Applicability of Hydrogen Fuel for a Cruise Ship
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldi, F.; Ahlgren, F.; Nguyen, T.-V.; Thern, M.; Andersson, K. Energy and Exergy Analysis of a Cruise Ship. Energies 2018, 11, 2508. [Google Scholar] [CrossRef]
- DNV. Maritime Forecast to 2050. Edition 2024. Available online: https://www.dnv.com/maritime/publications/maritime-forecast/ (accessed on 30 August 2024).
- Hellström, M.; Rabetino, R.; Schwartz, H.; Tsvetkova, A.; Haq, S.H.U. GHG emission reduction measures and alternative fuels in different shipping segments and time horizons—A Delphi study. Mar. Policy 2024, 160, 105997. [Google Scholar] [CrossRef]
- International Maritime Organization IMO. Fourth IMO GHG Study 2020. Report by the International Maritime Organization. Available online: https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx (accessed on 6 October 2022).
- Viana, M.; Hammingh, P.; Colette, A.; Querol, X.; Degraueuwe, B.; de Vlieger, I.; van Aardenne, J. Impact of maritime transport emissions on coastal air quality in Europe. Atmos. Environ. 2014, 90, 96–105. [Google Scholar] [CrossRef]
- Corbett, J.; Winebrake, J.; Green, E.; Kasibhatla, P.; Eyring, V.; Lauer, A. Mortality from ship emissions: A global assessment. Environ. Sci. Technol. 2007, 41, 8512–8518. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.; Burnett, R.; Thun, M.; Calle, E.; Krewski, D.; Ito, K.; Thurston, G. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- International Maritime Organization IMO. Revised GHG Reduction Strategy for Global Shipping Adopted. Available online: https://www.imo.org/en/MediaCentre/PressBriefings/Pages/Revised-GHG-reduction-strategy-for-global-shipping-adopted-.aspx (accessed on 25 January 2024).
- Agarwala, N. Is LNG the solution for decarbonised shipping? J. Int. Marit. Saf. Environ. Aff. Ship. 2022, 6, 158–166. [Google Scholar] [CrossRef]
- Spoof-Tuomi, K.; Niemi, S. Environmental and economic evaluation of fuel choices for short sea shipping. Clean Technol. 2020, 2, 34–52. [Google Scholar] [CrossRef]
- Bae, C.; Kim, J. Alternative fuels for internal combustion engines. Proc. Combust. Inst. 2017, 36, 3389–3413. [Google Scholar] [CrossRef]
- American Bureau of Shipping ABS. Hydrogen as Marine Fuel. Sustainability Whitepaper, June 2021. Available online: https://ww2.eagle.org/content/dam/eagle/publications/whitepapers/hydrogen-as-marine-fuel-whitepaper-21111.pdf (accessed on 19 October 2023).
- Norled, A.S. MF Hydra Sails on Zero-Emission Liquid Hydrogen. Available online: https://www.norled.no/en/mf-hydra-sails-on-zero-emission-liquid-hydrogen/ (accessed on 18 December 2024).
- Energy Observer. Energy Observer Concept, Awarded the European Union’s Innovation Fund for Its Liquid Hydrogen-Powered Container Cargo Ship Project: Energy Observer 2/EO2. Available online: https://energy-observer.imgix.net/documents/PR-EO2-Innovation-Fund-EN-1.pdf (accessed on 18 December 2024).
- Project CHEK. Decarbonizing Shipping. Available online: https://www.projectchek.eu (accessed on 25 April 2024).
- Wärtsilä Corporation. WÄRTSILÄ 46TS-DF. 2022. Available online: https://www.wartsila.com/docs/default-source/product-files/engines/df-engine/wartsila-46ts-df-the-power-to-change.pdf?utm_source=engines&utm_medium=dfengines&utm_term=w46ts-df&utm_content=brochure&utm_campaign=mp-engines-and-generating-sets-brochures (accessed on 23 February 2024).
- Wärtsilä Finland Oy. Wärtsilä 46DF Product Guide, Issue 1/2022. 2022. Available online: https://www.wartsila.com/marine/engine-configurator (accessed on 17 September 2024).
- DNV. Handbook for Hydrogen-Fuelled Vessels, DNV MarHySafe JDP Phase 1, 1st ed. 2021. Available online: https://www.dnv.com/maritime/publications/handbook-for-hydrogen-fuelled-vessels-download/ (accessed on 18 January 2024).
- Van Hoecke, L.; Laffineur, L.; Campe, R.; Perreault, P.; Verbruggen, S.W.; Lenaerts, S. Challenges in the use of hydrogen for maritime applications. Energy Environ. Sci. 2021, 14, 815–843. [Google Scholar] [CrossRef]
- Klebanoff, L.E.; Pratt, J.W.; Madsen, R.T.; Caughlan, S.A.M.; Leach, T.S.; Appelgate, T.B., Jr.; Kelety, S.Z.; Wintervoll, H.-C.; Haugom, G.P.; Teo, A.T.Y. Feasibility of the Zero-V: A Zero-Emission, Hydrogen Fuel-Cell, Coastal Research Vessel. Sandia Report SAND2018-4664. 2018. Available online: https://glosten.com/zero-v-feasibility-study/ (accessed on 25 January 2024).
- Volvo Penta. Volvo Penta Powers Hydrogen Ferry. Available online: https://www.volvopenta.com/about-us/news-page/2023/jun/volvo-penta-and-cmb-tech-collaborate-to-power-the-worlds-first-hydrogen-fueled-commercial-ferry/ (accessed on 26 January 2024).
- ClassNK. ClassNK Issues Approval in Principle (AiP) for Hydrogen-Fueled Vessel. 2023. Available online: https://www.classnk.or.jp/hp/en/hp_news.aspx?id=10422&type=press_release&layout=1 (accessed on 26 January 2024).
- Hydrogeninsight Transport. ‘World first’—Ship with Hydrogen-Powered Two-Stroke Engine Gets Technical Green Light. 20.10.2023. Available online: https://www.hydrogeninsight.com/transport/-world-first-ship-with-hydrogen-powered-two-stroke-engine-gets-technical-green-light/2-1-1538892 (accessed on 26 January 2024).
- International Maritime Organization IMO. 2024. Available online: https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/ccc-10th-session.aspx (accessed on 11 November 2024).
- Mao, X.; Rutherford, D.; Osipova, L.; Comer, B. Refueling Assessment of a Zero-Emission Container Corridor Between China and the United States: Could Hydrogen Replace Fossil Fuels? ICCT Working Paper 2020. Available online: https://theicct.org/wp-content/uploads/2021/06/Zero-emission-container-corridor-hydrogen-3.5.2020.pdf (accessed on 2 February 2024).
- Morales-Ospino, R.; Celzard, A.; Fierro, V. Strategies to recover and minimize boil-off losses during liquid hydrogen storage. Renew. Sustain. Energy Rev. 2023, 182, 113360. [Google Scholar] [CrossRef]
- U.S. Drive. Hydrogen Delivery Technical Team Roadmap. United States Driving Research and Innovation for Vehicle efficiency and Energy Sustainability. Available online: https://www.energy.gov/sites/default/files/2017/08/f36/hdtt_roadmap_July2017.pdf (accessed on 25 November 2021).
- Pratt, W.J.; Klebanoff, L.E. Feasibility of the SF-Breeze: A Zero-Emission, Hydrogen Fuel Cell, High-Speed Passenger Ferry. Sandia National Laboratories. 2016. Available online: https://www.ebdg.com/wp-ebdg-content/uploads/2016/10/SF-BREEZE-SAND2016-9719.pdf (accessed on 11 March 2024).
- Kawasaki Heavy Industries Ltd. Kawasaki Completes Basic Design for World’s Largest Class (11,200-cubic-meter) Spherical Liquefied Hydrogen Storage Tank. 2020. Available online: https://global.kawasaki.com/en/corp/newsroom/news/detail/?f=20201224_8018 (accessed on 9 January 2025).
- DNV. DNV Awards AiP to HD KSOE’s Hydrogen System for Liquefied Hydrogen Carrier. 2023. Available online: https://www.dnv.com/news/dnv-awards-aip-to-hd-ksoe-s-hydrogen-system-for-liquefied-hydrogen-carrier-247109 (accessed on 26 January 2024).
- Alkhaledi, A.N.F.N.R.; Sampath, S.; Pilidis, P. A hydrogen fuelled LH2 tanker ship design. Ships Offshore Struct. 2022, 17, 1555–1564. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, P.; Jeong, B.; Wang, H. Design and optimization of a type-C tank for liquid hydrogen marine transport. Int. J. Hydrogen Energy 2023, 48, 34885–34896. [Google Scholar] [CrossRef]
- Clean Hydrogen Joint Undertaking. Strategic Research and Innovation Agenda 2021–2027. Available online: https://www.clean-hydrogen.europa.eu/system/files/2022-02/Clean%20Hydrogen%20JU%20SRIA%20-%20approved%20by%20GB%20-%20clean%20for%20publication%20%28ID%2013246486%29.pdf (accessed on 12 March 2024).
- Overleaf Project. Towards a New Shift in the Aviation Industry. Available online: https://overleaf-project.eu/ (accessed on 12 March 2024).
- Huo, M.; Sapkal, D.; El-Hannouny, E. Hydrogen Opposed-Piston Engine with Direct Injection, Compression Ignition Combustion. Available online: https://achatespower.com/wp-content/uploads/2023/11/Hydrogen-Opposed-Piston-Engine-with-Direct-Injection-Compression-Ignition-Combustion.pdf (accessed on 2 February 2024).
- Niemi, S. Gas Engines in the Light of the 21st CIMAC Congress; Helsinki University of Technology: Otaniemi, Finland, 1995; p. 40. ISBN 951-22-2841-6. [Google Scholar]
- Niemi, S. Survey of Modern Power Plants Driven by Diesel and Gas Engines; VTT Tiedotteita-Meddelanden-Research Notes 1860; Technical Research Centre of Finland: Espoo, Finland, 1997; p. 70. ISBN 951-38-5155-9/951-38-5156-7. Available online: https://cris.vtt.fi/en/publications/survey-of-modern-power-plants-driven-by-diesel-and-gas-engines (accessed on 1 February 2024).
- Schneider, T. “It is critical to find alternative low- or no-emission solutions”. An interview of Mr. Scott Baker. MTZ Worldw. 2023, 84, 24–27. Available online: https://link.springer.com/article/10.1007/s38313-022-1421-4 (accessed on 2 February 2024). [CrossRef]
Engine Load (%) | Fuel Conversion Efficiency (%) |
---|---|
50 | 46 |
75 | 48 |
85 | 49 |
100 | 49 |
Parameter | Value |
---|---|
Maximum number of people onboard | 8034 |
Voyage distance | 1472 nm |
Main engine fuel (HFO) | 530 t |
Boiler fuel | 9 t |
Propulsion transformer energy consumption | 1082 MWh |
Hotel transformer energy consumption | 1396 MWh |
Total fuel energy consumption | 6049 MWh |
Powerplant efficiency (average) | 41.7% |
10-Day Itinerary | Energy [MWh] | Fuel Mass [tons] | Total Volume of Fuel Storage Needed [m3] |
---|---|---|---|
HFO and MGO | 8641 | 780 | 806 to 830 |
LH2 | 8641 | 260 | 3700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mäkelä, M.; Niemi, S.; Nuortila, C.; Nyystilä, L. Applicability of Hydrogen Fuel for a Cruise Ship. Clean Technol. 2025, 7, 6. https://doi.org/10.3390/cleantechnol7010006
Mäkelä M, Niemi S, Nuortila C, Nyystilä L. Applicability of Hydrogen Fuel for a Cruise Ship. Clean Technologies. 2025; 7(1):6. https://doi.org/10.3390/cleantechnol7010006
Chicago/Turabian StyleMäkelä, Maarit, Seppo Niemi, Carolin Nuortila, and Lauri Nyystilä. 2025. "Applicability of Hydrogen Fuel for a Cruise Ship" Clean Technologies 7, no. 1: 6. https://doi.org/10.3390/cleantechnol7010006
APA StyleMäkelä, M., Niemi, S., Nuortila, C., & Nyystilä, L. (2025). Applicability of Hydrogen Fuel for a Cruise Ship. Clean Technologies, 7(1), 6. https://doi.org/10.3390/cleantechnol7010006