) = P(λ); P(rb = j, λ) = 0.

We extend the definition of conditioning to the case such that both nominator and denominator
equal zero. In such a case, we set conditional probability to zero. Thus,

P(a1 = α, b1 = β|ra = 1, rb = 1, λ) = 0,

P(a1 = α|ra = 1, λ) = 1, P(b1 = β|rb = 1, λ) = 0.

Thus, the factorization condition trivially holds as 0 = 0.
One may think that this (natural) regularization of conditional probability is the root of violation

of Bell’s theorem. This is not the case. Even regularized conditional probability P(α, β|ra = i, rb = j, λ)

provides the right representation:

∑
λ

P(α, β|ra = i, rb = j, λ)P(λ) = P(ai = α, bj = β, ra = i, rb = j). (39)

The main issue is the correspondence rule coupling probabilities of modelMKH with observational
probabilities. The probability on the right-hand side of Equality (39) does not coincide with the
observational probability. The latter equals P(ai = α, bj = β|ra = i, rb = j).

5.1. How Can This Happen?

We pointed to the possibility to violate Bell’s type inequalities in the local contextual framework:
By rejection of the BCHSH-rule for coupling observational probabilities with CP-probability on the space of

hidden variables.

6. Conclusions

The paper contains a brief review on CP-representations of the probabilistic structure of quantum
mechanics. The main part of the paper is devoted to one special CP-representation based on the
conditional probability interpretation of quantum probabilities (see also [31]). The conditional probability
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approach is presented in a very general setting covering the experimental schemes of the Bohm–Bell
type. Such experimental schemes need not be coupled to quantum physics. In particular, they can
be realized for experiments with humans. As was found by Dzhafarov and the coathors (see, e.g.,
[36,65]), the latter experiments are characterized by the presence of statistically significant signaling
patterns. In this paper, we analyzed the CP-meaning of signaling in the conditional probabilistic
model. We found that signaling can be described simply as dependence on the random variables.
Another version of the CP-analysis of the meaning of signaling in the Bohm–Bell type experiments
was presented on the basis of modelMDZ (see [32,38]).

We highlight the basic impacts of the CP-representation of quantum physics:

1. It demystifies the probabilistic structure of quantum mechanics, namely, the representation of
probabilities by complex amplitudes and observables by Hermitian operators:

2. It justifies the use of CP-based mathematical statistics for analysis of data from quantum experiments.
3. It shows the possibility to describe the experimental schemes of the Bohm–Bell type with the aid

of local contextual hidden-variables models.

Additionally, our model MKH clarifies the meaning of (no-)signaling as independence–
dependence of classical random variables. Its construction also demonstrated that the correlations
from the Bohm–Bell type experiments can be described by a local contextual hidden-variables model.

CP-models are not directly coupled to the quantum formalism (including the Hilbert space
representation of probabilities). Therefore, they can be used to describe mathematically the
experimental schemes of the Bohm–Bell type outside of quantum physics, e.g., in psychology,
game theory, and decision-making [32,36,63,65].

Finally, we emphasize once again the foundational impact of Ballentine’s works [48,50] on the
conditional probabilistic interpretation of quantum probabilities. These works stimulated development
of contextual probability theory [61]. As was found in [31], the quantum contextual probabilities
generated in experiments of the Bohm–Bell type can be even represented as classical probabilities (see
also [32–38]).
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Appendix A

Consider two RVs X and Y Here X is an arbitrary discrete RV, X = x1, ..., xm, and Y is a
dichotomous RV, Y = 1, 2. Suppose that, for each x, conditional probability P(X = x|Y = j) does not
depend no j. We want to show that this implies that, in fact,

P(X = x|Y = j) = P(X = x), (A1)

i.e., that RVs X and Y are independent.
Set Ax = {λ ∈ Λ : X(λ) = x} and Bj = {λ ∈ Λ : Y(λ) = j}. We have

P(Ax|B1) = P(Ax|B2), i.e., P(Ax ∩ B1) =
P(B1)

P(B2)
P(Ax ∩ B2),

or

P(Ax ∩ B1) =
P(B1)

P(B2)

[
P(Ax)− P(Ax ∩ B1)

]
,
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i.e.,

P(Ax ∩ B1)
[
1 +

P(B1)

P(B2)

]
=

P(B1)

P(B2)
P(Ax).

Thus, we obtained
P(Ax ∩ B1) = P(B1)P(Ax).

This also implies that P(Ax ∩ B2) = P(B2)P(Ax). Hence, Equality (A1) holds and RVs X amd Y are
independent.
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