General Formulas for the Central and Non-Central Moments of the Multinomial Distribution
Abstract
:1. The Multinomial Distribution
2. Motivation
3. Results
4. Numerical Implementation
5. Explicit Formulas
5.1. Computation of the Non-Central Moments Up to Order 8
5.2. Computation of the Central Moments Up to Order 4
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
i.i.d. | independent and identically distributed |
References
- Mosimann, J.E. On the compound multinomial distribution, the multivariate β-distribution, and correlations among proportions. Biometrika 1962, 49, 65–82. [Google Scholar]
- Newcomer, J.T. Estimation Procedures for Multinomial Models with Overdispersion. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2008. [Google Scholar]
- Wishart, J. Cumulants of multivariate multinomial distributions. Biometrika 1949, 36, 47–58. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Discrete Multivariate Distributions; Wiley Series in Probability and Statistics: Applied Probability and Statistics; John Wiley & Sons, Inc.: New York, NY, USA, 1997; p. xxii+299. [Google Scholar]
- Vitale, R.A. Bernstein polynomial approach to density function estimation. In Statistical Inference and Related Topics; Academic Press: New York, NY, USA, 1975; pp. 87–99. [Google Scholar]
- Gawronski, W.; Stadtmüller, U. Smoothing histograms by means of lattice and continuous distributions. Metrika 1981, 28, 155–164. [Google Scholar] [CrossRef]
- Stadtmüller, U. Asymptotic distributions of smoothed histograms. Metrika 1983, 30, 145–158. [Google Scholar] [CrossRef]
- Gawronski, W. Strong laws for density estimators of Bernstein type. Period. Math. Hungar. 1985, 16, 23–43. [Google Scholar] [CrossRef]
- Stadtmüller, U. Asymptotic properties of nonparametric curve estimates. Period. Math. Hungar. 1986, 17, 83–108. [Google Scholar] [CrossRef]
- Tenbusch, A. Nonparametric curve estimation with Bernstein estimates. Metrika 1997, 45, 1–30. [Google Scholar] [CrossRef]
- Petrone, S. Bayesian density estimation using Bernstein polynomials. Can. J. Stat. 1999, 27, 105–126. [Google Scholar] [CrossRef]
- Petrone, S. Random Bernstein polynomials. Scand. J. Stat. 1999, 26, 373–393. [Google Scholar] [CrossRef]
- Ghosal, S. Convergence rates for density estimation with Bernstein polynomials. Ann. Stat. 2001, 29, 1264–1280. [Google Scholar] [CrossRef]
- Petrone, S.; Wasserman, L. Consistency of Bernstein polynomial posteriors. J. Roy. Stat. Soc. Ser. B 2002, 64, 79–100. [Google Scholar] [CrossRef]
- Babu, G.J.; Canty, A.J.; Chaubey, Y.P. Application of Bernstein polynomials for smooth estimation of a distribution and density function. J. Stat. Plan. Inference 2002, 105, 377–392. [Google Scholar] [CrossRef]
- Kakizawa, Y. Bernstein polynomial probability density estimation. J. Nonparametr. Stat. 2004, 16, 709–729. [Google Scholar] [CrossRef]
- Bouezmarni, T.; Rolin, J.M. Bernstein estimator for unbounded density function. J. Nonparametr. Stat. 2007, 19, 145–161. [Google Scholar] [CrossRef]
- Bouezmarni, T.; Mesfioui, M.; Rolin, J.M. L1-rate of convergence of smoothed histogram. Stat. Probab. Lett. 2007, 77, 1497–1504. [Google Scholar] [CrossRef]
- Leblanc, A. Chung-Smirnov property for Bernstein estimators of distribution functions. J. Nonparametr. Stat. 2009, 21, 133–142. [Google Scholar] [CrossRef]
- Leblanc, A. A bias-reduced approach to density estimation using Bernstein polynomials. J. Nonparametr. Stat. 2010, 22, 459–475. [Google Scholar] [CrossRef]
- Curtis, S.M.; Ghosh, S.K. A variable selection approach to monotonic regression with Bernstein polynomials. J. Appl. Stat. 2011, 38, 961–976. [Google Scholar] [CrossRef]
- Leblanc, A. On estimating distribution functions using Bernstein polynomials. Ann. Inst. Stat. Math. 2012, 64, 919–943. [Google Scholar] [CrossRef]
- Leblanc, A. On the boundary properties of Bernstein polynomial estimators of density and distribution functions. J. Stat. Plan. Inference 2012, 142, 2762–2778. [Google Scholar] [CrossRef]
- Igarashi, G.; Kakizawa, Y. On improving convergence rate of Bernstein polynomial density estimator. J. Nonparametr. Stat. 2014, 26, 61–84. [Google Scholar] [CrossRef]
- Turnbull, B.C.; Ghosh, S.K. Unimodal density estimation using Bernstein polynomials. Comput. Stat. Data Anal. 2014, 72, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Lu, L. On the uniform consistency of the Bernstein density estimator. Stat. Probab. Lett. 2015, 107, 52–61. [Google Scholar] [CrossRef]
- Guan, Z. Efficient and robust density estimation using Bernstein type polynomials. J. Nonparametr. Stat. 2016, 28, 250–271. [Google Scholar] [CrossRef] [Green Version]
- Guan, Z. Bernstein polynomial model for grouped continuous data. J. Nonparametr. Stat. 2017, 29, 831–848. [Google Scholar] [CrossRef] [Green Version]
- Belalia, M.; Bouezmarni, T.; Leblanc, A. Smooth conditional distribution estimators using Bernstein polynomials. Comput. Stat. Data Anal. 2017, 111, 166–182. [Google Scholar] [CrossRef]
- Belalia, M.; Bouezmarni, T.; Leblanc, A. Bernstein conditional density estimation with application to conditional distribution and regression functions. J. Korean Stat. Soc. 2019, 48, 356–383. [Google Scholar] [CrossRef]
- Tenbusch, A. Two-dimensional Bernstein polynomial density estimators. Metrika 1994, 41, 233–253. [Google Scholar] [CrossRef]
- Ouimet, F. Asymptotic properties of Bernstein estimators on the simplex. arXiv 2020, arXiv:2002.07758. [Google Scholar]
- Ouimet, F. Asymptotic properties of Bernstein estimators on the simplex. Part 2: The boundary case. arXiv 2020, arXiv:2006.11756. [Google Scholar]
- Ouimet, F. A precise local limit theorem for the multinomial distribution and some applications. arXiv 2020, arXiv:2001.08512. [Google Scholar]
- Arenbaev, N.K. Asymptotic behavior of the multinomial distribution. Teor. Veroyatnost. Primenen. 1976, 21, 826–831. [Google Scholar]
- Aitchison, J.; Lauder, I.J. Kernel Density Estimation for Compositional Data. J. R. Stat. Soc. Ser. (Appl. Stat.) 1985, 34, 129–137. [Google Scholar] [CrossRef]
- Brown, B.M.; Chen, S.X. Beta-Bernstein smoothing for regression curves with compact support. Scand. J. Stat. 1999, 26, 47–59. [Google Scholar] [CrossRef]
- Chen, S.X. Beta kernel estimators for density functions. Comput. Stat. Data Anal. 1999, 31, 131–145. [Google Scholar] [CrossRef]
- Chen, S.X. Beta kernel smoothers for regression curves. Stat. Sin. 2000, 10, 73–91. [Google Scholar]
- Bouezmarni, T.; Rolin, J.M. Consistency of the beta kernel density function estimator. Can. J. Stat. 2003, 31, 89–98. [Google Scholar] [CrossRef]
- Ouimet, F. Density estimation using Dirichlet kernels. arXiv 2020, arXiv:2002.06956. [Google Scholar]
- Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics, 2nd ed.; Addison-Wesley Publishing Company: Reading, MA, USA, 1994; p. xiv+657. [Google Scholar]
- Newcomer, J.T.; Neerchal, N.K.; Morel, J.G. Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models; Department of Mathematics and Statistics, University of Maryland: Baltimore, MD, USA, 2008; pp. 1–11. Available online: http://www.math.umbc.edu/~kogan/technical_papers/2008/Newcomer_Nagaraj_Morel.pdf (accessed on 10 November 2020).
- Ouimet, F. Explicit formulas for the joint third and fourth central moments of the multinomial distribution. arXiv 2020, arXiv:2006.09059. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouimet, F. General Formulas for the Central and Non-Central Moments of the Multinomial Distribution. Stats 2021, 4, 18-27. https://doi.org/10.3390/stats4010002
Ouimet F. General Formulas for the Central and Non-Central Moments of the Multinomial Distribution. Stats. 2021; 4(1):18-27. https://doi.org/10.3390/stats4010002
Chicago/Turabian StyleOuimet, Frédéric. 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution" Stats 4, no. 1: 18-27. https://doi.org/10.3390/stats4010002
APA StyleOuimet, F. (2021). General Formulas for the Central and Non-Central Moments of the Multinomial Distribution. Stats, 4(1), 18-27. https://doi.org/10.3390/stats4010002