Cumulative Median Estimation for Sufficient Dimension Reduction
Abstract
:1. Introduction
2. Literature Review
2.1. Sliced Inverse Regression (SIR)
2.2. Sliced Inverse Median (SIME)
2.3. Cumulative Mean Estimation (CUME)
3. Cumulative Median Estimation
Estimation Procedure
- (1)
- Standardise data to find , where is the sample mean of and is an estimate of the covariance matrix of .
- (2)
- Sort Y and then for each value of y, find the cumulative L1 median
- (3)
- Using the ’s from the previous step, estimate the candidate matrix by
- (4)
- Calculate the eigenvectors , which correspond to the largest eigenvalues of , and estimate with .
4. Numerical Results
4.1. Simulated Datasets
- (1)
- Model 1:
- (2)
- Model 2:
- (3)
- Model 3:
- (4)
- Model 4:
- (5)
- Model 5:
- (Outl a): is from multivariate standard normal.
- (Outl b): is from multivariate standard Cauchy.
4.2. Real Data—Concrete Data
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, X.; Li, B.; Cook, R.D. Successive direction extraction for estimating the central subspace in a multiple-index regression. J. Multivar. Anal. 2008, 99, 1733–1757. [Google Scholar] [CrossRef] [Green Version]
- Li, B. Sufficient Dimension Reduction. Methods and Applications with R; Chapman and Hall/CRC: New York, NY, USA, 2018. [Google Scholar]
- Li, K.-C. Sliced inverse regression for dimension reduction (with discussion). J. Am. Stat. Assoc. 1991, 86, 316–342. [Google Scholar] [CrossRef]
- Cook, R.D.; Weisberg, S. Discussion of ‘’Sliced inverse regression for dimension reduction”. J. Am. Stat. Assoc. 1991, 86, 316–342. [Google Scholar] [CrossRef]
- Li, B.; Wang, S. On directional regression for dimension reduction. J. Am. Stat. Assoc. 2007, 102, 997–1008. [Google Scholar] [CrossRef]
- Artemiou, A.; Tian, L. Using slice inverse mean difference for sufficient dimension reduction. Stat. Probab. Lett. 2015, 106, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.P.; Zhu, L.X.; Feng, Z.H. Dimension Reduction in Regression through Cumulative Slicing Estimation. J. Am. Stat. Assoc. 2010, 105, 1455–1466. [Google Scholar] [CrossRef]
- Dong, Y.; Yu, Z.; Zhu, L. Robust inverse regression for dimension reduction. J. Multivar. Anal. 2015, 134, 71–81. [Google Scholar] [CrossRef]
- Christou, E. Robust Dimension Reduction using Sliced Inverse Median Regression. Stat. Pap. 2018, 61, 1799–1818. [Google Scholar] [CrossRef]
- Babos, S.; Artemiou, A. Sliced inverse median difference regression. Stat. Methods Appl. 2020, 29, 937–954. [Google Scholar] [CrossRef] [Green Version]
- Cook, R.D. Regression Graphics: Ideas for Studying Regressions through Graphics; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Maechler, M.; Rousseeuw, P.; Croux, C.; Todorov, V.; Ruckstuhl, A.; Salibian-Barrera, M.; Verbeke, T.; Koller, M.; Conceicao, E.L.T.; di Palma, M.A. robustbase: Basic Robust Statistics R Package Version 0.93-3. 2018. Available online: http://CRAN.R-project.org/package=robustbase (accessed on 10 February 2021).
- Olive, D.J. Robust Multivariate Statistics; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Olive, D.J. Robust Statistics. 2020. Available online: http://parker.ad.siu.edu/Olive/robbook.htm (accessed on 10 February 2021).
- Cerioli, A.; Farcomeni, A.; Riani, M. Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter. J. Multivar. Anal. 2014, 126, 167–183. [Google Scholar] [CrossRef]
- Yeh, I.-C. Modeling of strength of high performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808. [Google Scholar] [CrossRef]
- Artemiou, A. Using adaptively weighted large margin classifiers for robust sufficient dimension reduction. Statistics 2019, 53, 1037–1051. [Google Scholar] [CrossRef]
- Wang, H.; Xia, Y. Sliced regression for dimension reduction. J. Am. Stat. Assoc. 2008, 103, 811–821. [Google Scholar] [CrossRef]
- Kong, E.; Xia, Y. An adaptive composite quantile approach to dimension reduction. Ann. Stat. 2014, 42, 1657–1688. [Google Scholar] [CrossRef] [Green Version]
Method | ||||||
---|---|---|---|---|---|---|
Model | p | outl | SIR | SIME | CUME | CUMed |
a | 0.997 (0.002) | 0.998 (0.002) | 0.989 (0.010) | 0.976 (0.018) | ||
5 | b | 0.647 (0.250) | 0.436 (0.331) | 0.479 (0.328) | 0.600 (0.173) | |
1 | a | 0.993 (0.004) | 0.996 (0.002) | 0.978 (0.013) | 0.949 (0.034) | |
10 | b | 0.520 (0.227) | 0.279 (0.356) | 0.217 (0.247) | 0.572 (0.185) | |
a | 0.985 (0.006) | 0.992 (0.003) | 0.943 (0.025) | 0.891 (0.043) | ||
20 | b | 0.437 (0.249) | 0.080 (0.152) | 0.082 (0.146) | 0.515 (0.203) | |
a | 0.962 (0.037) | 0.981 (0.014) | 0.961 (0.034) | 0.803 (0.151) | ||
5 | b | 0.543 (0.204) | 0.650 (0.183) | 0.493 (0.247) | 0.572 (0.139) | |
2 | a | 0.911 (0.039) | 0.960 (0.020) | 0.902 (0.043) | 0.638 (0.130) | |
10 | b | 0.329 (0.213) | 0.555 (0.133) | 0.283 (0.229) | 0.483 (0.079) | |
a | 0.828 (0.045) | 0.910 (0.034) | 0.790 (0.063) | 0.490 (0.056) | ||
20 | b | 0.282 (0.183) | 0.456 (0.110) | 0.124 (0.157) | 0.399 (0.100) | |
a | 0.998 (0.002) | 0.997 (0.002) | 0.988 (0.009) | 0.975 (0.019) | ||
5 | b | 0.603 (0.397) | 0.478 (0.420) | 0.405 (0.377) | 0.957 (0.076) | |
3 | a | 0.994 (0.003) | 0.996 (0.002) | 0.975 (0.018) | 0.951 (0.029) | |
10 | b | 0.563 (0.375) | 0.229 (0.361) | 0.147 (0.251) | 0.835 (0.241) | |
a | 0.986 (0.006) | 0.993 (0.003) | 0.946 (0.027) | 0.886 (0.044) | ||
20 | b | 0.362 (0.354) | 0.057 (0.162) | 0.059 (0.141) | 0.774 (0.211) | |
a | 0.906 (0.070) | 0.949 (0.030) | 0.888 (0.088) | 0.855 (0.104) | ||
5 | b | 0.669 (0.342) | 0.488 (0.436) | 0.357 (0.349) | 0.921 (0.174) | |
4 | a | 0.820 (0.090) | 0.880 (0.054) | 0.780 (0.098) | 0.691 (0.135) | |
10 | b | 0.539 (0.385) | 0.181 (0.298) | 0.158 (0.248) | 0.824 (0.265) | |
a | 0.630 (0.133) | 0.791 (0.085) | 0.595 (0.127) | 0.491 (0.158) | ||
20 | b | 0.417 (0.368) | 0.031 (0.097) | 0.052 (0.129) | 0.751 (0.238) | |
a | 0.935 (0.048) | 0.967 (0.019) | 0.918 (0.059) | 0.869 (0.095) | ||
5 | b | 0.176 (0.250) | 0.166 (0.304) | 0.259 (0.349) | 0.318 (0.337) | |
5 | a | 0.871 (0.076) | 0.929 (0.034) | 0.844 (0.078) | 0.741 (0.123) | |
10 | b | 0.136 (0.238) | 0.060 (0.151) | 0.111 (0.236) | 0.172 (0.240) | |
a | 0.743 (0.101) | 0.871 (0.036) | 0.700 (0.100) | 0.542 (0.136) | ||
20 | b | 0.035 (0.074) | 0.023 (0.064) | 0.038 (0.117) | 0.066 (0.155) |
Median | |||
---|---|---|---|
Model | outl | L1 Median | Oja |
1 | a | 0.955 (0.023) | 0.947 (0.044) |
b | 0.598 (0.242) | 0.133 (0.194) | |
2 | a | 0.636 (0.128) | 0.586 (0.117) |
b | 0.484 (0.063) | 0.212 (0.208) | |
3 | a | 0.946 (0.024) | 0.904 (0.099) |
b | 0.835 (0.283) | 0.190 (0.354) | |
4 | a | 0.684 (0.169) | 0.507 (0.249) |
b | 0.851 (0.199) | 0.249 (0.107) | |
5 | a | 0.754 (0.128) | 0.583 (0.285) |
b | 0.122 (0.224) | 0.108 (0.273) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babos, S.; Artemiou, A. Cumulative Median Estimation for Sufficient Dimension Reduction. Stats 2021, 4, 138-145. https://doi.org/10.3390/stats4010011
Babos S, Artemiou A. Cumulative Median Estimation for Sufficient Dimension Reduction. Stats. 2021; 4(1):138-145. https://doi.org/10.3390/stats4010011
Chicago/Turabian StyleBabos, Stephen, and Andreas Artemiou. 2021. "Cumulative Median Estimation for Sufficient Dimension Reduction" Stats 4, no. 1: 138-145. https://doi.org/10.3390/stats4010011
APA StyleBabos, S., & Artemiou, A. (2021). Cumulative Median Estimation for Sufficient Dimension Reduction. Stats, 4(1), 138-145. https://doi.org/10.3390/stats4010011