A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors
Abstract
:1. Introduction
2. Material and Methods
2.1. Data
2.2. The ARIMA and Kalman Filter Linear Models
2.3. Nonlinear Autoregressive (NAR) Neural Networks and Support Vector Regression (SVR)
2.4. The Hybrid Models
3. Results
3.1. Results for Berry Datasets
3.2. Results for Tourism Datasets
4. Discussion
5. Conclusions, Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benvenuto, D.; Giovanetti, M.; Vassallo, L.; Angeletti, S.; Ciccozzi, M. Application of the arima model on the covid-2019 epidemic dataset. Data Brief 2020, 29, 105340. [Google Scholar] [CrossRef] [PubMed]
- Grogger, J. Soda taxes and the prices of sodas and other drinks: Evidence from Mexico. Am. J. Agric. Econ. 2017, 99, 481–498. [Google Scholar] [CrossRef]
- Hernandez-Matamoros, A.; Fujita, H.; Hayashi, T.; Perez-Meana, H.H. Forecasting of covid19 per regions using arima models and polynomial functions. Appl. Soft Comput. 2020, 96, 106610. [Google Scholar] [CrossRef] [PubMed]
- Jamil, R. Hydroelectricity consumption forecast for Pakistan using ARIMA modeling and supply-demand analysis for the year 2030. Renew. Energy 2020, 154, 1–10. [Google Scholar] [CrossRef]
- Melchior, C.; Zanini, R.R.; Guerra, R.R.; Rockenbach, D.A. Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches. Int. J. Forecast. 2020, 37, 825–837. [Google Scholar] [CrossRef]
- Yang, H.; O’Connell, J.F. Short-term carbon emissions forecast for aviation industry in shanghai. J. Clean. Prod. 2020, 275, 122734. [Google Scholar] [CrossRef]
- Geurts, M.D.; Ibrahim, I. Comparing the box-jenkins approach with the exponentially smoothed forecasting model application to Hawaii tourists. J. Mark. Res. 1975, 12, 182–188. [Google Scholar] [CrossRef]
- García, J.R.; Pacce, M.; Rodrigo, T.; de Aguirre, P.R.; Ulloa, A.C. Measuring and forecasting retail trade in real time using card transactional data. Int. J. Forecast. 2021, 37, 1235–1246. [Google Scholar] [CrossRef]
- Guizzardi, A.; Pons, F.M.E.; Angelini, G.; Ranieri, E. Big data from dynamic pricing: A smart approach to tourism demand forecasting. Int. J. Forecast. 2021, 37, 1049–1060. [Google Scholar] [CrossRef]
- He, K.; Ji, L.; Wu, C.W.D.; Tso, K.F.G. Using SARIMA–CNN–LSTM approach to forecast daily tourism demand. J. Hosp. Tour. Manag. 2021, 49, 25–33. [Google Scholar] [CrossRef]
- Li, D.; Jiang, F.; Chen, M.; Qian, T. Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks. Energy 2022, 238, 121981. [Google Scholar] [CrossRef]
- Sekadakis, M.; Katrakazas, C.; Michelaraki, E.; Kehagia, F.; Yannis, G. Analysis of the impact of COVID-19 on collisions, fatalities and injuries using time series forecasting: The case of Greece. Accid. Anal. Prev. 2021, 162, 106391. [Google Scholar] [CrossRef] [PubMed]
- Aamir, M.; Shabri, A. Modelling and forecasting monthly crude oil price of Pakistan: A comparative study of arima, garch and arima kalman model. AIP Conf. Proc. 2016, 1750, 060015. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Barai, P. Time-varying industry beta in Indian stock market and forecasting errors. Int. J. Emerg. Mark. 2015, 10, 521–534. [Google Scholar] [CrossRef]
- Muhammad, A. Using the kalman filter with arima for the covid-19 pandemic dataset of Pakistan. Data Brief 2020, 31, 105854. [Google Scholar] [CrossRef]
- Selvaraj, J.J.; Arunachalam, V.; Coronado-Franco, K.V.; Romero-Orjuela, L.V.; Ramírez-Yara, Y.N. Time-series modeling of fishery landings in the Colombian Pacific Ocean using an arima model. Reg. Stud. Mar. Sci. 2020, 39, 101477. [Google Scholar] [CrossRef]
- Emami, A.; Sarvi, M.; Bagloee, S.A. Using Kalman filter algorithm for short-term traffic flow prediction in a connected vehicle environment. J. Mod. Transp. 2019, 27, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Storm, H.; Baylis, K.; Heckelei, T. Machine learning in agricultural and applied economics. Eur. Rev. Agric. Econ. 2020, 47, 849–892. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-X.; Zhao, Y.; He, L. Forecasting the monthly iron ore import of china using a model combining empirical mode decomposition, non-linear autoregressive neural network, and autoregressive integrated moving average. Appl. Soft Comput. 2020, 94, 106475. [Google Scholar] [CrossRef]
- Sunayana, C.; Kumar, S.; Kumar, R. Forecasting of municipal solid waste generation using non-linear autoregressive (nar) neural models. Waste Manag. 2021, 121, 206–214. [Google Scholar] [CrossRef]
- Alsumaiei, A.A.; Alrashidi, M.S. Hydrometeorological drought forecasting in hyper-arid climates using nonlinear autoregressive neural networks. Water 2020, 12, 2611. [Google Scholar] [CrossRef]
- Sun, Z.; Li, K.; Li, Z. Prediction of horizontal displacement of foundation pit based on nar dynamic neural network. IOP Conf. Ser. Mater. Sci. Eng. 2020, 782, 042032. [Google Scholar] [CrossRef] [Green Version]
- Khan, E.; Mohammad, F.; Gupta, R. Arima and nar based prediction model for time series analysis of COVID-19 cases in India. J. Saf. Sci. Resil. 2020, 1, 12–18. [Google Scholar] [CrossRef]
- Rodrigues, C.P.; Awe, O.O.; Pimentel, J.S.; Mahmoudvand, R. Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks. Stats 2020, 3, 12. [Google Scholar] [CrossRef]
- Taheri, S.; Brodie, G.; Gupta, D. Optimised ANN and SVR models for online prediction of moisture content and temperature of lentil seeds in a microwave fluidised bed dryer. Comput. Electron. Agric. 2021, 182, 106003. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, K.; Luo, Y.; Shang, C. Spatial-temporal process simulation and prediction of chlorophyll-a concentration in dianchi lake based on wavelet analysis and long-short term memory network. J. Hydrol. 2020, 582, 124488. [Google Scholar] [CrossRef]
- Ju, X.; Cheng, M.; Xia, Y.; Quo, F.; Tian, Y. Support vector regression and time series analysis for the forecasting of bayannur’s total water requirement. Procedia Comput. Sci. 2014, 31, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Valente, J.M.; Maldonado, S. Svr-ffs: A novel forward feature selection approach for high-frequency time series forecasting using support vector regression. Expert Syst. Appl. 2020, 160, 113729. [Google Scholar] [CrossRef]
- Yu, L.; Liang, S.; Chen, R.; Lai, K.K. Predicting monthly biofuel production using a hybrid ensemble forecasting methodology. Int. J. Forecast. 2019, 38, 3–20. [Google Scholar] [CrossRef]
- Chen, W.; Xu, H.; Jia, L.; Gao, Y. Machine learning model for bitcoin Exchange rate prediction using economic and technology determinants. Int. J. Forecast. 2021, 37, 28–43. [Google Scholar] [CrossRef]
- Hess, A.; Spinler, H.S.; Winkenbach, M. Real-time demand forecasting for an urban delivery platform. Transp. Res. Part E Logist. Transp. Rev. 2021, 145, 102147. [Google Scholar] [CrossRef]
- Jin, Z.; Guo, K.; Sun, Y.; Lai, L.; Liao, Z. The industrial asymmetry of the stock price prediction with investor sentiment: Based on the comparison of predictive effects with svr. J. Forecast. 2020, 39, 1166–1178. [Google Scholar] [CrossRef]
- Das, P.; Chanda, K. Bayesian network based modeling of regional rainfall from multiple local meteorological drivers. J. Hydrol. 2020, 591, 125563. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Deb, D.; Guerrero, J.M. Hybrid machine intelligent svr variants for wind forecasting and ramp events. Renew. Sustain. Energy Rev. 2019, 108, 369–379. [Google Scholar] [CrossRef]
- Abbasi, M.; Farokhnia, A.; Bahreinimotlagh, M.; Roozbahani, R. A hybrid of random forest and deep auto-encoder with support vector regression methods for accuracy improvement and uncertainty reduction of long-term streamflow prediction. J. Hydrol. 2020, 597, 125717. [Google Scholar] [CrossRef]
- Rahim, B.; Aalami, M.T.; Adamowski, J. Coupling a hybrid cnn-lstm deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting. J. Hydrol. 2021, 598, 126196. [Google Scholar] [CrossRef]
- Lee, T.; Shin, J.-Y.; Kim, J.-S.; Singh, V.P. Stochastic simulation on reproducing long-term memory of hydroclimatological variables using deep learning model. J. Hydrol. 2020, 582, 124540. [Google Scholar] [CrossRef]
- Piri, J.; Pirzadeh, B.; Keshtegar, B.; Givehchi, M. A hybrid statistical regression technical for prediction wastewater inflow. Comput. Electron. Agric. 2021, 184, 106115. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, W.; Jiao, X.; Guo, W.; Hamoud, Y.A. Evaluation of stacking and blending ensemble learning methods for estimating daily reference evapotranspiration. Comput. Electron. Agric. 2021, 184, 106039. [Google Scholar] [CrossRef]
- Balli, S. Data analysis of covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods. Chaos Solit. Fract. 2021, 142, 110512. [Google Scholar] [CrossRef]
- Pimentel, S.J.; Ospina, R.; Ara, A. Learning Time Acceleration in Support Vector Regression: A Case Study in Educational Data Mining. Stats 2021, 4, 41. [Google Scholar] [CrossRef]
- Xu, S.; Chan, H.K.; Zhang, T. Forecasting the demand of the aviation industry using hybrid time series sarima-svr approach. Transport. Res. Part E Logist. Transport. Rev. 2018, 122, 169–180. [Google Scholar] [CrossRef]
- Nichiforov, C.; Stamatescu, I.; Fagarasan, I.; Stamatescu, G. Energy consumption forecasting using arima and neural network models. In Proceedings of the 2017 5th International Symposium on Electrical and Electronics Engineering (ISEEE), Galati, Romania, 20–22 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Khan, M.; Hayet, M.M.; Muhammad, N.S.; El-Shafie, A. Wavelet based hybrid ann-arima models for meteorological drought forecasting. J. Hydrol. 2020, 590, 125380. [Google Scholar] [CrossRef]
- Li, Z.; Han, J.; Song, A.Y. On the forecasting of high frequency financial time series based on arima model improved by deep learning. J. Forecast. 2020, 39, 1081–1097. [Google Scholar] [CrossRef]
- Abraham, E.R.; Mendes dos Reis, J.G.; Vendrametto, O.; de Oliveira Costa Neto, P.L.; Toloi, R.C.; de Souza, A.G.; de Oliveira Morais, M. Time series prediction with artificial neural networks: An analysis using brazilian soybean production. Agriculture 2020, 10, 475. [Google Scholar] [CrossRef]
- Chu, X.; Li, Y.; Tian, D.; Feng, J.; Mu, W. An optimized hybrid model based on artificial intelligence for grape price forecasting. Br. Food J. 2019, 121, 3247–3265. [Google Scholar] [CrossRef]
- Mahto, A.K.; Alam, M.A.; Biswas, R.; Ahmed, J.; Alam, S.I. Short-term forecasting of agriculture commodities in context of Indian market for sustainable agriculture by using the artificial neural network. J. Food Qual. 2021, 5, 9906. [Google Scholar] [CrossRef]
- Maldaner, L.F.; Corredo, L.d.; Canata, T.F.; Molin, J.P. Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches. Comput. Electron. Agric. 2021, 181, 105945. [Google Scholar] [CrossRef]
- Yin, H.; Jin, D.; Gu, Y.H.; Park, C.J.; Han, S.K.; Yoo, S.J. Stl-attlstm: Vegetable price forecasting using stl and attention mechanism-based lstm. Agriculture 2020, 10, 612. [Google Scholar] [CrossRef]
- Abbas, F.; Afzaal, H.; Farooque, A.A.; Tang, S. Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy 2020, 10, 1046. [Google Scholar] [CrossRef]
- Castillo, C.; Pérez, R.; Vallejo-Orti, M. The impact of recent gully filling practices on wheat yield at the campiña landscape in southern Spain. Soil Tillage Res. 2021, 212, 105041. [Google Scholar] [CrossRef]
- Esfandiarpour, I.; Karimi, E.; Shirani, H.; Esmaeili, M.; Mosleh, Z. Yield prediction of apricot using a hybrid particle swarm optimizationimperialist competitive algorithm- support vector regression (pso-ica-svr) method. Sci. Hortic. 2019, 257, 108756. [Google Scholar] [CrossRef]
- Gomez, D.; Salvador, P.; Sanz-Justo, J.; Casanova, J. Regional estimation of garlic yield using crop, satellite and climate data in Mexico. Comput. Electron. Agric. 2021, 181, 105943. [Google Scholar] [CrossRef]
- Rajae, R.; Mélard, G. Autoregressive Models with Time-Dependent Coefficients—A Comparison between Several Approaches. Stats 2022, 5, 46. [Google Scholar] [CrossRef]
- Hyoung, L.B. Bootstrap Prediction Intervals of Temporal Disaggregation. Stats 2022, 5, 13. [Google Scholar] [CrossRef]
- Macedo, D.P.; Marques, A.C.; Damette, O. The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain. Econ. Anal. Policy 2020, 76, 885–900. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, Q.; Sial, M.; Riaz, M.; Shaheen, N. Forecasting the production of sugarcane crop of Pakistan for the year 2018-2030, usign box-jenkings methodology. J. Anim. Plant Sci. 2019, 29, 1396–1401. [Google Scholar]
- Tatarintsev, M.; Korchagin, S.; Nikitin, P.; Gorokhova, R.; Bystrenina, I.; Serdechnyy, D. Analysis of the Forecast Price as a Factor of Sustainable Development of Agriculture. Agronomy 2021, 11, 1235. [Google Scholar] [CrossRef]
- Wang, M. Short-term forecast of pig price index on an agricultural internet platform. Agribusiness 2019, 35, 492–497. [Google Scholar] [CrossRef]
- Ewald, C.-O.; Zou, Y. Analytic formulas for futures and options for a linear quadratic jump diffusion model with seasonal stochastic volatility and convenience yield: Do fish jump? Eur. J. Oper. Res. 2021, 294, 801–815. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y. Corn cash price forecasting with neural networks. Comput. Electron. Agric. 2021, 184, 106120. [Google Scholar] [CrossRef]
- Dubois, A.; Teytaud, F.; Verel, S. Short term soil moisture forecasts for potato crop farming: A machine learning approach. Comput. Electron. Agric. 2021, 180, 105902. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, Q.; Wang, D.; Zhang, Z.; Liu, C. Prediction for hog prices based on similar sub-series search and support vector regression. Comput. Electron. Agric. 2019, 157, 581–588. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Panigrahi, A.; Routroy, S.; Garg, G.K. Demand forecasting at retail stage for selected vegetables: A performance analysis. J. Model. Manag. 2019, 14, 1042–1063. [Google Scholar] [CrossRef]
- Shao, Y.; Xiong, T.; Li, M.; Hayes, D.; Zhang, W.; Xie, W. China’s missing pigs: Correcting china’s hog inventory data using a machine learning approach. Am. J. Agric. Econ. 2020, 103, 1082–1098. [Google Scholar] [CrossRef]
- Fang, Y.; Guan, B.; Wu, S.; Heravi, S. Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices. J. Forecast. 2020, 39, 877–886. [Google Scholar] [CrossRef]
- Gopal, P.; Bhargavi, R. A novel approach for efficient crop yield prediction. Comput. Electron. Agric. 2019, 165, 104968. [Google Scholar] [CrossRef]
- Sujjaviriyasup, T.; Komkrit, P. Hybrid arima-support vector machine model for agricultural production planning. Appl. Math. Sci. 2013, 7, 2833–2840. [Google Scholar] [CrossRef]
- Wang, B.; Liu, P.; Chao, Z.; Junmei, W.; Chen, W.; Cao, N.; O’Hare, G.; Wen, F. Research on hybrid model of garlic short-term price forecasting based on big data. Comput. Mater. Cont. 2018, 57, 283–296. [Google Scholar] [CrossRef]
- Huang, H.; Huang, J.; Feng, Q.; Liu, J.; Li, X.; Wang, X.; Niu, Q. Developing a Dual-Stream Deep-Learning Neural Network Model for Improving County-Level Winter Wheat Yield Estimates in China. Remote Sens. 2022, 14, 5280. [Google Scholar] [CrossRef]
- Wang, J.; Si, H.; Gao, Z.; Shi, L. Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products. Agriculture 2022, 12, 1707. [Google Scholar] [CrossRef]
- Yli-Heikkila, M.; Wittke, S.; Luotamo, M.; Puttonen, E.; Sulkava, M.; Pellikka, P.; Heiskanen, J.; Klami, A. Scalable Crop Yield Prediction with Sentinel-2 Time Series and Temporal Convolutional Network. Remote Sens. 2022, 14, 4193. [Google Scholar] [CrossRef]
- Ghalehkhondabi, I.; Ardjmand, E.; Young, A.W.; Weckman, R.G. A review of demand forecasting models and methodological developments within tourism and passenger transportation industry. J. Tour. Futures 2019, 5, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Qiu, R.T.R.; Park, J. A review of research on tourism demand forecasting. Ann. Tour. Res. 2019, 75, 338–362. [Google Scholar] [CrossRef]
- Cabrer-Borrás, B.; Iranzo-Pérez, D. El efecto de los atentados del 11-S sobre el turismo en España. Estud. Econ. Apl. 2007, 25, 365–386. [Google Scholar]
- Cava, J.A.; Millán, M.G.; Dancausa, M.G. Enotourism in Southern Spain: The Montilla-Moriles PDO. Int. J. Environ. Res. Public Health 2022, 19, 3393. [Google Scholar] [CrossRef]
- Gričar, S.; Bojnec, S. Did Human Microbes Affect Tourist Arrivals before the COVID-19 Shock? Pre-Effect Forecasting Model for Slovenia. Int. J. Environ. Res. Public Health 2022, 19, 13482. [Google Scholar] [CrossRef]
- Kulendran, N.; Witt, S.F. Forecasting the Demand for International Business Tourism. J. Travel Res. 2003, 41, 265–271. [Google Scholar] [CrossRef]
- Safarov, B.; Al-Smadi, H.M.; Buzrukova, M.; Janzakov, B.; Ilieş, A.; Grama, V.; Ilieș, D.C.; Vargáné, K.C.; Dávid, L.D. Forecasting the Volume of Tourism Services in Uzbekistan. Sustainability 2022, 14, 7762. [Google Scholar] [CrossRef]
- Turtureanu, A.-G.; Pripoaie, R.; Cretu, C.-M.; Sirbu, C.; Marinescu, E.Ş.; Talaghir, L.; Chițu, F. A Projection Approach of Tourist Circulation under Conditions of Uncertainty. Sustainability 2022, 14, 1964. [Google Scholar] [CrossRef]
- Okutani, I.; Yorgos, S.J. Dynamic prediction of traffic volume through Kalman filtering theory. Transp. Res. Part B Methodol. 1984, 18, 1–11. [Google Scholar] [CrossRef]
- Qiao, W.; Haghani, A.; Hamedi, M. A Nonparametric Model for Short-Term Travel Time Prediction Using Bluetooth Data. J. Intell. Transp. Syst. Technol. Plan. Oper. 2013, 17, 165–175. [Google Scholar] [CrossRef]
- Gričar, S.; Bojnec, S.; Baldigara, T. Insight into Predicted Shocks in Tourism: Review of an Ex-Ante Forecasting. J. Risk Financ. Manag. 2022, 15, 436. [Google Scholar] [CrossRef]
- Nguyen, L.Q.; Fernandes, P.O.; Teixeira, J.P. Analyzing and Forecasting Tourism Demand in Vietnam with Artificial Neural Networks. Forecasting 2022, 4, 3. [Google Scholar] [CrossRef]
- Goh, C.; Law, R. The Methodological Progress of Tourism Demand Forecasting: A Review of Related Literature. J. Travel Tour. Mark. 2011, 28, 296–317. [Google Scholar] [CrossRef]
- Zhang, Y.; Choo, W.C.; Ho, J.S.; Wan, C.K. Single or Combine? Tourism Demand Volatility Forecasting with Exponential Weighting and Smooth Transition Combining Methods. Computation 2022, 10, 137. [Google Scholar] [CrossRef]
- Borrero, J.D.; Mariscal, J. Predicting Time SeriesUsing an Automatic New Algorithm of the Kalman Filter. Mathematics 2022, 10, 2915. [Google Scholar] [CrossRef]
- De Cicco, A. The Fruit and Vegetable Sector in the EU–A Statistical Overview. EU. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=The_fruit_and_vegetable_sector_in_the_EU_-_a_statistical_overview (accessed on 24 September 2022).
- INE, Instituto Nacional de Estadística. Encuesta de Ocupación Hotelera. Available online: https://www.ine.es/dynt3/inebase/en/index.htm?padre=239 (accessed on 16 March 2022).
- De Cantis, S.; Ferrante, M.; Vaccina, F. Seasonal Pattern and Amplitude–a Logical Framework to Analyse Seasonality in Tourism: An Application to Bed Occupancy in Sicilian Hotels. Tour. Econ. 2011, 17, 655–675. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting. In Springer Texts in Statistics, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Trenn, S. Multilayer perceptrons: Approximation order and necessary number of hidden units. IEEE Trans. Neural Netw. IEEE Neural Netw. Counc. 2008, 19, 836–844. [Google Scholar] [CrossRef] [Green Version]
- Wongsathan, R.; Isaravuth, S. A hybrid arima and neural networks model for pm-10 pollution estimation: The case of Chiang Mai city moat area. Procedia Comput. Sci. 2016, 86, 273–276. [Google Scholar] [CrossRef]
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F.; Chang, C.; Lin, C. Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071). 2021; p. e1071. Available online: https://cran.r-project.org/web/packages/e1071/index.html (accessed on 12 October 2022).
- Hamilton, J.D. Chapter 50 State-Space Models. In Volume 4 of Handbook of Econometrics; Elsevier: Amsterdam, Netherlands, 1994; pp. 3039–3080. [Google Scholar]
- Harvey, A.C. Forecasting, Structural Time Series Models and the Kalman Filter; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar] [CrossRef]
- Feng, L.; Wang, Y.; Zhang, Z.; Du, Q. Geographically and temporally weighted neural network for winter wheat yield prediction. Remote Sens. Environ. 2021, 262, 112514. [Google Scholar] [CrossRef]
- Youssef, K.; Gökçekus, H.; Alassi, E. Identifying most influencing input parameters for predicting cereal production using an artificial neural network model. Model. Earth Syst. Environ. 2021, 3, 1–14. [Google Scholar] [CrossRef]
- Piekutowska, M.; Niedbała, G.; Piskier, T.; Lenartowicz, T.; Pilarski, K.; Wojciechowski, T.; Pilarska, A.A.; Czechowska-Kosacka, A. The application of multiple linear regression and artificial neural network models for yield prediction of very early potato cultivars before harvest. Agronomy 2021, 11, 885. [Google Scholar] [CrossRef]
- Shafiee, S.; Lied, L.M.; Burud, I.; Dieseth, J.A.; Alsheikh, M.; Lillemo, M. Sequential forward selection and support vector regression in comparison to lasso regression for spring wheat yield prediction based on uav imagery. Comput. Electron. Agric. 2021, 183, 106036. [Google Scholar] [CrossRef]
- Khiem, N.; Minh, N.; Takahashi, Y.; Dong, K.T.P.; Yasuma, H.; Kimura, N. Predicting the price of Vietnamese shrimp products exported to the US market using machine learning. Fish. Sci. 2021, 87, 411–423. [Google Scholar] [CrossRef]
- Paredes-Garcia, J.W.; Ocampo-Velázquez, R.V.; Torres-Pacheco, I.; Cedillo-Jiménez, C.A. Price Forecasting and Span Commercialization Opportunities for Mexican Agricultural Products. Agronomy 2019, 9, 826. [Google Scholar] [CrossRef] [Green Version]
- Makridakis, S.E.; Assimakopoulos, V. The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 2020, 36, 54–74. [Google Scholar] [CrossRef]
- Abolghasemi, M.; Beh, E.; Tarr, G.; Gerlach, R. Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion. Comput. Ind. Eng. 2020, 142, 106380. [Google Scholar] [CrossRef] [Green Version]
- Chiu, L.-Y.; Rustia, D.J.A.; Lu, C.-Y.; Lin, T.-T. Modelling and forecasting of greenhouse whitefly incidence using time-series and arimax analysis. IFAC-Pap. Online 2019, 52, 196–201. [Google Scholar] [CrossRef]
- Wiwik, A.; Mahananto, F.; Qamar, A.; Zaini, S.Z.; Boga, K.; Sumaryant, A. Forecasting the price of Indonesias rice using hybrid artificial neural network and autoregressive integrated moving average (hybrid nns-arimax) with exogenous variables. Procedia Comput. Sci. 2019, 161, 677–686. [Google Scholar] [CrossRef]
- Alarcon, V.J. Hindcasting and forecasting total suspended sediment concentrations using a narx neural network. Sustainability 2021, 13, 363. [Google Scholar] [CrossRef]
- Bucci, A. Cholesky-ann models for predicting multivariate realized volatility. J. Forecast. 2020, 39, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Canchala, T.; Alfonso-Morales, W.; Carvajal-Escobar, Y.; Cerón, L.W.; Caicedo-Bravo, E. Monthly rainfall anomalies forecasting for Southwestern Colombia using artificial neural networks approaches. Water 2020, 12, 2628. [Google Scholar] [CrossRef]
- Heidari, E.; Daeichian, A.; Sobati, M.A.; Movahedirad, S. Prediction of the droplet spreading dynamics on a solid substrate at irregular sampling intervals: Nonlinear auto-regressive exogenous artificial neural network approach (narx-ann). Chem. Eng. Res. Des. 2020, 156, 263–272. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, S.; Fan, X.; Chai, C.; Wang, Y.; Yang, K. A time series prediction model of foundation pit deformation based on empirical wavelet transform and narx network. Mathematics 2020, 8, 1535. [Google Scholar] [CrossRef]
- Mustapa, F.R.; Dahlan, N.Y.; Yassin, A.I.M.; Nordin, A.H.M. Quantification of energy savings from an awareness program using narx-ann in an educational building. Energy Build. 2020, 215, 109899. [Google Scholar] [CrossRef]
- Yetkin, M.; Kim, Y. Time series prediction of mooring line top tension by the narx and volterra model. Appl. Ocean Res. 2019, 88, 170–186. [Google Scholar] [CrossRef]
- Fen, Z.; Niu, W.; Tang, T.; Xu, Y.; Zhang, H. Evolutionary artificial intelligence model via cooperation search algorithm and extreme learning machine for multiple scales nonstationary hydrological time series prediction. J. Hydrol. 2021, 595, 126062. [Google Scholar] [CrossRef]
- Gu, Y.H.; Jin, D.; Yin, H.; Zheng, R.; Piao, X.; Yoo, S.J. Forecasting Agricultural Commodity Prices Using Dual Input Attention LSTM. Agriculture 2022, 12, 256. [Google Scholar] [CrossRef]
- Hennig, M.; Grafinger, M.; Hofmann, R.; Gerhard, D.; Dumss, S.; Rosenberger, P. Introduction of a time series machine learning methodology for the application in a production system. Adv. Eng. Inform. 2021, 47, 101197. [Google Scholar] [CrossRef]
- Kolidakis, S.; Botzoris, G.; Profillidis, V.; Lemonakis, P. 2019. Road traffic forecasting—A hybrid approach combining Artificial Neural Network with Singular Spectrum Analysis. Econ. Anal. Policy 2019, 64, 159–171. [Google Scholar] [CrossRef]
- Larrea Porto, M.A.; Irigoyen, E.; Barragán, A.J.; ManuelAndújar, J. Extreme learning machine ensemble model for time series forecasting boosted by pso: Application to an electric consumption problem. Neurocomputing 2020, 452, 140. [Google Scholar] [CrossRef]
- Milunovich, G. Forecasting Australia’s real house price index: A comparison of time series and machine learning methods. J. Forecast. 2020, 39, 1098–1118. [Google Scholar] [CrossRef]
- Qin, X.; Yin, D.; Dong, X.; Chen, D.; Zhang, S. Passenger Flow Prediction of Scenic Spots in Jilin Province Based on Convolutional Neural Network and Improved Quantile Regression Long Short-Term Memory Network. ISPRS Int. J. Geo-Inf. 2022, 11, 509. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Yang, Y. Machine learning for multiphase flowrate estimation with time series sensing data. Measur. Sens. 2020, 10–12, 100025. [Google Scholar] [CrossRef]
Model | RMSE | MAE | MASE | R2 |
---|---|---|---|---|
KF | 90,847.01 | 52,906.00 | 1.147 | 0.899 |
AKF | 62,269.74 | 36,901.74 | 0.800 | 0.953 |
AKF-NAR | 61,311.99 | 35,640.53 | 0.773 | 0.954 |
AKF-SVR | 61,339.73 | 35,147.71 | 0.770 | 0.954 |
Model | RMSE | MAE | MASE | R2 |
---|---|---|---|---|
KF | 25,323.00 | 12,576.67 | 0.802 | 0.938 |
AKF | 23,419,50 | 11,037.77 | 0.704 | 0.947 |
AKF-NAR | 20,425.92 | 9324.95 | 0.595 | 0.960 |
AKF-SVR | 14,248.64 | 6772.14 | 0.432 | 0.980 |
Model | RMSE | MAE | MASE | R2 |
---|---|---|---|---|
KF | 116,602.9 | 82,500.06 | 0.708 | 0.739 |
AKF | 93,020.33 | 70,959.72 | 0.609 | 0.834 |
AKF-NAR | 98,669.07 | 72,939.55 | 0.626 | 0.813 |
AKF-SVR | 44,416.79 | 34,270.45 | 0.294 | 0.962 |
Model | RMSE | MAE | MASE | R2 |
---|---|---|---|---|
KF | 23,131.54 | 17,501.85 | 0.759 | 0.775 |
AKF | 20,542.48 | 16,267.91 | 0.706 | 0.822 |
AKF-NAR | 21,328.9 | 16,844.93 | 0.731 | 0.808 |
AKF-SVR | 11,433.17 | 9350.8 | 0.406 | 0.945 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrero, J.D.; Mariscal, J.; Vargas-Sánchez, A. A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors. Stats 2022, 5, 1145-1158. https://doi.org/10.3390/stats5040068
Borrero JD, Mariscal J, Vargas-Sánchez A. A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors. Stats. 2022; 5(4):1145-1158. https://doi.org/10.3390/stats5040068
Chicago/Turabian StyleBorrero, Juan D., Jesús Mariscal, and Alfonso Vargas-Sánchez. 2022. "A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors" Stats 5, no. 4: 1145-1158. https://doi.org/10.3390/stats5040068
APA StyleBorrero, J. D., Mariscal, J., & Vargas-Sánchez, A. (2022). A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors. Stats, 5(4), 1145-1158. https://doi.org/10.3390/stats5040068