Numerical Investigation for Power Generation by Microbial Fuel Cells Treating Municipal Wastewater in Guelph, Canada
Abstract
:1. Introduction
1.1. Research Motivation
1.2. Current Wastewater Treatment Method
1.3. Microbial Fuel Cell
2. Methods
2.1. Modeling
2.2. Data
3. Results and Discusstion
3.1. Parameter Testing
3.2. Sensitivity Analysis for Pre-Test Parameters
3.3. Power Generation for Guelph WWTP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gude, V.G. Wastewater treatment in microbial fuel cells—An overview. J. Clean. Prod. 2016, 122, 287–307. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Zhou, M.; Yang, H.; Liang, L.; Gu, T. Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. Renew. Sustain. Energy Rev. 2019, 103, 13–29. [Google Scholar] [CrossRef]
- Li, W.-W.; Yu, H.-Q.; He, Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ. Sci. 2014, 7, 911–924. [Google Scholar] [CrossRef]
- Jadhav, D.A.; Ray, S.G.; Ghangrekar, M.M. Third generation in bio-electrochemical system research—A systematic review on mechanisms for recovery of valuable by-products from wastewater. Renew. Sustain. Energy Rev. 2017, 76, 1022–1031. [Google Scholar] [CrossRef]
- Rabaey, K.; Verstraete, W. Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 2005, 23, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Li, X.G. Principles of Fuel Cells; Taylor & Francis: New York, NY, USA, 2006. [Google Scholar]
- Rahimnejad, M.; Ghoreyshi, A.; Najafpour, G.; Younesi, H.; Shakeri, M. A novel microbial fuel cell stack for continuous production of clean energy. Int. J. Hydrogen Energy 2012, 37, 5992–6000. [Google Scholar] [CrossRef]
- Sharma, Y.; Li, B. Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC). Int. J. Hydrogen Energy 2010, 35, 3789–3797. [Google Scholar] [CrossRef]
- Munoz-Cupa, C.; Hu, Y.; Xu, C.; Bassi, A. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci. Total Environ. 2021, 754, 142429. [Google Scholar] [CrossRef]
- “2022 Annual Performance Report”, City of Guelph, 2023. Available online: https://guelph.ca/wp-content/uploads/Guelph-WRRC-2022-Annual-Performance-Report_20220325.pdf (accessed on 1 April 2024).
- Sustarsic, M. Wastewater Treatment: Understanding the Activated Sludge Process. Chem. Eng. Prog. 2009, 105, 26–29. [Google Scholar]
- Bayo, J.J.D.l.T.; Pascual, J.M.; Rojo, J.C.T.; Toro, M.Z. Waste to Energy from Municipal Wastewater Treatment Plants: A Science Mapping. Sustainability 2022, 14, 16871. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, L.; Zularisam, A.W.; Hai, F.I. Microbial fuel cell is emerging as a versatile technology: A review on its possible applications, challenges and strategies to improve the performances. Int. J. Energy Res. 2017, 42, 369–394. [Google Scholar] [CrossRef]
- Wang, Y.-K.; Sheng, G.-P.; Li, W.-W.; Huang, Y.-X.; Yu, Y.-Y.; Zeng, R.J.; Yu, H.-Q. Development of a Novel Bioelectrochemical Membrane Reactor for Wastewater Treatment. Environ. Sci. Technol. 2011, 45, 9256–9261. [Google Scholar] [CrossRef]
- Shreya, N.M.; Shreenag, M.U.; Patil, J.H.; Muralidhara, V.M. Wastewater Treatment Using Anaerobic Fluidized Bed Membrane Bioreactor Coupled with Microbial Fuel Cells for Circular Economy. ECS Trans. 2022, 107, 4435. [Google Scholar]
- Min, B.; Kim, J.; Oh, S.; Regan, J.M.; Logan, B.E. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 2005, 39, 4961–4968. [Google Scholar] [CrossRef]
- Sreelekshmy, B. Exploration of Electrochemcially Active Bacterial Strains for Microbial Fuel Cells: An Innovation in Bioelectricity Generation. J. Pure Appl. Microbiol. 2020, 14, 103–122. [Google Scholar] [CrossRef]
- Fadzli, F.S.; Bhawani, S.A.; Mohammad, R.E.A. Microbial Fuel Cell: Recent Developments in Organic Substrate Use and Bacterial Electrode Interaction. J. Chem. 2021, 2021, 4570388. [Google Scholar] [CrossRef]
- Moharir, P.V.; Tembhurkar, A.R. Effect of recirculation on bioelectricity generation using microbial fuel cell with food waste leachate as substrate. Int. J. Hydrogen Energy 2018, 43, 10061–10069. [Google Scholar] [CrossRef]
- Ghasemi, M.; Sedighi, M.; Usefi, M.M.B. A comprehensive review on membranes in microbial desalination cells; processes, utilization, and challenges. Int. J. Energy Res. 2022, 46, 14716–14739. [Google Scholar] [CrossRef]
- Mitov, M.; Hubenova, Y. Microbial X cells—Innovative multipurpose bioelectrochemical systems. Bulg. J. Sci. Educ. 2015, 24, 404–416. [Google Scholar]
- Ahmadian-Alam, L.; Mahdavi, H. A novel polysulfone-based ternary nanocomposite membrane consisting of metal-organic framework and silica nanoparticles: As proton exchange membrane for polymer electrolyte fuel cells. Renew. Energy 2018, 126, 630–639. [Google Scholar] [CrossRef]
- Chao, D.; Zhou, W.H.; Xie, F.X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S.Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 5, eaba4098. [Google Scholar] [CrossRef]
- Watanabe, K. Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy. J. Biosci. Bioeng. 2008, 106, 528–536. [Google Scholar] [CrossRef]
- Solanki, K.; Subramanian, S.; Basu, S. Microbial fuel cells for azo dye treatment with electricity generation: A review. Bioresour. Technol. 2013, 131, 564–571. [Google Scholar] [CrossRef]
- Oliveira, V.; Simões, M.; Melo, L.; Pinto, A. Overview on the developments of microbial fuel cells. Biochem. Eng. J. 2013, 73, 53–64. [Google Scholar] [CrossRef]
- Marcus, A.K.; Torres, C.I.; Rittmann, B.E. Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng. 2007, 98, 1171–1182. [Google Scholar] [CrossRef]
- Zeng, Y.; Choo, Y.F.; Kim, B.-H.; Wu, P. Modelling and simulation of two-chamber microbial fuel cell. J. Power Sources 2010, 195, 79–89. [Google Scholar] [CrossRef]
- Karamzadeha, M.; Kadivarianb, H.; Kadivarianc, M.; Kazemic, A. Modeling the influence of substrate concentration, anode electrode surface area and external resistance in a start-up on the performance of microbial fuel cell. Bioresour. Technol. Rep. 2020, 12, 100559. [Google Scholar]
- IWA. ADM1 Model for BSM2, International Water Association (IWA) Task Group on Benchmarking of Control Strategies for WWTPs. 1 February 2002. Available online: https://scholar.google.com/scholar?q=ADM1%20model%20for%20BSM2,%20International%20Water%20Association%20%20Task%20Group%20on%20Benchmarking%20of%20Control%20Strategies%20for%20WWTPs,%20http:www.benchmarkwwtp.org (accessed on 8 August 2023).
- Henze, M.; Gujer, W.; Mino, T.; van Loosdrecht, M. Activated Sludge Models, ASM1, ASM2, ASM2d and ASM3; IWA Publishing: London, UK, 2006; Volume 5, pp. 65–73. [Google Scholar]
- Picioreanu, C.; Katuri, K.P.; Head, I.M.; van Loosdrecht, M.C.M.; Scott, K. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Sci. Technol. 2008, 57, 965–971. [Google Scholar] [CrossRef]
- Wang, J.; Song, X.; Wang, Y.; Zhao, Z.; Wang, B.; Yan, D. Effects of electrode material and substrate concentration on the bioenergy output and wastewater treatment in air-cathode microbial fuel cell integrating with constructed wetland. Ecol. Eng. 2017, 99, 191–198. [Google Scholar] [CrossRef]
- Independent Statistics and Analysis 2020 RECS Survey Data. March 2023. Available online: https://www.eia.gov/consumption/residential/data/2020/#electronics (accessed on 1 January 2024).
pH | CBOD5 (mg∙L−1) | BOD5 (mg∙L−1) | TSS (mg∙L−1) | TP (mg∙L−1) | TKN (mg∙L−1) | TAN (mg∙L−1) | |
---|---|---|---|---|---|---|---|
Annual Average | 7.53 | 204 | 225 | 278 | 5.09 | 35.9 | 23.9 |
Symbol | Value | Unit | Description |
---|---|---|---|
Ssu | 69.12 | g∙L−1 | Monosaccharides |
Sfa | 264.96 | g∙L−1 | Total LCFA |
Sva | 74.88 | g∙L−1 | Total valerate |
Sbu | 57.6 | g∙L−1 | Total butyrate |
Spro | 40.32 | g∙L−1 | Total propionate |
Sac | 23.04 | g∙L−1 | Total acetate |
Sh2 | 5.76 | g∙L−1 | Hydrogen |
Sch4 | 23.04 | g∙L−1 | Methane |
Symbol | Value | Unit | Description |
---|---|---|---|
F | 96,485.4 | Coulombs mol−1 | Faraday’s constant |
R | 8.3144 | J mol−1 K−1 | Gas constant |
T | 30 | Temperature | |
ks | 6 | Ohm−1 m−1 | Electrical conductivity of the aqueous solution |
Am | 0.5 | m2 | Area of membrane |
Kbio | 0.05 | Sm−1 | Electrical conductivity of the membrane |
U0 | 0.5 | volt | Cell open circuit potential |
Yac [28] | 0.05 | - | Bacterial yield |
Kdec [28] | 8.33 × 10−4 | h−1 | Decay constant for acetate utilizers |
α | 0.068 | - | Charge transfer coefficient of anode |
β | 0.773 | - | Charge transfer coefficient of cathode |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yin, S. Numerical Investigation for Power Generation by Microbial Fuel Cells Treating Municipal Wastewater in Guelph, Canada. Clean Technol. 2024, 6, 497-512. https://doi.org/10.3390/cleantechnol6020026
Li Y, Yin S. Numerical Investigation for Power Generation by Microbial Fuel Cells Treating Municipal Wastewater in Guelph, Canada. Clean Technologies. 2024; 6(2):497-512. https://doi.org/10.3390/cleantechnol6020026
Chicago/Turabian StyleLi, Yiming, and Shunde Yin. 2024. "Numerical Investigation for Power Generation by Microbial Fuel Cells Treating Municipal Wastewater in Guelph, Canada" Clean Technologies 6, no. 2: 497-512. https://doi.org/10.3390/cleantechnol6020026
APA StyleLi, Y., & Yin, S. (2024). Numerical Investigation for Power Generation by Microbial Fuel Cells Treating Municipal Wastewater in Guelph, Canada. Clean Technologies, 6(2), 497-512. https://doi.org/10.3390/cleantechnol6020026