Strategies for Studying Acidification and Eutrophication Potentials, a Case Study of 150 Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of the Neighbourhood
2.2. Adaption of the Neighborhood
2.3. Data
2.4. Simulation Tools
- (i)
- DataSome data used in this study were freely selected in the Pleiades tool. They were essentially constituted of data on the structure of the building and the elements involved in thermal calculations and/or energy consumption.
- (ii)
- Software structureThe Pleiades tool has five axes:
- (a)
- Library: In this study, we set: surplus of materials at the site at 5%; default typical service life of families of element: interior and exterior doors at 30 years; global equipment at 20 years; glazing at 30 years; coating at 10 years; distance of transport: site of production towards building site at 100 km and site towards inert discharge finally of life: 20 km [23].
- (b)
- Project: Project management with structure data for any type of project and use of the building with the EQUER engine [31]. In this research, we fixed: loss of electrical network from 9% to 40% according to country. Water system yield: 80%, hot water consumption 40 L/day/person; cold water consumption 100 L/day/person; selective collection of glass: yes; sorted glass: 90%; incinerated waste: 40%; recovery to incineration: yes; substituted energy: gas or fuel oil (depending on the country); recovery yield: 80%; selective collection of paper: yes; sorted paper: 80%; distance from the site to the incinerator: 10 km; distance from the site to the recycling center: 100 km [15,33].
- (c)
- Campaign: Specific seizures PEBN E + C−;
- (d)
- Beginning the calculations and observing the results.
- (e)
- Management of the neighborhood.
2.5. Environmental Cost
2.6. Mitigation of Impacts
3. Results and Discussion
3.1. Analysis of Environmental Impacts in Different Phases of Neighbourhoods
3.2. Analysis of Environmental Impacts per Square Meter Living Space
3.3. Analysis of Photovoltaic Effect on Acidification and Eutrophication Potentials
3.4. Environmental Components and Costs
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ADEME-Agence de l’Environnement et de la Maîtrise de l’Énergie. 2020, pp. 1–10. Available online: https://www.ademe.fr/expertises/consommer-autrement/elements-contexte/impacts-environnementaux (accessed on 19 July 2020).
- Smith, V.; Tilman, G.; Nekola, J. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Eutrophisation des Milieux Aquatiques. Écotoxicolog. 2012, p. 1. Available online: https://ecotoxicologie.fr/eutrophisation-milieux-aquatiques (accessed on 12 October 2020).
- Heijungs, R.; Guinée, J.B.; Huppes, G.; Lankreijer, R.M.; Udo de Haes, H.A.; Wegener Sleeswijk, A.; Ansems, A.M.M.; Egges, P.G.; van Duin, R.; de Goede, H.P. Environmental Life Cycle Assessment of Products: Guide and Backgrounds (Part 1); Centre of Environmental Science: Leiden, The Netherlands, 1992; pp. 5–8. [Google Scholar]
- Dahlgren, L.; Stripple, H.; Oliveira, F. Life Cycle Assessment: Comparative Study of Virgin Fibre Based Packaging Products with Competing Plastic Materials; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2015. [Google Scholar]
- Bouwman, A.F.; van Vuuren, D.P. Global Assessment of Acidification and Eutrophication of Natural Ecosystems; RIVM report 402001 012; National Institute of Public Health and the Environment: Bilthoven, The Netherlands, 1999; pp. 1–12. [Google Scholar]
- Nematchoua, M.K.; Nishimwe, A.M.-R.; Reiter, S. Towards Nearly Zero-Energy Residential Neighbourhoods in the European Union: A Case Study. Renew. Sustain. Energy Rev. 2021, 135, 110198. [Google Scholar] [CrossRef]
- Seppälä, J.; Posch, M.; Johansson, M.; Hettelingh, J.-P. Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator. Int. J. Life Cycle Assess. 2006, 11, 403–416. [Google Scholar] [CrossRef]
- Cai, W.-J.; Hu, X.; Huang, W.-J.; Murrell, M.C.; Lehrter, J.C.; Lohrenz, S.E.; Chou, W.-C.; Zhai, W.; Hollibaugh, J.T.; Wang, Y.; et al. Acidification of subsur-face coastal waters enhanced by eutrophication. Nat. Geosci. 2011, 4, 766–770. [Google Scholar] [CrossRef]
- Analysis of the Life Cycle Impacts and Potential for Avoided Impacts Associated with Single-Family Homes; Environmental Protection Agency: Washington, WA, USA, 2013; 530-R-13-004J.
- Blau, S.; Seneviratne, S. Acidification and Eutrophication in Life Cycle Assessment. Ph.D. Thesis, ETH, Zürich, Switzerland, 1995; pp. 25–50. [Google Scholar]
- Finnveden, G.; Potting, J. Eutrophication—Aquatic and Terrestrial—State-of-the-Art. In International Workshop on Life Cycle Impact Assessment Sophistication; Bare, J.C., Pennington, D.W., Udo de Haes, H.A., Eds.; National Risk Management and Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2000; pp. 1–50. [Google Scholar]
- Potting, J.M.B.; Schopp, W.; Blok, K.; Hauschild, M.Z. Levels of sophistication in life cycle impact assessment of acidification: Points of discussion additional to the presentation. In International Workshop on Life Cycle Impact Assessment Sophistication; Eco-Informa Press: Bayreuth, Germany, 2000; pp. 10–20. [Google Scholar]
- Udo de Haes, H.A.; Jollier, O.; Finnveden, G.; Hauschild, M.; Krewitt, W.; Mueller-Wenk, R. Best available practice regarding impact categories and category indicators in Life Cycle Impact Assessment, Background document for the second working group on Life Cycle Impact Assessment of SETAC-Europe (WIA-2). Int. J. Life Cycle Assess. 1999, 4, 66–74. [Google Scholar] [CrossRef]
- Nematchoua, M.K.; Reiter, S. Evaluation of Bioclimatic Potential for Comfort, Energy Consumption, CO2-emission, and Life Cycle Cost of a Residential Building located in Sub-Saharan Africa; A case Study of eight countries. Solar Energy 2021, 218, 512–524. [Google Scholar] [CrossRef]
- Debacker, W.; Allacker, K.; De Troyer, F.; Janssen, A.; Delem, L.; Peeters, K.; De Nocker, L.; Spirinckx, C.; Van Dessel, J. Final Rapport (Environmental Material Performance of Building Elements Final Report). Public Waste Agency of Flanders (OVAM). pp. 11–35. Available online: http://www.ovam.be/sites/default/files/FILE1349102121400ovor121001_MMG_eindrapport.pdf (accessed on July 2014).
- De Nocker, L. VITO—Wim Debacker; VITO. Annex: Monetisation of the MMG Method (Update 2017); Danny Wille: Mechelen, Belgium, 2018; pp. 1–65. [Google Scholar]
- Teller, J.; Marique, A.F.; Loiseau, V.; Godard, F.; Delbar, C. Référentiel Quartiers Durables (Guides Méthodologiques); SPW, DGO4: Namur, Belgium, 2014; p. 1. [Google Scholar]
- Pérez, M.G.R.; Rey, E. A multi-criteria approach to compare urban renewal scenarios for an existing neighborhood. Case study in Lausanne (Switzerland). Build. Environ. 2013, 65, 58–70. [Google Scholar] [CrossRef]
- Nematchoua, M.K.; Asadi, S.; Reiter, S. Influence of Energy Mix on the Life Cycle of an Eco-Neighborhood, a Case Study of 150 Countries. Renew. Energy 2020, 162, 81–97. [Google Scholar] [CrossRef]
- Site Web of International Energy Statistics. Available online: https://www.eia.gov/beta/international/data/browser/#/?pa=0000000010000000000000000000000000000000000000000000000000u&c=ruvvvvvfvtvnvv1urvvvvfvvvvvvfvvvou20evvvvvvvvvnvvuvo&ct=0&vs=INTL.44-2-BLR-QBTU.A&ord=CR&vo=0&v=H&end=2016 (accessed on 5 July 2020).
- Remund, J.; Muller, S.; Schmutz, M.; Barsotti, D.; Studer, C.; Cattin, R. Global Meteorological Database Version 7 Software and Data for Engineers, Planers and Education; METEOTEST, Fabrikstrasse 14 CH-3012: Bern, Switzerland, 2017; pp. 1–17. [Google Scholar]
- Nematchouaa, M.K.; Teller, J.; Reiter, S. Statistical life cycle assessment of residential buildings in a temperate climate of northern part of Europe. J. Clean. Prod. 2019, 229, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Peuportier, B.; Popovici, E.; Troccmé, M. Analyse du cycle de vie à l’échelle du quartier, bilan et perspectives du projet ADEQUA. Build. Environ. 2013, 3, 17. [Google Scholar]
- Ecoinvent LCI Database. Available online: https://simapro.com/databases/ecoinvent/?gclid=CjwKCAjwsdfZBRAkEiwAh2z65sg-fOlOpNksILo (accessed on 5 June 2019).
- Goedkoop, M.; Spriensma, R. The Eco-Indicator 99: A Damage Oriented Method for Life Cycle Impact Assessment; Pre Consultans B.V.: Amersfoort, The Netherlands, 2000; p. 142. [Google Scholar]
- Guinée, J.; Gorree, M.; Heijungs, R.; Kleijn, R.; de Koning, A.; van Oers, L.; Sleeswijk, A.W.; Suh, S.; Udo de Haes, H.A.; de Bruijn, H.; et al. Handbook on Life Cycle Assessment An Operational Guide to the ISO Standards; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; p. 704. [Google Scholar]
- Byron, A. Ellis. Life Cycle Cost. 2007, pp. 2–8. Available online: http://www.barringer1.com/lcc.xls (accessed on 5 June 2019).
- Colombert, M.; De Chastenet, C.; Diab, Y.; Gobin, C.; Herfray, G.; Jarrin, T.; Trocmé, M. Analyse de cycle de vie à l’échelle du quartier: Un outil d’aide à la décision? Le cas de la ZAC Claude Bernard à Paris (France). Environ. Urbain 2011, 5, c1–c21. [Google Scholar] [CrossRef] [Green Version]
- Tokarik, M.S.; Richman, R.C. Life cycle cost optimization of passive energy efficiency improvements in a Toronto house. Energy Build. 2016, 118, 160–169. [Google Scholar] [CrossRef]
- Nematchoua, M.K.; Noelson, J.C.V.; Saadi, I.; Kenfack, H.; Andrianaharinjaka, A.-Z.F.R.; Ngoumdoum, D.F.; Sela, J.B.; Reiter, S. Application of phase change materials, thermal insulation, and external shading for thermal comfort improvement and cooling energy demand reduction in an office building under different coastal tropical climates. Solar Energy 2020, 207, 458–470. [Google Scholar]
- Salomon, T.; Mikolasek, R.; Peuportier, B. Outil de simulation thermique du bâtiment, COMFIE. Journée Themat. SFT-IBPS 2005, 1–8. [Google Scholar]
- Modeste, K.N.; Orosa, J.A.; Buratti, C.; Obonyo, E.; Rim, D.; Ricciardi, P.; Reiter, S. Comparative Analysis of Bioclimatic Zones, Energy Consumption, CO2 Emission, and Life Cycle Cost of Residential and Commercial Buildings located in a Tropical Region, A case study of the big island of Madagascar. Energy 2020, 202, 117754. [Google Scholar]
- Kameni Nematchoua, M.; Reiter, S. Analysis, reduction and comparison of the life cycle environmental costs of an eco-neighborhood in Belgium. Sustain. Cities Soc. 2019, 48, 101558. [Google Scholar] [CrossRef]
- Kameni Nematchoua, M.; Mahsan, S.; Reiter, S. Strategies and scenarios to reduce energy consumption and CO2 emission in the urban, rural and sustainable neighbourhoods. Sustain. Cities Soc. 2021, 72, 103053. [Google Scholar] [CrossRef]
- Kim, T.H.; Chae, C.U. Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete. Sustainability 2016, 8, 578. [Google Scholar] [CrossRef] [Green Version]
- Laffoley, D.; Baxter, J.M.; Turley, C.; Lagos, N.A. (Eds.) Introduction à l’Acidification de l’Océan: Ce que c’est, ce que Nous Savons et ce qui Peut Arriver; UICN: Gland, Switzerland, 2017; p. 30. [Google Scholar]
- Yang, X.; Wu, X.; Hao, H.; Hem, Z. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 2008, 9, 197–209. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain. Environ. Res. 2020, 30, 6. [Google Scholar] [CrossRef] [Green Version]
- Teow, Y.H.; Chong, M.T.; Ho, K.C.; Mohammad, A.W. Comparative environmental impact evaluation using life cycle assessment approach: A case study of integrated membrane-filtration system for the treatment of aerobically-digested palm oil mill effluent. Sustain. Environ. Res. 2021, 31, 15. [Google Scholar] [CrossRef]
Environmental Indicator (CEN) | Unit | Yearly Value | Value (per m2/Year) |
---|---|---|---|
Acidification | Kg SO2 eq. | 860.92 | 0.09 |
Eutrophication | Kg (PO4)3− eq. | 486.21 | 0.05 |
Heating Requirements (kWh/m2 Year) | ||
---|---|---|
Buildings | Initial Situation | First Floor |
A1 | 15.0 | 14.0 |
A2 | 12.0 | 12.0 |
A3 | 14.0 | 13.0 |
A4 | 19.0 | 20 |
A5 | 20.1 | 20.1 |
A6 | 20.0 | 21.0 |
A7 | 18.0 | 19.0 |
A8 | 12.0 | 11.0 |
A9 | 13.0 | 12.0 |
A10 | 13.0 | 11.0 |
Mean | 15.6 | 15.3 |
Environmental Indicator (CEN) | Unit | Belgium (€/Unit) | Rest of World (€/Unit) |
---|---|---|---|
Acidification | kg SO2 eq. | 1.01 | 0.17 |
Eutrophication | Kg (PO4)3− eq. | 40.00 | 8 |
Environmental Impacts | Year | €/Unit | Construction | Operation | Maintenance | Dismantling | Total Cost |
---|---|---|---|---|---|---|---|
Acidification | 2030 | €/dwelling | 448.2 | 607.1 | 66.3 | 8.8 | 1130.4 |
€/m2 | 0.5 | 0.5 | 0.1 | 0 | 1.2 | ||
€/inhabitant | 20.4 | 27.6 | 3.1 | 0.4 | 51.4 | ||
2050 | €/dwelling | 1137.8 | 1540.9 | 168.4 | 22.4 | 1620.5 | |
€/m2 | 1.4 | 1.7 | 0.4 | 0 | 3.2 | ||
€/inhabitant | 51.7 | 65.5 | 7.6 | 130.4 | |||
Eutrophication | 2030 | €/dwelling | 8850.9 | 15272.4 | 1089.9 | 69.7 | 25,282.9 |
€/m2 | 10.4 | 15.6 | 0 | 0 | 26.0 | ||
€/inhabitant | 402.5 | 694.2 | 49.5 | 3.2 | 1149.2 | ||
2050 | €/dwelling | 22,467.7 | 38,768.4 | 2766.7 | 176.9 | 64,179.7 | |
€/m2 | 26.4 | 39.6 | 0 | 0 | 66.0 | ||
€/inhabitant | 1021.3 | 1762.2 | 125.8 | 8.1 | 2917.3 |
Region | Acidification (€/m2) | Eutrophication (€/m2) |
---|---|---|
China | 2.3 | 48.0 |
USA | 1.9 | 32 |
European Union | 3.0 | 37.6 |
Middle East | 2.7 | 40.8 |
Africa | 3.3 | 45.2 |
Oceania | 2.8 | 40.8 |
America | 2.9 | 40.0 |
Low- and middle-income countries | 2.7 | 48.0 |
High-income countries | 2.2 | 38.3 |
World | 2.4 | 43.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kameni Nematchoua, M. Strategies for Studying Acidification and Eutrophication Potentials, a Case Study of 150 Countries. J 2022, 5, 150-165. https://doi.org/10.3390/j5010012
Kameni Nematchoua M. Strategies for Studying Acidification and Eutrophication Potentials, a Case Study of 150 Countries. J. 2022; 5(1):150-165. https://doi.org/10.3390/j5010012
Chicago/Turabian StyleKameni Nematchoua, Modeste. 2022. "Strategies for Studying Acidification and Eutrophication Potentials, a Case Study of 150 Countries" J 5, no. 1: 150-165. https://doi.org/10.3390/j5010012
APA StyleKameni Nematchoua, M. (2022). Strategies for Studying Acidification and Eutrophication Potentials, a Case Study of 150 Countries. J, 5(1), 150-165. https://doi.org/10.3390/j5010012