Decisions in Risk and Reliability: An Explanatory Perspective
Abstract
:1. Introduction
2. A Brief History of Quantitative Risk and Reliability
3. Basic Concepts of Decision Theory and Graphical Methods to Describe Decision Problems
3.1. Basic Concepts
3.2. Graphical Representation of Decision Problems
3.2.1. Decision Trees
3.2.2. Influence Diagrams
3.3. Single and Multi-Period Decisions
3.3.1. Single-Period Replacement Problem
3.3.2. Multi-Period Stopping Problem
4. Examples of Decision Problems
4.1. One-Stage Software Testing
4.2. Preventive Maintenance of Water Pumps
4.3. Portfolio Selection
5. Adversarial Issues in Reliability Analysis
5.1. Basic Concepts of Adversarial Decision Problems
“…a decision maker has a subjective probability opinion with respect to all of the unknown contingencies affecting his payoffs. In particular in a simultaneous-move two-person game, the player whom we are advising is assumed to have an opinion about the major contingency faced, namely what the opposing player is likely to do”.
“… all aspects of his opinion except his opinion about his opponent’s behaviour are irrelevant, and can be ignored in the analysis by integrating them out of the joint opinion”.
5.2. Life Testing with Adversarial Modeling
5.3. Defend-Attack Problems in an Adversarial Setting
Algorithm 1 Approximation of . |
for do |
for to K do |
sample |
for do |
compute |
end for |
find |
end for |
compute the empirical distribution function of |
end for |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ríos Insua, D.; Ruggeri, F.; Soyer, R.; Wilson, S.P. Advances in Bayesian decision making in reliability. Eur. J. Oper. Res. 2020, 282, 1–18. [Google Scholar] [CrossRef]
- Ebert, A.; Wu, P.; Mengersen, K.; Mira, A.; Datta, R.; Ruggeri, F. Fast and Likelihood-Free Parameter Estimation for Dynamic Queueing Networks. J. R. Stat. Soc. C 2021.
- Trucco, P.; Cagno, E.; Ruggeri, F.; Grande, O. A Bayesian Belief Network Approach for modelling Human and Organisational Factors Risk Analysis: A Case Study in Maritime Industry. Reliab. Eng. Syst. Saf. 2008, 93, 845–856. [Google Scholar] [CrossRef]
- Singpurwalla, N.D.; Wilson, S.P. Mathematics of Risk and Reliability: A Select History. In Wiley StatsRef: Statistics Reference Online; Kenett, R., Longford, N., Piegorsch, W., Ruggeri, F., Eds.; Wiley: Chichester, UK, 2014. [Google Scholar]
- Huygens, C. Tractatus, de ratiociniis in aleæ ludo. In Excercitationum Mathematicarum. Libri Quinque; Schooten, F., Ed.; Johannis Elsevirii: Leiden, The Netherlands, 1657. [Google Scholar]
- Bernoulli, J. Ars Conjectandi; Thurnisiorum, Fratrum: Basel, Switzerland, 1713. [Google Scholar]
- Barnard, G.A. Thomas Bayes’ essay towards solving a problem in the Doctrine of Chances. Biometrika 1958, 45, 293–315. [Google Scholar] [CrossRef]
- Bayes, T. An essay towards solving a problem in the Doctrine of Chances. Philos. Trans. R. Soc. Lond. 1763, 53, 370–418, Reprinted in 1958; see Barnard (1958). [Google Scholar] [CrossRef]
- Ramsey, F.P. Truth and probability. In The Foundations of Mathematics and Other Logical Essays; Braithwaite, R.B., Ed.; Kegan Paul: London, UK, 1931; pp. 156–198. [Google Scholar]
- von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1944. [Google Scholar]
- Pearson, K. Contributions to the mathematical theory of evolution II: Skew variation in homogeneous material. Philos. Trans. R. Soc. Lond. 1895, 186, 343–414. [Google Scholar]
- Weibull, W. A Statistical Theory of the Strength of Materials; Generalstabens Litografiska Anstalts Förlag: Stockholm, Sweden, 1939. [Google Scholar]
- Weibull, W. A statistical distribution function of wide applicability. ASME J. Appl. Mech. 1951, 18, 293–297. [Google Scholar]
- Davis, D.J. An analysis of some failure data. J. Am. Stat. Assoc. 1952, 47, 113–150. [Google Scholar] [CrossRef]
- Epstein, B.; Sobel, M. Life testing. J. Am. Stat. Assoc. 1953, 48, 486–502. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Non-parametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Drenick, R.F. The failure law of complex equipment. J. Soc. Ind. Appl. Math. 1960, 8, 680–690. [Google Scholar] [CrossRef]
- Birnbaum, Z.W.; Esary, J.D.; Saunders, S.C. Multi-component systems and structures and their reliability. Technometrics 1961, 3, 55–77. [Google Scholar] [CrossRef]
- Watson, H.A. Launch Control Safety Study; Section VII; Bell Labs: Murray Hill, NJ, USA, 1961; Volume 1. [Google Scholar]
- Barlow, R.; Proschan, F. Mathematical Theory of Reliability; Wiley: New York, NY, USA, 1965. [Google Scholar]
- Barlow, R.; Proschan, F. Statistical Theory of Reliability and Life Testing, 1st ed.; Holt, Rinehart and Winston, Inc.: New York, NY, USA, 1975. [Google Scholar]
- Wald, A. Statistical Decision Functions; Wiley: New York, NY, USA, 1950. [Google Scholar]
- DeGroot, M.H. Optimal Statistical Decisions; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Berger, J.O. Statistical Decision Theory and Bayesian Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- French, S.; Ríos Insua, D. Statistical Decision Theory; Wiley: Chichester, UK, 2000. [Google Scholar]
- íos Insua, D.; Ruggeri, F. (Eds.) Robust Bayesian Analysis; Springer: New York, NY, USA, 2000. [Google Scholar]
- Ruggeri, F.; Ríos Insua, D.; Martín, J. Robust Bayesian analysis. In Bayesian Thinking, Modeling and Computation. Handbook of Statistics; Dey, D., Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 25, pp. 623–667. [Google Scholar]
- Martín, J.; Ríos Insua, D.; Ruggeri, F. Issues in Bayesian loss robustness. Sankhyā Indian J. Stat. Ser. A 1998, 60, 405–417. [Google Scholar]
- Lindley, D.V. Making Decisions; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Bedford, T.; Cooke, R. Probabilistic Risk Analysis: Foundations and Methods; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Banks, D.L.; Rios, J.; Ríos Insua, D. Adversarial Risk Analysis; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Mazzuchi, T.A.; Soyer, R. A Bayesian perspective on some replacement strategies. Reliab. Eng. Syst. Saf. 1996, 51, 295–303. [Google Scholar] [CrossRef]
- Barlow, R.; Hunter, L. Optimum preventive maintenance policies. Oper. Res. 1960, 8, 90–100. [Google Scholar] [CrossRef]
- Merrick, J.R.; Soyer, R. Semiparametric Bayesian optimal replacement policies: Application to railroad tracks. Appl. Stoch. Model. Bus. Ind. 2017, 33, 445–460. [Google Scholar] [CrossRef]
- van Dorp, J.R.; Mazzuchi, T.A.; Soyer, R. Sequential inference and decision making for single mission systems development. J. Stat. Plan. Inference 1997, 62, 207–218. [Google Scholar] [CrossRef]
- Erkanli, A.; Soyer, R. Simulation-based designs for accelerated life tests. J. Stat. Plan. Inference 2000, 90, 335–348. [Google Scholar] [CrossRef]
- Morali, N.; Soyer, R. Optimal stopping rules for software testing. Nav. Res. Logist. 2003, 50, 88–104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Meeker, W.Q. Bayesian life test planning for the Weibull distribution with given shape parameter. Metrika 2005, 61, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Meeker, W.Q. Bayesian methods for planning accelerated life tests. Technometrics 2006, 48, 49–60. [Google Scholar] [CrossRef]
- Hong, Y.; King, C.; Zhang, Y.; Meeker, W.Q. Bayesian life test planning for log-location-scale family of distributions. J. Qual. Technol. 2015, 47, 336–350. [Google Scholar] [CrossRef] [Green Version]
- Polson, N.G.; Soyer, R. Augmented probability simulation for accelerated life test design. Appl. Stoch. Model. Bus. Ind. 2017, 33, 322–332. [Google Scholar] [CrossRef]
- McDaid, K.; Wilson, S.P. Deciding how long to test software. Statistician 2001, 50, 117–134. [Google Scholar] [CrossRef]
- Kenett, R.; Ruggeri, F.; Faltin, F. (Eds.) Analytic Methods in Systems and Software Testing; Wiley: Chichester, UK, 2018. [Google Scholar]
- Singpurwalla, N.D.; Wilson, S.P. Statistical Methods in Software Reliability: Reliability and Risk; Springer: New York, NY, USA, 1999. [Google Scholar]
- Goel, A.L.; Okumoto, K. Time-dependent error detection rate model for software reliability and other performance measures. IEEE Trans. Reliab. 1979, R-28, 206–211. [Google Scholar] [CrossRef]
- Ruggeri, F.; Soyer, R. Decision models for software testing. In Analytic Methods in Systems and Software Testing; Kenett, R.S., Ruggeri, F., Faltin, F.W., Eds.; Wiley: Chichester, UK, 2018; pp. 277–286. [Google Scholar]
- Christen, J.A.; Ruggeri, F.; Villa, E. Utility based maintenance analysis using a random sign censoring model. Reliab. Eng. Syst. Saf. 2011, 96, 425–431. [Google Scholar] [CrossRef]
- Pievatolo, A.; Ruggeri, F. Bayesian reliability analysis of complex repairable systems. Appl. Stoch. Model. Bus. Ind. 2004, 20, 253–264. [Google Scholar] [CrossRef]
- Pievatolo, A.; Ruggeri, F. Bayesian modeling of train doors’ reliability. In Handbook of Applied Bayesian Analysis; O’Hagan, A., West, M., Eds.; Oxford Press: Oxford, UK, 2010. [Google Scholar]
- Merrick, J.R.; Soyer, R.; Mazzuchi, T.A. A Bayesian semiparametric analysis of the reliability and maintenance of machine tools. Technometrics 2003, 45, 58–69. [Google Scholar] [CrossRef]
- Merrick, J.R.; Soyer, R.; Mazzuchi, T.A. Are maintenance practices for railroad tracks effective? J. Am. Stat. Assoc. 2005, 100, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Damien, P.; Galenko, A.; Popova, E.; Hanson, T. Bayesian semiparametric analysis for a single item maintenance optimization. Eur. J. Oper. Res. 2007, 182, 794–805. [Google Scholar] [CrossRef]
- Belyi, D.; Popova, E.; Morton, D.; Damien, P. Bayesian failure-rate modeling and preventive maintenance optimization. Eur. J. Oper. Res. 2017, 262, 1085–1093. [Google Scholar] [CrossRef]
- Zhang, M.; Gaudoin, O.; Xie, M. Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance. Eur. J. Oper. Res. 2015, 245, 531–541. [Google Scholar] [CrossRef]
- Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Winkler, R.L.; Barry, C.B. A Bayesian model for portfolio selection and revision. J. Financ. 1975, 30, 179–192. [Google Scholar] [CrossRef]
- Soyer, R.; Tanyeri, K. Bayesian portfolio selection with multi-variate random variance models. Eur. J. Oper. Res. 2006, 171, 977–990. [Google Scholar] [CrossRef] [Green Version]
- Luce, R.D.; Raiffa, H. Games and Decisions: Introduction and Critical Surveys; Wiley: New York, NY, USA, 1957. [Google Scholar]
- Lindley, D.V.; Singpurwalla, N.D. On the evidence needed to reach agreed action between adversaries, with application to acceptance sampling. J. Am. Stat. Assoc. 1991, 86, 933–937. [Google Scholar] [CrossRef]
- Lindley, D.V.; Singpurwalla, N.D. Adversarial life testing. J. R. Stat. Soc. Ser. B 1993, 55, 837–847. [Google Scholar] [CrossRef]
- Rufo, M.; Martín, J.; Pérez, C. Adversarial life testing: A Bayesian negotiation model. Reliab. Eng. Syst. Saf. 2014, 131, 118–125. [Google Scholar] [CrossRef]
- Singpurwalla, N.D.; Wilson, S.P. The warranty problem: Its statistical and game-theoretic aspects. SIAM Rev. 1993, 35, 17–42. [Google Scholar] [CrossRef]
- Singpurwalla, N.D.; Arnold, B.C.; Gastwirth, J.L.; Gordon, A.S.; Ng, H.K.T. Adversarial and amiable inference in Medical Diagnosis, Reliability and Survival Analysis. Int. Stat. Rev. 2016, 84, 390–412. [Google Scholar] [CrossRef] [Green Version]
- Kadane, J.B.; Larkey, P.D. Subjective probability and the theory of games. Manag. Sci. 1982, 28, 113–120. [Google Scholar] [CrossRef]
- Ríos Insua, D.; Rios, J.; Banks, D. Adversarial risk analysis. J. Am. Stat. Assoc. 2009, 104, 841–854. [Google Scholar] [CrossRef]
- Rios, J.; Ríos Insua, D. Adversarial risk analysis: Applications to basic counterterrorism models. In Algorithmic Decision Theory, ADT 2009; Rossi, F., Tsoukias, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 306–315. [Google Scholar]
- Gonzalez-Ortega, J.; Soyer, R.; Ríos Insua, D.; Ruggeri, F. An adversarial risk analysis framework for batch acceptance problem. Decis. Anal. 2021, 18, 25–40. [Google Scholar] [CrossRef]
- Gonzalez-Ortega, J.; Ríos Insua, D.; Ruggeri, F.; Soyer, R. Hypothesis Testing in Presence of Adversaries. Am. Stat. 2021, 75, 31–40. [Google Scholar] [CrossRef]
- Naveiro, R.; Redondo, A.; Ríos Insua, D.; Ruggeri, F. Adversarial classification: An adversarial risk analysis approach. Int. J. Approx. Reason. 2019, 113, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Ríos Insua, D.; Cano, J.; Pellot, M.; Ortega, R. From risk analysis to adversarial risk analysis. In Current Trends in Bayesian Methodology with Applications; Upadhyay, S.K., Singh, U., Dey, D.K., Loganathan, A., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 313–336. [Google Scholar]
- Martz, H.F.; Waller, R.A. Bayesian Reliability Analysis; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Hamada, M.S.; Wilson, A.G.; Reese, C.S.; Martz, H.F. Bayesian Reliability; Springer: New York, NY, USA, 2008. [Google Scholar]
- Singpurwalla, N.D. Reliability and Risk: A Bayesian Perspective; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Varis, O.; Kuikka, S. Learning Bayesian decision analysis by doing: Lessons from environmental and natural resources management. Ecol. Model. 1999, 119, 177–195. [Google Scholar] [CrossRef] [Green Version]
- Veneziano, D.; Agarwal, A.; Karaca, E. Decision making with epistemic uncertainty under safety constraints: An application to seismic design. Probabilist. Eng. Mech. 2009, 24, 426–437. [Google Scholar] [CrossRef]
- Palomo, J.; Ríos Insua, D.; Ruggeri, F. Modeling External Risks in Project Management. Risk Anal. 2007, 27, 961–978. [Google Scholar] [CrossRef]
- Ben-Haim, Y. Info-Gap Decision Theory: Decisions under Severe Uncertainty, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Borgonovo, E.; Cappelli, V.; Maccheroni, F.; Marinacci, M. Risk analysis and decision theory: A bridge. Eur. J. Oper. Res. 2018, 264, 280–293. [Google Scholar] [CrossRef]
- de Almeida, A.T.; Cavalcante, C.A.V.; Alencar, M.H.; Ferreira, R.J.P.; de Almeida-Filho, A.T.; Garcez, T.V. Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
a | ||
b |
0.4 | 1 | 0.75 | 0.5 | 0.85 | 0.6 |
0.4 | 0.5 | 0.25 | 0 | 0.35 | 0.1 |
0.6 | 1 | 0.75 | 0.5 | 0.9 | 0.65 |
0.6 | 0.5 | 0.25 | 0 | 0.4 | 0.15 |
Type | |
---|---|
Failure | 14 30 48 7 3 2 7 6 11 7 8 24 21 5 1 |
7 3 92 13 10 4 10 49 89 3 28 23 22 | |
Maintenance | 48 12 8 3 3 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pievatolo, A.; Ruggeri, F.; Soyer, R.; Wilson, S. Decisions in Risk and Reliability: An Explanatory Perspective. Stats 2021, 4, 228-250. https://doi.org/10.3390/stats4020017
Pievatolo A, Ruggeri F, Soyer R, Wilson S. Decisions in Risk and Reliability: An Explanatory Perspective. Stats. 2021; 4(2):228-250. https://doi.org/10.3390/stats4020017
Chicago/Turabian StylePievatolo, Antonio, Fabrizio Ruggeri, Refik Soyer, and Simon Wilson. 2021. "Decisions in Risk and Reliability: An Explanatory Perspective" Stats 4, no. 2: 228-250. https://doi.org/10.3390/stats4020017
APA StylePievatolo, A., Ruggeri, F., Soyer, R., & Wilson, S. (2021). Decisions in Risk and Reliability: An Explanatory Perspective. Stats, 4(2), 228-250. https://doi.org/10.3390/stats4020017