Improving the Efficiency of Robust Estimators for the Generalized Linear Model
Abstract
:1. Introduction
2. Candidate Estimators and Software for Poisson Regression
3. The DCML for GLM
4. Some Invariance Properties
5. Monte Carlo Scenarios for Poisson Regression
- -
- CUBIF11: CUBIF with tuning parameter ;
- -
- CUBIF18: CUBIF with tuning parameter ;
- -
- RQL01: RQL with tuning parameter ;
- -
- RQL14: RQL with default tuning parameter ;
- -
- MTI: the initial value of MT provided by poissonMT;
- -
- MT23: MT with default tuning parameter ;
- -
- MD04: MD with tuning parameter ;
- -
- MD07: MD with tuning parameter ;
- -
- MD10: MD with tuning parameter ;
- -
- MCML04: MCML starting from MD04r;
- -
- MCML07: MCML starting from MD07r;
- -
- MCML10: MCML starting from MD10r.
- -
- MD07r + D: DCML starting from MD07r
- -
- MD10r + D: DCML starting from MD10r
- -
- MCML07 + D: DCML starting from MCML07
- -
- MCML10 + D: DCML starting from MCML10.
- -
- MCML+: MCML starting from (MD10r + DCML)
- -
- MCML*: MCML starting from (MCML + DCML)
- -
- MCML++: DCML starting from MCML+
- -
- MCML*+: DCML starting from MCML*.
6. Monte Carlo Results for Poisson Regression
6.1. Simulations for the Nominal Simple Regression Model
6.2. Simulations for the Contaminated Simple Regression Model
6.3. Simulations for the Nominal Multiple Regression Model
6.4. Simulations for the Contaminated Multiple Regression Model
7. Bootstrapping Real Data and NB Fits
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Taylor, L.D. Estimation by minimizing the sum of absolute errors. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1973; pp. 189–190. [Google Scholar]
- Dodge, Y.; Jurečková, J. Adaptive combination of least squares and least absolute deviations estimators. In Statistical Data Analysis Based on L1-Norm and Related Methods; Dodge, Y., Ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Yohai, V.J. High breakdown-point and high efficiency robust estimates for regression. Ann. Stat. 1987, 15, 642–656. [Google Scholar] [CrossRef]
- Yohai, V.J.; Zamar, R.H. High breakdown estimates of regression by means of the minimization of an efficient scale. J. Am. Stat. Assoc. 1988, 83, 406–413. [Google Scholar] [CrossRef]
- Gervini, D.; Yohai, V.J. A class of robust and fully efficient regression estimators. Ann. Stat. 2002, 30, 583–616. [Google Scholar] [CrossRef]
- Marazzi, A.; Yohai, V.J. Adaptively truncated maximum likelihood regression with asymmetric errors. J. Stat. Plan. Inference 2004, 122, 271–291. [Google Scholar] [CrossRef]
- Čižek, P. Semiparametrically weighted robust estimation of regression models. Comput. Stat. Data Anal. 2011, 55, 774–788. [Google Scholar] [CrossRef]
- Davison, A.C.; Snell, E.J. Residuals and diagnostics. In Statistical Theory and Modelling: In Honour of Sir David Cox; Hinkley, D.V., Reid, N., Snell, E.J., Eds.; Chapman and Hall: London, UK, 1991; pp. 83–106. [Google Scholar]
- Maronna, R.A.; Martin, R.D.; Yohai, V.J. Robust Statistics; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Künsch, H.R.; Stefanski, L.A.; Carroll, R.J. Conditionally unbiased bounded-influence estimation in general regression models, with applications to generalized linear models. J. Am. Stat. Assoc. 1989, 84, 460–466. [Google Scholar]
- Cantoni, E.; Ronchetti, E. Robust inference for generalized linear models. J. Am. Stat. Assoc. 2011, 96, 1022–1030. [Google Scholar] [CrossRef] [Green Version]
- Neykov, N.M.; Filzmoser, P.; Neytchev, P.N. Robust joint modeling of mean and dispersion through trimming. Comput. Stat. Data Anal. 2012, 56, 34–48. [Google Scholar] [CrossRef]
- Valdora, M.; Yohai, V.J. Robust estimation in generalized linear models. J. Stat. Plan. Inference 2014, 146, 31–48. [Google Scholar] [CrossRef]
- Ghosh, A.; Basu, A. Robust Estimation in Generalized Linear Models: The Density Power Divergence Approach. TEST 2016, 25, 269–290. [Google Scholar] [CrossRef] [Green Version]
- Aeberhard, W.H.; Cantoni, E.; Heritier, S. Robust inference in the negative binomial regression model with an application to falls data. Biometrics 2014, 70, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Marazzi, A.; Valdora, M.; Yohai, V.J.; Amiguet, M. A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter. Test 2019, 28, 223–241. [Google Scholar] [CrossRef]
- Bondell, H.D.; Stefanski, L.A. Efficient robust regression via two-stage generalized empirical likelihood. J. Am. Stat. Assoc. 2013, 108, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Maronna, R.A.; Yohai, V.J. High finite sample efficiency and robustness based on distance-constrained maximum likelihood. Comput. Stat. Data Anal. 2015, 83, 262–274. [Google Scholar] [CrossRef] [Green Version]
- Dunn, P.K.; Smyth, G.K. Randomized quantile residuals. J. Comput. Graph. Stat. 1996, 5, 236–244. [Google Scholar]
- Han, A.K. Non-parametric analysis of a generalized regression model: The maximum rank correlation estimator. J. Econom. 1987, 35, 303–316. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Multivariate estimation with high breakdown point. In Mathematical Statistics and Applications; Grossman, W., Pflug, G., Vincze, I., Wertz, W., Eds.; Reidel Publishing: Dordrecht, The Netherlands, 1985; pp. 283–297. [Google Scholar]
- Huber, P.J. The 1972 Wald Lecture, Robust Statistics: A Review. Ann. Math. Stat. 1972, 43, 1041–1067. [Google Scholar] [CrossRef]
Estimator | Eff | Effr | Eff |
---|---|---|---|
CUBIF11 | 0.62 | 0.52 | 0.66 |
CUBIF18 | 0.89 | 0.73 | 0.92 |
RQL01 | 0.68 | 0.54 | 0.66 |
RQL14 | 0.94 | 0.75 | 0.93 |
MT-I | 0.85 | 0.78 | —- |
MT23 | 0.87 | 0.70 | 0.90 |
MD04 | 0.84 | 0.67 | 0.89 |
MD07 | 0.75 | 0.60 | 0.79 |
MD10 | 0.66 | 0.54 | 0.68 |
MCML04 | 0.78 | —- | 1.00 |
MCML07 | 0.78 | —- | 1.00 |
MCML10 | 0.78 | —- | 1.00 |
p | n | MDE07r | MDE10r | MCML07 | MCML10 | MCML+ | MCML* | |
---|---|---|---|---|---|---|---|---|
5 | 25 | 26 | 22 | 36 | 32 | 54 | 62 | |
5 | 25 | 61 | 47 | 67 | 59 | 80 | 87 | |
5 | 25 | 83 | 66 | 83 | 76 | 88 | 93 | |
5 | 25 | 88 | 73 | 89 | 82 | 91 | 94 | |
10 | 50 | 22 | 18 | 42 | 38 | 56 | 69 | |
10 | 50 | 54 | 39 | 72 | 64 | 79 | 90 | |
10 | 50 | 71 | 51 | 82 | 73 | 85 | 93 | |
10 | 50 | 77 | 56 | 85 | 77 | 87 | 94 | |
20 | 100 | 22 | 19 | 57 | 55 | 73 | 84 | |
20 | 100 | 54 | 45 | 86 | 84 | 94 | 98 | |
20 | 100 | 68 | 56 | 91 | 89 | 97 | 99 | |
20 | 100 | 74 | 61 | 93 | 91 | 97 | 99 |
p | n | MDE07r | MDE10r | MCML07 | MCML10 | MCML+ | MCML* | |
---|---|---|---|---|---|---|---|---|
5 | 25 | 47 | 42 | 58 | 55 | 78 | 83 | |
5 | 25 | 73 | 72 | 84 | 81 | 95 | 97 | |
5 | 25 | 85 | 87 | 93 | 91 | 98 | 99 | |
5 | 25 | 90 | 91 | 96 | 94 | 99 | 99 | |
10 | 50 | 40 | 35 | 67 | 65 | 82 | 87 | |
10 | 50 | 67 | 66 | 91 | 89 | 97 | 99 | |
10 | 50 | 78 | 79 | 96 | 94 | 99 | 100 | |
10 | 50 | 83 | 84 | 97 | 95 | 99 | 100 | |
20 | 100 | 39 | 37 | 79 | 78 | 89 | 93 | |
20 | 100 | 65 | 69 | 96 | 95 | 99 | 100 | |
20 | 100 | 73 | 79 | 98 | 97 | 100 | 100 | |
20 | 100 | 77 | 93 | 98 | 98 | 100 | 100 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
---|---|---|---|---|---|---|---|---|---|
MDE07r | 0.12 | 0.10 | 0.12 | 0.14 | 0.16 | 0.15 | 0.16 | 0.14 | 0.12 |
MDE10r | 0.12 | 0.13 | 0.12 | 0.15 | 0.15 | 0.16 | 0.17 | 0.16 | 0.12 |
MCML07 | 0.11 | 0.09 | 0.10 | 0.13 | 0.14 | 0.14 | 0.14 | 0.13 | 0.11 |
MCML10 | 0.11 | 0.09 | 0.10 | 0.13 | 0.13 | 0.14 | 0.14 | 0.13 | 0.11 |
MDE07r + D | 0.11 | 0.08 | 0.08 | 0.10 | 0.13 | 0.12 | 0.14 | 0.13 | 0.10 |
MDE10r + D | 0.13 | 0.10 | 0.09 | 0.13 | 0.12 | 0.13 | 0.13 | 0.13 | 0.11 |
MCML07 + D | 0.09 | 0.06 | 0.07 | 0.08 | 0.12 | 0.11 | 0.13 | 0.12 | 0.09 |
MCML10 + D | 0.08 | 0.06 | 0.07 | 0.09 | 0.10 | 0.10 | 0.11 | 0.11 | 0.09 |
MCML++ | 0.09 | 0.06 | 0.06 | 0.08 | 0.11 | 0.11 | 0.11 | 0.12 | 0.09 |
MCML*+ | 0.10 | 0.06 | 0.06 | 0.08 | 0.12 | 0.11 | 0.11 | 0.12 | 0.09 |
var | rej | ||||||||
---|---|---|---|---|---|---|---|---|---|
ML | 2.07 | 0.02 | 0.03 | −0.01 | 0.09 | 0.00 | 0.88 | 0.49 | 0 |
(0.47) | (0.03) | (0.02) | (0.01) | (0.52) | (0.01) | ||||
MD10r | 1.56 | 0.02 | 0.06 | −0.01 | 0.42 | 0.01 | 0.67 | 0.85 | 0 |
(0.54) | (0.05) | (0.04) | (0.01) | (0.74) | (0.02) | ||||
MCML10 | 1.70 | 0.02 | 0.05 | −0.01 | 0.29 | 0.01) | 0.48 | 0.51 | 1 |
(0.43) | (0.04) | (0.04) | (0.01) | (0.57) | (0.02) | ||||
MCML10 + D | 1.95 | 0.02 | 0.04 | −0.01 | 0.15 | 0.01 | 0.79 | 0.39 | 45 |
(0.45) | (0.03) | (0.02) | (0.01) | (0.50) | (0.01) |
var | rej | ||||||
---|---|---|---|---|---|---|---|
ML | 2.04 | 0.04 | 0.02 | 0.00 | 0.93 | 0.41 | 8 |
(0.64) | (0.04) | (0.03) | (0.01) | ||||
MD10r | 1.59 | 0.04 | 0.02 | 0.00 | 0.85 | 0.99 | 0 |
(0.99) | (0.08) | (0.07) | (0.02) | ||||
MCML10 | 1.72 | 0.04 | 0.04 | 0.00 | 0.52 | 1.70 | 2 |
(1.21) | (0.35) | (0.31) | (0.14) | ||||
MCML10 + D | 1.92 | 0.03 | 0.02 | 0.00 | 0.86 | 0.46 | 8 |
(0.67) | (0.05) | (0.04) | (0.01) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marazzi, A. Improving the Efficiency of Robust Estimators for the Generalized Linear Model. Stats 2021, 4, 88-107. https://doi.org/10.3390/stats4010008
Marazzi A. Improving the Efficiency of Robust Estimators for the Generalized Linear Model. Stats. 2021; 4(1):88-107. https://doi.org/10.3390/stats4010008
Chicago/Turabian StyleMarazzi, Alfio. 2021. "Improving the Efficiency of Robust Estimators for the Generalized Linear Model" Stats 4, no. 1: 88-107. https://doi.org/10.3390/stats4010008
APA StyleMarazzi, A. (2021). Improving the Efficiency of Robust Estimators for the Generalized Linear Model. Stats, 4(1), 88-107. https://doi.org/10.3390/stats4010008