The Good, the Bad, and the Invisible with Its Opportunity Costs: Introduction to the ‘J’ Special Issue on “the Impact of Artificial Intelligence on Law”
Abstract
:1. Today’s State-of-the-Art
2. The Underuse of AI
3. The Opportunity Costs of AI
4. This Special Issue
- (i)
- (ii)
- (iii)
- (iv)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barfield, W.; Pagallo, U. Advanced Introduction to the Law and Artificial Intelligence; Elgar: Cheltenham, UK, 2020. [Google Scholar]
- Floridi, L.; Cowls, J.; Beltrametti, M.; Chatila, R.; Chazerand, P.; Dignum, V.; Luetge, C.; Madelin, R.; Pagallo, U.; Rossi, F.; et al. AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds Mach. 2018, 28, 689–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019, 25, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Giger, M.L.; Min, J.K. Artificial Intelligence in Medicine: Technical Basis and Clinical Applications; Academic Press: London, UK, 2021. [Google Scholar]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gailhofer, P.; Schemmel, J.P.; Scherf, C.-S.; Urrutia, C.; Herold, A.; Kohler, A.R.; Braungardt, S. The Role of Artificial Intelligence in the European Green Deal; European Parliament: Luxembourg, Belgium, 2021. [Google Scholar]
- Taddeo, M.; Tsamados, A.; Cowls, J.; Floridi, L. Artificial intelligence and the climate emergency: Opportunities, challenges, and recommendations. One Earth 2021, 4, 776–779. [Google Scholar] [CrossRef]
- EU Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; The European Green Deal: Brussels, Belgium, 2019. [Google Scholar]
- Pagallo, U. Robots of Just War: A Legal Perspective. Philos. Technol. 2011, 24, 307–323. [Google Scholar] [CrossRef]
- Pagallo, U.; Quattrocolo, S. The impact of AI on criminal law, and its two fold procedures. In Research Handbook of the Law of Artificial Intelligence, Barfield, W., Pagallo, U., Eds; Edward Elgar Publishing: Cheltenham, UK, 2019. [Google Scholar]
- Heacock, M.; Kelly, C.B.; Asante, K.A.; Birnbaum, L.S.; Bergman, Å.L.; Bruné, M.-N.; Buka, I.; Carpenter, D.O.; Chen, A.; Huo, X.; et al. E-waste and harm to vulnerable populations: A growing global problem. Environ. Health Perspect. 2016, 124, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, N. From precision agriculture to market manipulation: New frontier in the legal community. Minn. J. Law Sci. Technol. 2016, 17, 489. [Google Scholar]
- Pagallo, U. Three lessons learned for intelligent transport systems that abide by the law. Mind Mach. 2004, 14, 349–379. [Google Scholar]
- Jobin, A.; Ienca, M.; Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef]
- Alonso, E.; Sherman, A.M.; Wallington, T.J.; Everson, M.P.; Field, F.R.; Roth, R.; Kirchain, R. Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environ. Sci. Technol. 2012, 46, 3406–3414. [Google Scholar] [CrossRef]
- Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 2018, 561, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Floridi, L. The European Legislation on AI: A Brief Analysis of its Philosophical Approach. Philos. Technol. 2021, 34, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Durante, M. Computational Power; Routledge: London, UK, 2020. [Google Scholar]
- Pagallo, U. Good onlife governance: On law, spontaneous orders, and design. In The Onlife Manifesto: Being Human in a Hyperconnected Era; Floridi, L., Ed.; Springer: Dordrecht, The Netherlands, 2015; pp. 161–177. [Google Scholar]
- Pagallo, U.; Durante, M. The Pros and Cons of Legal Automation and its Governance. Eur. J. Risk Regul. 2016, 7, 323–334. [Google Scholar] [CrossRef]
- Pagallo, U.; Casanovas, P.; Madelin, R. The middle-out approach: Assessing models of legal governance in data protection, Artificial Intelligence, and the Web of Data. Theory Pract. Legis. 2019, 7, 1–25. [Google Scholar] [CrossRef]
- Pagallo, U.; Bassi, E. The Governance of Unmanned Aircraft Systems (UAS): Aviation Law, Human Rights, and the Free Movement of Data in the EU. Minds Mach. 2020, 30, 439–455. [Google Scholar] [CrossRef]
- Marsden, C. Internet Co-Regulation and Constitutionalism: Towards a More Nuanced View. Available online: https://ssrn.com/abstract=1973328 (accessed on 3 August 2021).
- Renda, A. Artificial Intelligence: Ethics, Governance and Policy Challenges; CEPS: Brussels, Belgium, 2019. [Google Scholar]
- Kaminski, M. Binary governance: Lessons from the GDPR’s approach to algorithmic accountability. South. Calif. Law. Rev. 2019, 92, 1529. [Google Scholar] [CrossRef]
- Poblet, M.; Casanovas, P.; Rodríguez-Doncel, V. Linked Democracy: Foundations, Tools, and Applications; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- European Parliament. Artificial Intelligence: Threats and Opportunities. March 2021. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20200918STO87404/artificial-intelligence-threats-and-opportunities (accessed on 10 September 2021).
- US National Security Commission on Artificial Intelligence. Final Report. 2021. Available online: https://www.nscai.gov/2021-final-report/ (accessed on 10 September 2020).
- Fraser, H.; Coiera, E.; Wong, D. Safety of patient-facing digital symptom checkers. Lancet 2018, 392, 2263–2264. [Google Scholar] [CrossRef] [Green Version]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [Green Version]
- EU Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Rotz, S.; Duncan, E.; Small, M.; Botschner, J.; Dara, R.; Mosby, I.; Reed, M.; Fraser, E.D.G. The Politics of Digital Agricultural Technologies: A Preliminary Review. Sociol. Rural. 2019, 59, 203–229. [Google Scholar] [CrossRef]
- G20. AI Principles. Available online: https://www.g20-insights.org/related_literature/g20-japan-ai-principles/ (accessed on 10 September 2021).
- Du, H.; Heldeweg, M.A. An experimental approach to regulating non-military unmanned aircraft systems. Int. Rev. Law Comput. Technol. 2017, 33, 285–308. [Google Scholar] [CrossRef] [Green Version]
- Pagallo, U. LegalAIze: Tackling the normative challenges of artificial intelligence and robotics through the secondary rules of law. In New Technology, Big Data and the Law. Perspectives in Law, Business and Innovation; Corrales, M., Fenwick, M., Forgó, N., Eds.; Springer: Singapore, 2017; pp. 281–330. [Google Scholar]
- European Commission’s High Level Group of Experts. Liability for Artificial Intelligence and Other Emerging Technologies, Report from the European Commission’s Group of Experts on Liability and New Technologies. Available online: https://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupMeetingDoc&docid=36608 (accessed on 10 September 2021).
- Pagallo, U. From automation to autonomous systems: A legal phenomenology with problems of accountability. In Proceedings of the International Joint Conferences on Artificial Intelligence Organization (IJCAI-17), Melbourne, Australia, 19–25 August 2017; pp. 17–23. [Google Scholar]
- Pagallo, U. The governance of AI and its context-dependency. In The 2020 Yearbook of the Digital Ethics Lab; Cowls, J., Morley, J., Eds.; Springer: Dordrecht, The Netherlands, 2021; pp. 57–68. [Google Scholar]
- European Commission. The Ehealth Stakeholders Group is Relaunched. July 2020. Available online: https://ec.europa.eu/digital-single-market/en/news/ehealth-stakeholder-group-relaunched (accessed on 10 September 2021).
- Wolf, S.; Teitge, J.; Mielke, J.; Schütze, F.; Jaeger, C. The European Green Deal—More Than Climate Neutrali-ty. Intereconomics 2021, 56, 99–107. [Google Scholar] [CrossRef] [PubMed]
- European Parliament. Data Governance Act. June 2021. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/690674/EPRS_BRI(2021)690674_EN.pdf (accessed on 10 September 2021).
- CJEU. Bettati v. Safety Hi-Tech Srl (C-341/95). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A61995CJ0341 (accessed on 14 February 2022).
- European Institute of Innovation and Technology. A European Approach to Artificial Intelligence; EIT KIC Publications: Brussels, Belgium, 2021. [Google Scholar]
- Pesapane, F.; Volonté, C.; Codari, M.; Sardanelli, F. Artificial intelligence as a medical device in radiology: Ethical and regulatory issues in Europe and the United States. Insights Imaging 2018, 9, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Bracchi, D.A.; Mulligan, J.F.; Linnikov, A.; Maslennikov, O.; Lanzavecchia, M.B.; Tantrige, P.; Stasolla, A.; Biondetti, P.; Giuggioli, P.F.; et al. Legal and Regulatory Framework for AI Solutions in Healthcare in EU, US, China, and Russia: New Scenarios after a Pandemic. Radiation 2021, 1, 261–276. [Google Scholar] [CrossRef]
- Bassi, E. European drones regulation: Today’s legal challenges. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; IEEE: Manhattan, NY, USA, 2019; pp. 443–450. [Google Scholar]
- Pagallo, U.; Durante, M. The philosophy of law in an information society. In The Routledge Handbook of Philosophy of Information; Floridi, L., Ed.; Routledge: Abingdon, UK; New York, NY, USA, 2016; pp. 396–407. [Google Scholar]
- Bruns, A.; Harrington, S. Hurcombe, E. Corona? 5G? Or both?’: The dynamics of COVID-19/5G conspiracy theories on Facebook. Media Int. Aust. 2020, 177, 12–29. [Google Scholar] [CrossRef]
- Department of Health of the Australian Government. Stakeholder Engagement Framework. Available online: https://www.health.gov.au/resources/publications/stakeholder-engagement-framework (accessed on 10 September 2021).
- Durante, M. The Democratic Governance of Information Societies. A Critique to the Theory of Stakeholders. Philos. Technol. 2014, 28, 11–32. [Google Scholar] [CrossRef]
- OECD. The Next Production Revolution: Implications for Governments and Business. Available online: https://doi.org/10.1787/9789264271036-en (accessed on 10 September 2021). [CrossRef]
- ITU & WHO. AI4health. Available online: https://en.wikipedia.org/wiki/ITU-WHO_Focus_Group_on_Artificial_Intelligence_for_Health (accessed on 10 September 2021).
- Pagallo, U. Il Dovere Alla Salute; Mimesis: Milan, Italy, 2022. [Google Scholar]
- Stiglitz, J.E. Economics of the Public Sector; Norton: New York, NY, USA, 1986. [Google Scholar]
- Ray, K.N.; Chari, A.V.; Engberg, J.; Bertolet, M.; Mehrotra, A. Opportunity costs of ambulatory medical care in the United States. Am. J. Manag. Care. 2015, 21, 567–574. [Google Scholar] [PubMed]
- University of York’s Centre for Health Economic. Re-Estimating Health Opportunity Costs in the NHS. Available online: https://www.york.ac.uk/che/research/teehta/health-opportunity-costs/re-estimating-health-opportunity-costs/#tab-1 (accessed on 10 September 2021).
- Danzon, P.M.; Drummond, M.F.; Towse, A.; Pauly, M.V. Objectives, budgets, thresholds, and opportunity costs—A health economics approach: An ISPOR special task force report. Value Health 2018, 21, 140–145. [Google Scholar]
- Ochalek, J.; Lomas, J. Reflecting the health opportunity costs of funding decisions within value frameworks: Initial estimates and the need for further research. Clin. Ther. 2020, 42, 44–59.e2. [Google Scholar] [CrossRef] [Green Version]
- Booth, N. On value frameworks and opportunity costs in health technology assessment. Int. J. Technol. Assess. Health Care. 2019, 35, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Anthony, L.F.W.; Kanding, B.; Selvan, R. Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models. SSRN Electron. J. 2020, in press. [Google Scholar]
- Mökander, J.; Floridi, L. Ethics-Based Auditing to Develop Trustworthy AI. Minds Mach. 2021, 31, 323–327. [Google Scholar] [CrossRef]
- Rahimi, K. Digital health and the elusive quest for cost savings. Lancet Digit. Health 2019, 1, e108–e109. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.; Raftery, J. Opportunity cost. BMJ 1999, 318, 1551–1552. [Google Scholar] [CrossRef] [PubMed]
- Pagallo, U. The Laws of Robots: Crimes, Contracts, and Torts; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Badreldine, O.M.; Elbeheiry, N.A.; Haroon, A.N.M.; ElShehaby, S.; Marzook, E.M. AutomaticDiagnosis of Asphyxia Infant Cry Signals Using Wavelet Based Mel Frequency Cepstrum Features. In Proceedings of the 14th International Computer Engineering Conference (ICENCO), Giza, Egypt, 29–30 December 2018. [Google Scholar]
- Adepoju, I.-O.O.; Albersen, B.J.A.; De Brouwere, V.; Van Roosmalen, J.; Zweekhorst, M. mHealth for Clinical Decision-Making in Sub-Saharan Africa: A Scoping Review. JMIR mHealth uHealth 2017, 5, e38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AI-Driven Test System Detects Bacteria in Water. Available online: https://software.intel.com/en-us/articles/ai-driven-test-system-detects-bacteria-in-water (accessed on 10 September 2021).
- Ibrahim, N.; Akhir, N.S.M.; Hassan, F.H. Using clustering and predictive analysis of infected area on Dengue outbreaks in Malaysia. J. Telecommun. Electron. Comput. Eng. 2017, 9, 51–58. [Google Scholar]
- Asher, J. Forecasting Ebola with a regression transmission model. Epidemics 2018, 22, 50–55. [Google Scholar] [CrossRef]
- Pagallo, U. Algo-Rhythms and the Beat of the Legal Drum. Philos. Technol. 2017, 31, 507–524. [Google Scholar] [CrossRef]
- Durante, M. Ethics, Laws, and the Politics of Information; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Bassi, E. From Here to 2023: Civil Drones Operations and the Setting of New Legal Rules for the European Single Sky. J. Intell. Robot. Syst. 2020, 100, 493–503. [Google Scholar] [CrossRef]
- Mancini, J. Data Portability, Interoperability and Digital Platform Competition: OECD Background Paper. June 2021. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3862299 (accessed on 10 September 2021).
- Barfield, W. A Systems and Control Theory Approach for Law and Artificial Intelligence: Demystifying the “Black-Box”. J 2021, 4, 564–576. [Google Scholar] [CrossRef]
- Jaynes, T.L. The Question of Algorithmic Personhood and Being (Or: On the Tenuous Nature of Human Status and Humanity Tests in Virtual Spaces—Why All Souls Are ‘Necessarily’ Equal When Considered as Energy). J 2021, 4, 452–475. [Google Scholar] [CrossRef]
- Billi, M.; Calegari, R.; Contissa, G.; Lagioia, F.; Pisano, G.; Sartor, G.; Sartor, G. Argumentation and Defeasible Reasoning in the Law. J 2021, 4, 897–914. [Google Scholar] [CrossRef]
- Durovic, M.; Watson, J. Nothing to Be Happy about: Consumer Emotions and AI. J 2021, 4, 784–793. [Google Scholar] [CrossRef]
- Ebers, M.; Hoch, V.R.S.; Rosenkranz, F.; Ruschemeier, H.; Steinrötter, B. The European Commission’s Proposal for an Artificial Intelligence Act—A Critical Assessment by Members of the Robotics and AI Law Society (RAILS). J 2021, 4, 589–603. [Google Scholar] [CrossRef]
- Casanovas, P.; de Koker, L.; Hashmi, M. Law, Socio-legal Governance, the Internet of Things and Industry 4.0: A Middle-out/Inside-out Approach. J 2022, 5, 64–91. [Google Scholar] [CrossRef]
- Weber, R.H. Artificial Intelligence ante portas: Reactions of Law. J 2021, 4, 486–499. [Google Scholar] [CrossRef]
- Sovrano, F.; Sapienza, S.; Palmirani, M.; Vitali, F. Metrics, Explainability, and the European AI Act Proposal. J 2022, 5, 126–138. [Google Scholar]
- Trusilo, D.; Burri, T. The Ethical Assessment of Autonomous Systems in Practice. J 2021, 4, 749–763. [Google Scholar] [CrossRef]
- Pagallo, U. Vital, Sophia, and Co.—The quest for the legal personhood of robots. Information 2018, 9, 230. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagallo, U.; Durante, M. The Good, the Bad, and the Invisible with Its Opportunity Costs: Introduction to the ‘J’ Special Issue on “the Impact of Artificial Intelligence on Law”. J 2022, 5, 139-149. https://doi.org/10.3390/j5010011
Pagallo U, Durante M. The Good, the Bad, and the Invisible with Its Opportunity Costs: Introduction to the ‘J’ Special Issue on “the Impact of Artificial Intelligence on Law”. J. 2022; 5(1):139-149. https://doi.org/10.3390/j5010011
Chicago/Turabian StylePagallo, Ugo, and Massimo Durante. 2022. "The Good, the Bad, and the Invisible with Its Opportunity Costs: Introduction to the ‘J’ Special Issue on “the Impact of Artificial Intelligence on Law”" J 5, no. 1: 139-149. https://doi.org/10.3390/j5010011
APA StylePagallo, U., & Durante, M. (2022). The Good, the Bad, and the Invisible with Its Opportunity Costs: Introduction to the ‘J’ Special Issue on “the Impact of Artificial Intelligence on Law”. J, 5(1), 139-149. https://doi.org/10.3390/j5010011