Bursting the Bubble: The Fluids Mechanics That Prove Godzilla Would Survive the Plan
Abstract
:1. Introduction
2. Materials
3. Results
3.1. Freon Tanks and Sinking Feasibility
3.2. Pressure at Depth (1500 m)
3.3. Rapid Ascent and Decompression Effects
4. Discussion
5. Using Movies as an Educational Tool
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dietrich, N.; Jimenez, M.; Souto, M.; Harrison, A.W.; Coudret, C.; Olmos, E. Using Pop-Culture to Engage Students in the Classroom. J. Chem. Educ. 2021, 98, 896–906. [Google Scholar] [CrossRef]
- Thomas, N.C. Using Classic Movie Chemistry Scenes to Introduce Classroom Activities. J. Chem. Educ. 2021, 98, 1814–1817. [Google Scholar] [CrossRef]
- Kloepper, K.D. Bringing in the Bard: Shakespearean Plays as Context for Instrumental Analysis Projects. J. Chem. Educ. 2015, 92, 79–85. [Google Scholar] [CrossRef]
- Southward, R.E.; Hollis, W.G.; Thompson, D.W. Precipitation of a murder: A creative use of strychnine chemistry in Agatha Christie’s The Mysterious Affair at Styles. J. Chem. Educ. 1992, 69, 536. [Google Scholar] [CrossRef]
- Waddell, T.G.; Rybolt, T.R. The Chemical Adventures of Sherlock Holmes: Autopsy in Blue. J. Chem. Educ. 2004, 81, 497. [Google Scholar] [CrossRef]
- Waddell, T.G.; Rybolt, T.R. Prologue to The Chemical Adventures of Sherlock Holmes. J. Chem. Educ. 2011, 88, 370–371. [Google Scholar] [CrossRef]
- Fahy, D. The Chemist as Anti-Hero: Walter White and Sherlock Holmes as Case Studies. In Hollywood Chemistry; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2013; Volume 1139, pp. 175–188. ISBN 978-0-8412-2824-5. [Google Scholar]
- Last, A.M. Chemistry and popular culture: The 007 bond. J. Chem. Educ. 1992, 69, 206. [Google Scholar] [CrossRef]
- Copes, J.S. The Chemical Wizardry of J. K. Rowling. J. Chem. Educ. 2006, 83, 1479. [Google Scholar] [CrossRef]
- Hollis, W.G., Jr. Jurassic Park as a Teaching Tool in the Chemistry Classroom. J. Chem. Educ. 1996, 73, 61. [Google Scholar] [CrossRef]
- Goll, J.G.; Woods, B.J. Teaching Chemistry Using the Movie Apollo 13. J. Chem. Educ. 1999, 76, 506. [Google Scholar] [CrossRef]
- Collins, S.N.; Appleby, L. Black Panther, Vibranium, and the Periodic Table. J. Chem. Educ. 2018, 95, 1243–1244. [Google Scholar] [CrossRef]
- Li, R.; Orthia, L.A. Communicating the Nature of Science Through the Big Bang Theory: Evidence from a Focus Group Study. Int. J. Sci. Educ. Part B 2016, 6, 115–136. [Google Scholar] [CrossRef]
- Hu, S. An Analysis of Humor in The Big Bang Theory from Pragmatic Perspectives. Theory Pract. Lang. Stud. 2012, 2, 1185–1190. [Google Scholar]
- Cass, S.; Grazier, K.R.; Thompson, B.; Marrinan, C. Constructing Crimes: How the CSI Effect Is Created. In Hollywood Chemistry; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2013; Volume 1139, pp. 145–151. ISBN 978-0-8412-2824-5. [Google Scholar]
- Milanick, M.A.; Prewitt, R.L. Fact or Fiction? General Chemistry Helps Students Determine the Legitimacy of Television Program Situations. J. Chem. Educ. 2013, 90, 904–906. [Google Scholar] [CrossRef]
- Szafran, Z.; Pike, R.M.; Singh, M.M. Microscale Chemistry in the Comics. J. Chem. Educ. 1994, 71, A151. [Google Scholar] [CrossRef]
- Kakalios, J. The Materials Science of Marvel’s The Avengers—Some Assembly Required. In Hollywood Chemistry; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2013; Volume 1139, pp. 215–227. ISBN 978-0-8412-2824-5. [Google Scholar]
- Ruekberg, B. A Chemistry Tidbit for Batman Fans. J. Chem. Educ. 2010, 87, 1017–1018. [Google Scholar] [CrossRef]
- Dietrich, N. Escape Classroom: The Leblanc Process—An Educational “Escape Game”. J. Chem. Educ. 2018, 95, 996–999. [Google Scholar] [CrossRef]
- Estudante, A.; Dietrich, N. Using Augmented Reality to Stimulate Students and Diffuse Escape Game Activities to Larger Audiences. J. Chem. Educ. 2020, 97, 1368–1374. [Google Scholar] [CrossRef]
- Monnot, M.; Laborie, S.; Hébrard, G.; Dietrich, N. New approaches to adapt escape game activities to large audience in Chemical Engineering: Numeric supports and students’ participation. Educ. Chem. Eng. 2020, 32, 50–58. [Google Scholar] [CrossRef]
- Dietrich, N. Fortnite & Chemistry. arXiv 2020, arXiv:2004.10085. [Google Scholar]
- Adams, A. The blackness of the beast: Godzilla in the heart of darkness. Rev. Estud. Norteam. 2024, 28, 5–35. [Google Scholar] [CrossRef]
- Lindholm, P.; Lundgren, C.E. The physiology and pathophysiology of human breath-hold diving. J. Appl. Physiol. 2009, 106, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, A.J.; Lacey, N.C.; Lörz, A.-N.; Rowden, A.A.; Piertney, S.B. The supergiant amphipod Alicella gigantea (Crustacea: Alicellidae) from hadal depths in the Kermadec Trench, SW Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2013, 92, 107–113. [Google Scholar] [CrossRef]
- Wang, K.; Shen, Y.; Yang, Y.; Gan, X.; Liu, G.; Hu, K.; Li, Y.; Gao, Z.; Zhu, L.; Yan, G.; et al. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation. Nat. Ecol. Evol. 2019, 3, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Hooker, S.K.; Baird, R.W. Deep–diving behaviour of the northern bottlenose whale, Hyperoodon ampullatus (Cetacea: Ziphiidae). Proc. R. Soc. Lond. B Biol. Sci. 1999, 266, 671–676. [Google Scholar] [CrossRef]
- Somero, G.N. Adaptations to high hydrostatic pressure. Annu. Rev. Physiol. 1992, 54, 557–577. [Google Scholar] [CrossRef]
- Yancey, P.H.; Gerringer, M.E.; Drazen, J.C.; Rowden, A.A.; Jamieson, A. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc. Natl. Acad. Sci. USA 2014, 111, 4461–4465. [Google Scholar] [CrossRef]
- Mossa, M.; Tolve, U. Flow Visualization in Bubbly Two-Phase Hydraulic Jump. J. Fluids Eng. 1998, 120, 160–165. [Google Scholar] [CrossRef]
- Dietrich, N. Chem and Roll: A Roll and Write Game To Illustrate Chemical Engineering and the Contact Process. J. Chem. Educ. 2019, 96, 1194–1198. [Google Scholar] [CrossRef]
- Dietrich, N.; Kentheswaran, K.; Ahmadi, A.; Teychené, J.; Bessière, Y.; Alfenore, S.; Laborie, S.; Bastoul, D.; Loubière, K.; Guigui, C.; et al. Attempts, Successes, and Failures of Distance Learning in the Time of COVID-19. J. Chem. Educ. 2020, 97, 2448–2457. [Google Scholar] [CrossRef]
- Aymard, A.-L.; Teychené, J.; Laborie, S.; Bertrand, M.; Dietrich, N. Tournament Battle: Gamifying Bibliographic Research and Oral Argumentation Applied to Chemical Engineering Topics. J. Chem. Educ. 2021, 98, 2937–2943. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dietrich, N. Bursting the Bubble: The Fluids Mechanics That Prove Godzilla Would Survive the Plan. J 2025, 8, 12. https://doi.org/10.3390/j8020012
Dietrich N. Bursting the Bubble: The Fluids Mechanics That Prove Godzilla Would Survive the Plan. J. 2025; 8(2):12. https://doi.org/10.3390/j8020012
Chicago/Turabian StyleDietrich, Nicolas. 2025. "Bursting the Bubble: The Fluids Mechanics That Prove Godzilla Would Survive the Plan" J 8, no. 2: 12. https://doi.org/10.3390/j8020012
APA StyleDietrich, N. (2025). Bursting the Bubble: The Fluids Mechanics That Prove Godzilla Would Survive the Plan. J, 8(2), 12. https://doi.org/10.3390/j8020012