Assessment of Scarcity, Toxicity, and Circularity Risks in the European Thermoelectric Market: A Focus on Tellurium, Antimony, Bismuth, and Lead
Abstract
:1. Introduction
2. Materials and Methods
2.1. Demand and Resource Scarcity
Data | Sources |
---|---|
CAGR Projection | Market Report [38,42] |
Thermoelectric Market Share | Market Report [41] |
European Thermoelectric Market Share | Market Report [41] |
Dominant Thermoelectric Materials in Europe | Market Report [38] |
Bulk Material Share | [39] |
2.2. Chemical and Political Context
2.3. Circularity
3. Results
3.1. Demand and Resource Scarcity
3.2. Chemical and Political Context
3.3. Circularity
4. Discussion
4.1. Mineral Demand and Resource Scarcity
4.2. Supply Risk
4.3. Chemical Safety
4.4. Potential for Novel TE Materials
4.5. Circularity and Sustainable Design
4.6. Implications
5. Conclusions
- i.
- Data availability and accessibility for critical raw materials must be enhanced. Address this critical knowledge gap by prioritizing the collection of accurate data on material reserves, particularly for high-risk elements like tellurium, which will be essential for better forecasting, risk assessment, and strategic planning for resource management.
- ii.
- Accelerated development of alternative materials is necessary. Investment in research to develop and scale sustainable alternatives to TE materials reliant on CRMs will be essential to secure supply chains and mitigate geopolitical vulnerabilities.
- iii.
- Circular supply chain systems need to be implemented. Establish robust closed-loop systems for material recycling and reuse to reduce environmental impact and alleviate resource scarcity for the TE market is essential. Advancing recycling technologies and incentivizing circular practices will be key to sustainable TE market growth.
- iv.
- Advance safe and sustainable material design. The incorporation of efficient manufacturing techniques and life cycle design principles to optimize material usage is required.
- v.
- Mitigate geopolitical and environmental risks. Developing strategies to diversify supply chains and reduce reliance on single-country sources should be prioritized. Enhancing resilience to geopolitical and economic disruptions will safeguard access to critical materials, the demand for which could be reduced through the introduction of novel materials, but is unlikely to be eliminated.
- vi.
- Promote policy and economic incentives. Policies that prioritize sustainable resource management and provide economic incentives for adopting circular practices in the TE industry need promoting and perhaps strengthening. These measures should encourage industry-wide alignment with long-term sustainability goals.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muhtaroglu, A.; Von Jouanne, A.; Yokochi, A. Hybrid thermoelectric conversion for enhanced efficiency in mobile platforms. J. Micromech. Microeng. 2007, 17, 1767. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, T.; Caillat, T.; Mori, T. Keynote Review of Latest Advances in Thermoelectric Generation Materials, Devices, and Technologies 2022. Energies 2022, 15, 7307. [Google Scholar] [CrossRef]
- D’Angelo, M.; Galassi, C.; Lecis, N. Thermoelectric Materials and Applications: A Review. Energies 2023, 16, 6409. [Google Scholar] [CrossRef]
- Ando Junior, O.H.; Maran, A.L.O.; Henao, N.C. A review of the development and applications of thermoelectric microgenerators for energy harvesting. Renew. Sustain. Energy Rev. 2018, 91, 376–393. [Google Scholar] [CrossRef]
- Sharma, S.; Dwivedi, V.K.; Pandit, S.N. A Review of Thermoelectric Devices for Cooling Applications. Int. J. Green Energy 2014, 11, 899–909. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Cahaya, A.; Tretiakov, O.A.; Bauer, G. Spin Seebeck Power Conversion. IEEE Trans. Magn. 2015, 51, 0800414. [Google Scholar] [CrossRef]
- Molki, A. Simple Demonstration of the Seebeck Effect. Sci. Educ. Rev. 2010, 9, 103–107. [Google Scholar]
- Ohtaki, M. Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source. J. Ceram. Soc. Jpn. 2011, 119, 770–775. [Google Scholar] [CrossRef]
- Schaumann, J.; Loor, M.; Ünal, D.; Mudring, A.; Heimann, S.; Hagemann, U.; Schulz, S.; Maculewicz, F.; Schierning, G. Improving the zT value of thermoelectrics by nanostructuring: Tuning the nanoparticle morphology of Sb2Te3 by using ionic liquids. Dalton Trans. 2017, 46, 656–668. [Google Scholar] [CrossRef] [PubMed]
- Swarnkar, N.; Scholar, P.; Physics, A.; Vishwavidhyalaya, R.; Bhopal, M. Review of Thermoelectric Materials and Its Properties with Applications. J. Emerg. Technol. Innov. Res. 2019, 6. [Google Scholar]
- LeBlanc, S. Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications. Sustain. Mater. Technol. 2014, 1, 26–35. [Google Scholar] [CrossRef]
- Balva, M.; Legeai, S.; Garoux, L.; Leclerc, N.; Meux, E. Dismantling and chemical characterization of spent Peltier thermoelectric devices for antimony, bismuth and tellurium recovery. Environ. Technol. 2017, 38, 791–797. [Google Scholar] [CrossRef]
- Yang, J. Potential applications of thermoelectric waste heat recovery in the automotive industry. In Proceedings of the 24th International Conference on Thermoelectrics (ICT 2005), Clemson, SC, USA, 19–23 June 2005; pp. 170–174. [Google Scholar]
- Burnete, N.V.; Mariasiu, F.; Depcik, C.; Barabas, I.; Moldovanu, D. Review of thermoelectric generation for internal combustion engine waste heat recovery. Prog. Energy Combust. Sci. 2022, 91, 101009. [Google Scholar] [CrossRef]
- Finn, P.A.; Asker, C.; Wan, K.; Bilotti, E.; Fenwick, O.; Nielsen, C.B. Thermoelectric materials: Current status and future challenges. Front. Electron. Mater. 2021, 1, 677845. [Google Scholar] [CrossRef]
- Zevalkink, A.; Toberer, E.S.; Zeier, W.G.; Flage-Larsen, E.; Snyder, G.J. Ca3AlSb3: An inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy Environ. Sci. 2011, 4, 510–518. [Google Scholar] [CrossRef]
- Soleimani, Z.; Zoras, S.; Ceranic, B.; Shahzad, S.; Cui, Y. The cradle to gate life-cycle assessment of thermoelectric materials: A comparison of inorganic, organic and hybrid types. Sustain. Energy Technol. Assess. 2021, 44, 101073. [Google Scholar] [CrossRef]
- Caballero-Calero, O.; Ares, J.R.; Martín-González, M. Environmentally Friendly Thermoelectric Materials: High Performance from Inorganic Components with Low Toxicity and Abundance in the Earth. Adv. Sustain. Syst. 2021, 5, 2100095. [Google Scholar] [CrossRef]
- Mitrica, D.; Badea, I.C.; Serban, B.A.; Olaru, M.T.; Vonica, D.; Burada, M.; Piticescu, R.-R.; Popov, V.V. Complex Concentrated Alloys for Substitution of Critical Raw Materials in Applications for Extreme Conditions. Materials 2021, 14, 1197. [Google Scholar] [CrossRef]
- Newsmantraa. Thermoelectric Generators Market: The Thermoelectric Generators Market Size Is to Attain a Valuation of USD 1.46 Billion by 2033 at a 11.8% CAGR. Available online: https://www.digitaljournal.com/pr/news/thermoelectric-generators-market-the-thermoelectric-generators-market-size-is-to-attain-a-valuation-of-usd-1-46-billion-by-2033-at-a-11-8-cagr#ixzz7x8lkurTs (accessed on 1 August 2024).
- European Commission. Report on Critical Raw Materials for the EU; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Moss, R.L.; Tzimas, E.; Kara, H.; Willis, P.; Kooroshy, J. The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies. Energy Policy 2013, 55, 556–564. [Google Scholar] [CrossRef]
- Küblböck, K. The EU Raw Materials Initiative: Scope and Critical Assessment; Austrian Research Foundation for International Development: Vienna, Austria, 2013. [Google Scholar]
- Domenech, T.; Bahn-Walkowiak, B. Transition towards a resource efficient circular economy in Europe: Policy lessons from the EU and the member states. Ecol. Econ. 2019, 155, 7–19. [Google Scholar] [CrossRef]
- Santillán-Saldivar, J.; Cimprich, A.; Shaikh, N.; Laratte, B.; Young, S.B.; Sonnemann, G. How recycling mitigates supply risks of critical raw materials: Extension of the geopolitical supply risk methodology applied to information and communication technologies in the European Union. Resour. Conserv. Recycl. 2021, 164, 105108. [Google Scholar] [CrossRef]
- Girtan, M.; Wittenberg, A.; Grilli, M.L.; de Oliveira, D.P.S.; Giosuè, C.; Ruello, M.L. The Critical Raw Materials Issue between Scarcity, Supply Risk, and Unique Properties. Materials 2021, 14, 1826. [Google Scholar] [CrossRef]
- Rabe, W.; Kostka, G.; Stegen, K.S. China’s supply of critical raw materials: Risks for Europe’s solar and wind industries? Energy Policy 2017, 101, 692–699. [Google Scholar] [CrossRef]
- Manfredi, S.; Hamor, T.; Wittmer, D.; Nuss, P.; Solar, S.; Latunussa, C.; Tecchio, P.; Nita, V.; Vidal, B.; Blengini, G. Raw Materials Information System (RMIS): Towards v2. 0; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Riva Sanseverino, E.; Luu, L.Q. Critical Raw Materials and Supply Chain Disruption in the Energy Transition. Energies 2022, 15, 5992. [Google Scholar] [CrossRef]
- Gemechu, E.D.; Helbig, C.; Sonnemann, G.; Thorenz, A.; Tuma, A. Import-based indicator for the geopolitical supply risk of raw materials in life cycle sustainability assessments. J. Ind. Ecol. 2016, 20, 154–165. [Google Scholar] [CrossRef]
- Bobba, S.; Claudiu, P.; Huygens, D.; Alves Dias, P.; Gawlik, B.; Tzimas, E.; Wittmer, D.; Nuss, P.; Grohol, M.; Saveyn, H.; et al. Report on Critical Raw Materials and the Circular Economy; European Commision: Brussels, Belgium, 2018. [Google Scholar]
- David, M.; Lyth, S.M.; Lindner, R.; Harrington, G.F. Critical Raw Materials. In Future-Proofing Fuel Cells: Critical Raw Material Governance in Sustainable Energy; David, M., Lyth, S.M., Lindner, R., Harrington, G.F., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 15–33. [Google Scholar]
- Ibn-Mohammed, T.; Koh, S.C.L.; Mustapha, K.B.; Smith, L.; Acquaye, A.; Iyasara, A.C.; Hussain, F.; Morley, N.; Sinclair, D.C.; Randall, C.A.; et al. Techno-environmental analysis of material substitution in thermoelectric modules: Non-oxide (bismuth telluride alloys) vs. oxide-based (lanthanum-doped strontium titanate and calcium cobaltite) materials. Energy Convers. Manag. X 2023, 19, 100395. [Google Scholar] [CrossRef]
- Kamp Albæk, J.; Shahbazi, S.; McAloone, T.C.; Pigosso, D.C. Circularity evaluation of alternative concepts during early product design and development. Sustainability 2020, 12, 9353. [Google Scholar] [CrossRef]
- Martins, F.F.; Castro, H. Raw material depletion and scenario assessment in European Union–A circular economy approach. Energy Rep. 2020, 6, 417–422. [Google Scholar] [CrossRef]
- Maximize-Market-Research. Thermoelectric Generators Market: Global Industry Analysis And Forecast (2023 to 2029); Maximize-Market-Research: Pune, India, 2023. [Google Scholar]
- LeBlanc, S.; Yee, S.K.; Scullin, M.L.; Dames, C.; Goodson, K.E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sustain. Energy Rev. 2014, 32, 313–327. [Google Scholar] [CrossRef]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Exactitude-Consultancy. Thermoelectric Generator Market Overview; Exactitude-Consultancy: Pune, India, 2022. [Google Scholar]
- Visiongain. Thermoelectric Market Forecast 2021–2031; Visiongain: London, UK, 2022. [Google Scholar]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Zhang, Y.; Heo, Y.-J.; Park, M.; Park, S.-J. Recent Advances in Organic Thermoelectric Materials: Principle Mechanisms and Emerging Carbon-Based Green Energy Materials. Polymers 2019, 11, 167. [Google Scholar] [CrossRef]
- Singh, N.; Duan, H.; Tang, Y. Toxicity evaluation of E-waste plastics and potential repercussions for human health. Environ. Int. 2020, 137, 105559. [Google Scholar] [CrossRef]
- Zahoor, Z.; Latif, M.I.; Khan, I.; Hou, F. Abundance of natural resources and environmental sustainability: The roles of manufacturing value-added, urbanization, and permanent cropland. Environ. Sci. Pollut. Res. 2022, 29, 82365–82378. [Google Scholar] [CrossRef]
- Jaldurgam, F.F.; Ahmad, Z.; Touati, F. Low-Toxic, Earth-Abundant Nanostructured Materials for Thermoelectric Applications. Nanomaterials 2021, 11, 895. [Google Scholar] [CrossRef]
- US-EPA. Comptox Chemicals Dashboard; US-EPA: Washington, DC, USA, 2024. [Google Scholar]
- Peña, L.V.D.L.; Taelman, S.E.; Préat, N.; Boone, L.; Van der Biest, K.; Custódio, M.; Lucas, S.H.; Everaert, G.; Dewulf, J. Towards a comprehensive sustainability methodology to assess anthropogenic impacts on ecosystems: Review of the integration of Life Cycle Assessment, Environmental Risk Assessment and Ecosystem Services Assessment. Sci. Total Environ. 2022, 808, 152125. [Google Scholar] [CrossRef]
- Tan, L.; Mandley, S.J.; Peijnenburg, W.; Waaijers-van der Loop, S.L.; Giesen, D.; Legradi, J.B.; Shen, L. Combining ex-ante LCA and EHS screening to assist green design: A case study of cellulose nanocrystal foam. J. Clean. Prod. 2018, 178, 494–506. [Google Scholar] [CrossRef]
- EU-Directive. Regulation (EC) No 1272/2008—Classification, Labelling and Packaging of Substances and Mixtures (CLP); European Commision: Brussels, Belgium, 2021. [Google Scholar]
- HSA. Safety, Health and Welfare at Work (Chemical Agents) Regulations 2001 to 2021; HSA: Tokyo, Japan, 2021. [Google Scholar]
- ECHA. Candidate List of Substances of Very High Concern for Authorisation; ECHA: Helsinki, Finland, 2024. [Google Scholar]
- Canadian-EPA. Domestic Substances List. Available online: https://pollution-waste.canada.ca/substances-search/Substance?lang=en (accessed on 1 August 2024).
- ECHA. European INventory of Existing Commercial Chemical Substances; ECHA: Helsinki, Finland, 2008. [Google Scholar]
- Norman-Network. WATER|NORMAN: French Monitoring List; NORMAN Network: Verneuil-en-Halatte, France, 2024. [Google Scholar]
- Norman-Network. NORMAN: REACH Chemicals List Provided to NORMAN Network; NORMAN Network: Verneuil-en-Halatte France, 2015. [Google Scholar]
- Koyamparambath, A.; Santillán-Saldivar, J.; McLellan, B.; Sonnemann, G. Supply risk evolution of raw materials for batteries and fossil fuels for selected OECD countries (2000–2018). Resour. Policy 2022, 75, 102465. [Google Scholar] [CrossRef]
- Santillán-Saldivar, J.; Gemechu, E.; Muller, S.; Villeneuve, J.; Young, S.B.; Sonnemann, G. An improved resource midpoint characterization method for supply risk of resources: Integrated assessment of Li-ion batteries. Int. J. Life Cycle Assess. 2022, 27, 457–468. [Google Scholar] [CrossRef]
- Kaufmann, D.; Kraay, A.; Mastruzzi, M. The Worldwide Governance Indicators: Methodology and Analytical Issues. Hague J. Rule Law 2011, 3, 220–246. [Google Scholar] [CrossRef]
- European Commission. List of Critical Raw Materials for the EU; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- European Commission. Critical Raw Materials Resilience: Charting a Path Towards Greater Security and Sustainability; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Bahrami, A.; Schierning, G.; Nielsch, K. Waste recycling in thermoelectric materials. Adv. Energy Mater. 2020, 10, 1904159. [Google Scholar] [CrossRef]
- Cullen, J.M. Circular economy: Theoretical benchmark or perpetual motion machine? J. Ind. Ecol. 2017, 21, 483–486. [Google Scholar] [CrossRef]
- Zante, G.; Daskalopoulou, E.; Elgar, C.E.; Rivera, R.M.; Hartley, J.M.; Simpson, K.; Tuley, R.; Kettle, J.; Abbott, A.P. Targeted recovery of metals from thermoelectric generators (TEGs) using chloride brines and ultrasound. RSC Sustain. 2023, 1, 1025–1034. [Google Scholar] [CrossRef]
- Velázquez-Martinez, O.; Kontomichalou, A.; Santasalo-Aarnio, A.; Reuter, M.; Karttunen, A.J.; Karppinen, M.; Serna-Guerrero, R. A recycling process for thermoelectric devices developed with the support of statistical entropy analysis. Resour. Conserv. Recycl. 2020, 159, 104843. [Google Scholar] [CrossRef]
- Haas, W.; Krausmann, F.; Wiedenhofer, D.; Heinz, M. How circular is the global economy?: An assessment of material flows, waste production, and recycling in the European Union and the world in 2005. J. Ind. Ecol. 2015, 19, 765–777. [Google Scholar] [CrossRef]
- EllenMacarthurFoundation. Methods. Available online: https://www.ellenmacarthurfoundation.org/circular-design-guide/methods# (accessed on 1 July 2024).
- GeoPolRisk. GeoPolRisk Tool. Available online: https://geopolrisk.org/ (accessed on 1 July 2024).
- Cooper, R.G.; Harrison, A.P. The exposure to and health effects of antimony. Indian J. Occup. Environ. Med. 2009, 13, 3–10. [Google Scholar] [CrossRef]
- Bolan, N.; Kumar, M.; Singh, E.; Kumar, A.; Singh, L.; Kumar, S.; Keerthanan, S.; Hoang, S.A.; El-Naggar, A.; Vithanage, M. Antimony contamination and its risk management in complex environmental settings: A review. Environ. Int. 2022, 158, 106908. [Google Scholar] [CrossRef]
- Wang, R.; Li, H.; Sun, H. Bismuth: Environmental pollution and health effects. Encycl. Environ. Health 2019, 415–423. [Google Scholar] [CrossRef]
- Rice, D. The health effects of environmental lead exposure: Closing Pandora’s box. In Behavioral Measures of Neurotoxicity: Report of a Symposium; National Academies Press: Washington, DC, USA, 1990; pp. 243–267. [Google Scholar]
- Raj, K.; Das, A.P. Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environ. Chem. Ecotoxicol. 2023, 5, 79–85. [Google Scholar] [CrossRef]
- Gerhardsson, L. Tellurium. In Handbook on the Toxicology of Metals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 783–794. [Google Scholar]
- US-EPA. Antimony. CompTox Chemicals Dashboard v2.4.1; US-EPA: Washington, DC, USA, 2022. [Google Scholar]
- Ohtaki, M. Oxide Thermoelectric Materials for Heat-to-Electricity Direct Energy Conversion. Newslett. Kyushu Univ. G-COE Program Nov. Carbon Resour. Sci. 2010, 3, 8. [Google Scholar]
- Snyder, G.J. Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 2004, 84, 2436–2438. [Google Scholar] [CrossRef]
- Zhang, Q.; Liao, J.; Tang, Y.; Gu, M.; Ming, C.; Qiu, P.; Bai, S.; Shi, X.; Uher, C.; Chen, L. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci. 2017, 10, 956–963. [Google Scholar] [CrossRef]
- USGS. Mineral Commodity Summaries; USGS: Riston, VA, USA, 2009. [Google Scholar]
- Fowler, B.A.; Sullivan, D.W.; Sexton, M.J. Chapter 31—Bismuth. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 655–666. [Google Scholar]
- Salazar, D.; Yakoumis, I.; Grilli, M.L. Substitution and Recycling of Critical Raw Materials in Optoelectronic, Magnetic and Energy Devices III. Phys. Status Solidi 2022, 219, 2200259. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef]
- Gayner, C.; Kar, K.K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 2016, 83, 330–382. [Google Scholar] [CrossRef]
- Toshima, N. Recent progress of organic and hybrid thermoelectric materials. Synth. Met. 2017, 225, 3–21. [Google Scholar] [CrossRef]
- Bisht, N.; More, P.; Khanna, P.K.; Abolhassani, R.; Mishra, Y.K.; Madsen, M. Progress of hybrid nanocomposite materials for thermoelectric applications. Mater. Adv. 2021, 2, 1927–1956. [Google Scholar] [CrossRef]
- Jochheim, U. EU-China Trade Relations; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Noble, P. Impacts and Opportunities for Developing Economies Under the European Critical Raw Materials Regulation; Circular Innovation Lab: Copenhagen, Denmark, 2023. [Google Scholar]
- HumanRightsWatch. When We Moved, They Shot; HumanRightsWatch: New York, NY, USA, 2023. [Google Scholar]
- Blengini, G.A.; El Latunussa, C.; Eynard, U.; de Matos, C.T.; Wittmer, D.; Georgitzikis, K.; Pavel, C.; Carrara, S.; Mancini, L.; Unguru, M.; et al. Study on the EU’s List of Critical Raw Materials; Publications Office of the EU: Luxembourg, 2020. [Google Scholar]
- Legaz, B.V.; Unguru, M.; Mancini, L.; Latunussa, C.; Hamor, T.; Ardente, F.; Mathieux, F.; Nita, V.; de Matos, C.T.; Plazzotta, B.; et al. European Commission, EIP on Raw Materials, Raw Materials Scoreboard; European Commission, ERA-MIN: Brussel, Belgium, 2021. [Google Scholar]
- US-EPA. Toxics Release Inventory. In Guidance for Reporting the Lead and Lead Compounds Category; US-EPA: Washington, DC, USA, 2019. [Google Scholar]
- Assi, M.A.; Hezmee, M.N.M.; Sabri, M.Y.M.; Rajion, M.A. The detrimental effects of lead on human and animal health. Vet. World 2016, 9, 660. [Google Scholar] [CrossRef]
- Tao, Y.; Su, H.; Li, H.; Zhu, Y.; Shi, D.; Wu, F.; Sun, F. Ecological and human health risk assessment of antimony (Sb) in surface and drinking water in China. J. Clean. Prod. 2021, 318, 128514. [Google Scholar] [CrossRef]
- ECHA. Understanding REACH. Available online: https://echa.europa.eu/regulations/reach/understanding-reach (accessed on 15 November 2024).
- Donchevskaya, E. REACH (Registration, Evaluation, Authorization and Restriction of Chemicals). Available online: https://essuir.sumdu.edu.ua/bitstreamdownload/123456789/13426/1/Donchevskaya.pdf;jsessionid=5DE6D1B5FB37F89D6B7C7D07ACE62839 (accessed on 15 November 2024).
- Ingre-Khans, E.; Ågerstrand, M.; Beronius, A.; Rudén, C. Toxicity studies used in registration, evaluation, authorisation and restriction of chemicals (REACH): How accurately are they reported? Integr. Environ. Assess. Manag. 2019, 15, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Széchy, A. Impact Assessment in the European Union: The Example of the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). In Environmental Management Accounting and Supply Chain Management; Springer: Berlin/Heidelberg, Germany, 2011; pp. 353–366. [Google Scholar] [CrossRef]
- Morita, T.; Morikawa, K. Expert review for GHS classification of chemicals on health effects. Ind. Health 2011, 49, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Freer, R.; Powell, A.V. Realising the potential of thermoelectric technology: A Roadmap. J. Mater. Chem. C 2020, 8, 441–463. [Google Scholar] [CrossRef]
- Shi, X.-L.; Zou, J.; Chen, Z.-G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar] [CrossRef]
- Singh, R. Advances in the applications of thermoelectric materials. In Thermoelectricity and Advanced Thermoelectric Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 313–337. [Google Scholar]
- Fan, Z.; Du, D.; Guan, X.; Ouyang, J. Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface. Nano Energy 2018, 51, 481–488. [Google Scholar] [CrossRef]
- Brown, S.R.; Kauzlarich, S.M.; Gascoin, F.; Snyder, G.J. Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation. Chem. Mater. 2006, 18, 1873–1877. [Google Scholar] [CrossRef]
- EMF. What Is a Circular Economy? Available online: https://www.ellenmacarthurfoundation.org/topics/circular-economy-introduction/overview (accessed on 20 September 2024).
- European Commission. Safe and Sustainable by Design. Available online: https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/key-enabling-technologies/chemicals-and-advanced-materials/safe-and-sustainable-design_en#test-the-framework (accessed on 20 October 2024).
- Gutiérrez Moreno, J.J.; Cao, J.; Fronzi, M.; Assadi, M.H.N. A review of recent progress in thermoelectric materials through computational methods. Mater. Renew. Sustain. Energy 2020, 9, 16. [Google Scholar] [CrossRef]
- Kawajiri, K.; Kishita, Y.; Shinohara, Y. Life Cycle Assessment of Thermoelectric Generators (TEGs) in an Automobile Application. Sustainability 2021, 13, 13630. [Google Scholar] [CrossRef]
- Babu, C.; Ponnambalam, P. The role of thermoelectric generators in the hybrid PV/T systems: A review. Energy Convers. Manag. 2017, 151, 368–385. [Google Scholar] [CrossRef]
- Castañeda, M.; Gutiérrez-Velásquez, E.I.; Aguilar, C.E.; Monteiro, S.N.; Amell, A.A.; Colorado, H.A. Sustainability and Circular Economy Perspectives of Materials for Thermoelectric Modules. Sustainability 2022, 14, 5987. [Google Scholar] [CrossRef]
Category | Antimony | Bismuth | Lead | Tellurium |
---|---|---|---|---|
Demand (high/med/low) | Low | Med | Low | High |
Resource scarcity (high/med/low) | Low | Med | Low | High |
Safety risk (high/med/low) | Med | Low | High | Med |
GeoPol risk (high/med/low) | Med | Low | Low | unknown |
Overall risk to market | Low-Med | Low-Med | Low | High |
Substance | EC NO. | CAS NO. | CLP (a) | SHW (b) | REACH (c) | DSL (d) | ECCS (e) | FML (f) | NN (g) |
---|---|---|---|---|---|---|---|---|---|
Antimony | 231-146-5 | 7440-36-0 | + | + | - | + | + | + | + |
Bismuth | 231-177-4 | 7440-69-9 | + | - | - | + | + | - | + |
Bismuth telluride | 215-135-2 | 1304-82-1 | - | + | - | - | + | - | - |
Lead | 231-100-4 | 7439-92-1 | + | + | + | + | + | - | + |
Tellurium | 236-813-4 | 13494-80-9 | + | + | - | + | + | - | + |
Required Data | Materials | |||
---|---|---|---|---|
Antimony | Bismuth | Lead | Tellurium | |
Recovered EOL material (Mt) | 0.48 | 3.30 | 0.54 | 2.84 |
Total material demand (Mt) | 0.69 | 3.51 | 0.77 | 4.05 |
α | 0.7 | 0.94 | 0.7 | 0.7 |
Energy required to recover material (MJ/kg) | 0.54 | 0.54 | 0.54 | 0.54 |
Energy required for primary production (MJ/kg) from virgin ore | 55 | 55 | 30 | 55 |
β | 0.99 | 0.99 | 0.98 | 0.99 |
Circularity index (CI) | 0.69 | 0.93 | 0.69 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamil, U.; Holden, N.M. Assessment of Scarcity, Toxicity, and Circularity Risks in the European Thermoelectric Market: A Focus on Tellurium, Antimony, Bismuth, and Lead. Clean Technol. 2025, 7, 5. https://doi.org/10.3390/cleantechnol7010005
Jamil U, Holden NM. Assessment of Scarcity, Toxicity, and Circularity Risks in the European Thermoelectric Market: A Focus on Tellurium, Antimony, Bismuth, and Lead. Clean Technologies. 2025; 7(1):5. https://doi.org/10.3390/cleantechnol7010005
Chicago/Turabian StyleJamil, Unza, and Nicholas M. Holden. 2025. "Assessment of Scarcity, Toxicity, and Circularity Risks in the European Thermoelectric Market: A Focus on Tellurium, Antimony, Bismuth, and Lead" Clean Technologies 7, no. 1: 5. https://doi.org/10.3390/cleantechnol7010005
APA StyleJamil, U., & Holden, N. M. (2025). Assessment of Scarcity, Toxicity, and Circularity Risks in the European Thermoelectric Market: A Focus on Tellurium, Antimony, Bismuth, and Lead. Clean Technologies, 7(1), 5. https://doi.org/10.3390/cleantechnol7010005