Evaluation of the Effectiveness of Treatments to Remove Per- and Polyfluoroalkyl Substances from Water—Are We Using the Right Approach? Proposal of a Paradigm Shift from “Chemical Only” towards an Integrated Bio-Chemical Assessment
Abstract
:1. PFASs in the Water: The Background
2. Method and Approach
3. Some Limitations of the Current Studies
4. The Need of a Paradigm Shift from the “Chemical Only” Approach
5. Bioassays Could Play a Key Role
6. Conclusions
- “Chemical only” assessment cannot be considered reliable to evaluate the effectiveness of treatments for PFAS removal due to the presence of precursors (in many cases with unknown pathways of transformation). Moreover, to date, many PFASs remain unknown, and the only knowledge of the concentration of per- and polyfluoroalkyl compounds cannot provide an exhaustive characterization of the water.
- Focusing the evaluation only on total PFASs could skew the results since (i) the need to balance selectivity and inclusivity is a current challenge, and (ii) the level of toxicity among the different PFASs is heterogeneous.
- Bioassays are already effectively used to assess the ecotoxicological quality of different types of water. To better define the effectiveness of removal technologies in the case of trace and emerging pollutants, some authors have suggested integrating chemical analysis with a bio-chemical assessment.
- Although the use of an integrated bio-chemical approach (chemical analysis + bioassays) in the evaluation of the effectiveness of technologies in PFAS removal is not currently widespread, a paradigm shift towards this approach is strongly suggested to overcome the main limitations of an “chemical only” approach.
- A unique protocol with an optimal battery of bioassays that are useful for fully characterizing water before and after the application of processes for the removal of PFASs has not yet been defined. Previous works have suggested that the most important aspect is to evaluate different bioassays that include different endpoints. In any case, further research on this topic is strongly suggested by the authors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; DeWitt, J.C.; Higgins, C.P.; Cousins, I.T. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ. Sci. Technol. 2017, 51, 2508–2518. [Google Scholar] [CrossRef]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An Overview of the Uses of Per-and Polyfluoroalkyl Substances (PFAS). Environ. Sci Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef]
- Gallen, C.; Bignert, A.; Taucare, G.; O’Brien, J.; Braeunig, J.; Reeks, T.; Thompson, J.; Mueller, J.F. Temporal Trends of Perfluoroalkyl Substances in an Australian Wastewater Treatment Plant: A Ten-Year Retrospective Investigation. Sci. Total Environ. 2022, 804, 150211. [Google Scholar] [CrossRef] [PubMed]
- IARC Perfluorooctanoic Acid, Tetrafluoroethylene, Dichloromethane, 1,2-Dichloropropane, and 1,3-Propane Sultone. Available online: https://publications.iarc.fr/547 (accessed on 9 June 2023).
- IARC Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS). Available online: https://monographs.iarc.who.int/iarc-monographs-volume-135/ (accessed on 9 June 2023).
- Nakayama, S.F.; Yoshikane, M.; Onoda, Y.; Nishihama, Y.; Iwai-Shimada, M.; Takagi, M.; Kobayashi, Y.; Isobe, T. Worldwide Trends in Tracing Poly- and Perfluoroalkyl Substances (PFAS) in the Environment. TrAC Trends Anal. Chem. 2019, 121, 115410. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodríguez-Hernandéz, J.A.; González-González, R.B.; Macias-Garbett, R.; Martínez-Ruiz, M.; Reyes-Pardo, H.; Hernández Martínez, S.A.; Parra-Arroyo, L.; Melchor-Martínez, E.M.; Sosa-Hernández, J.E.; et al. Detection and Tertiary Treatment Technologies of Poly-and Perfluoroalkyl Substances in Wastewater Treatment Plants. Front. Environ. Sci 2022, 10, 864894. [Google Scholar] [CrossRef]
- Gaines, L.G.T. Historical and Current Usage of Per-and Polyfluoroalkyl Substances (PFAS): A Literature Review. Am. J. Ind. Med. 2023, 66, 353–378. [Google Scholar] [CrossRef]
- Sadia, M.; Nollen, I.; Helmus, R.; ter Laak, T.L.; Béen, F.; Praetorius, A.; van Wezel, A.P. Occurrence, Fate, and Related Health Risks of PFAS in Raw and Produced Drinking Water. Environ. Sci Technol. 2023, 57, 3062–3074. [Google Scholar] [CrossRef] [PubMed]
- Ateia, M.; Maroli, A.; Tharayil, N.; Karanfil, T. The Overlooked Short-and Ultrashort-Chain Poly- and Perfluorinated Substances: A Review. Chemosphere 2019, 220, 866–882. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, W.; Wang, L.; Zhang, Y.; Zhang, Y.; Wang, M.; Wang, Y.; Li, P. A Review of Sources, Multimedia Distribution and Health Risks of Novel Fluorinated Alternatives. Ecotoxicol. Environ. Saf. 2019, 182, 109402. [Google Scholar] [CrossRef]
- Cui, D.; Li, X.; Quinete, N. Occurrence, Fate, Sources and Toxicity of PFAS: What We Know so Far in Florida and Major Gaps. TrAC Trends Anal. Chem. 2020, 130, 115976. [Google Scholar] [CrossRef]
- VR/WHO. Keeping Our Water Clean: The Case of Water Contamination in the Veneto Region, Italy; WHO Regional Office for Europe: Copenhagen, Denmark, 2017. [Google Scholar]
- Pitter, G.; Da Re, F.; Canova, C.; Barbieri, G.; Zare Jeddi, M.; Daprà, F.; Manea, F.; Zolin, R.; Bettega, A.M.; Stopazzolo, G.; et al. Serum Levels of Perfluoroalkyl Substances (PFAS) in Adolescents and Young Adults Exposed to Contaminated Drinking Water in the Veneto Region, Italy: A Cross-Sectional Study Based on a Health Surveillance Program. Environ. Health Perspect. 2020, 128, 027007. [Google Scholar] [CrossRef]
- Mastrantonio, M.; Bai, E.; Uccelli, R.; Cordiano, V.; Screpanti, A.; Crosignani, P. Drinking Water Contamination from Perfluoroalkyl Substances (PFAS): An Ecological Mortality Study in the Veneto Region, Italy. Eur. J. Public Health 2018, 28, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Abunada, Z.; Alazaiza, M.Y.D.; Bashir, M.J.K. An Overview of Per- and Polyfluoroalkyl Substances (PFAS) in the Environment: Source, Fate, Risk and Regulations. Water 2020, 12, 3590. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Dane, J.; Kanel, S.R.; Nadagouda, M.N.; Cawdrey, R.W.; Ambade, B.; Struckhoff, G.C.; Wilkin, R. Per-and Polyfluoroalkyl Substances in Water and Wastewater: A Critical Review of Their Global Occurrence and Distribution. Sci. Total Environ. 2022, 809, 151003. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Liu, S.; Zhou, J.L.; Zheng, C.; Weifeng, J.; Chen, B.; Zhang, T.; Qiu, W. PFAS and Their Substitutes in Groundwater: Occurrence, Transformation and Remediation. J. Hazard. Mater. 2021, 412, 125159. [Google Scholar] [CrossRef]
- Houtz, E.F.; Sedlak, D.L. Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. Environ. Sci. Technol. 2012, 46, 9342–9349. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Son, Y. Perfluoroalkyl Substances (PFAS) in Surface Water and Sediments from Two Urban Watersheds in Nevada, USA. Sci. Total Environ. 2021, 751, 141622. [Google Scholar] [CrossRef]
- Jurikova, M.; Dvorakova, D.; Pulkrabova, J. The Occurrence of Perfluoroalkyl Substances (PFAS) in Drinking Water in the Czech Republic: A Pilot Study. Environ. Sci. Pollut. Res. 2022, 29, 60341–60353. [Google Scholar] [CrossRef]
- Chow, S.J.; Ojeda, N.; Jacangelo, J.G.; Schwab, K.J. Detection of Ultrashort-Chain and Other per- and Polyfluoroalkyl Substances (PFAS) in U.S. Bottled Water. Water Res. 2021, 201, 117292. [Google Scholar] [CrossRef]
- Phong Vo, H.N.; Ngo, H.H.; Guo, W.; Hong Nguyen, T.M.; Li, J.; Liang, H.; Deng, L.; Chen, Z.; Hang Nguyen, T.A. Poly-and Perfluoroalkyl Substances in Water and Wastewater: A Comprehensive Review from Sources to Remediation. J. Water Process Eng. 2020, 36, 101393. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Kewalramani, J.A.; Li, B.; Marsh, R.W. A Review of the Applications, Environmental Release, and Remediation Technologies of Per- and Polyfluoroalkyl Substances. Int. J. Environ. Res. Public Health 2020, 17, 8117. [Google Scholar] [CrossRef]
- Christensen, K.Y.; Raymond, M.; Blackowicz, M.; Liu, Y.; Thompson, B.A.; Anderson, H.A.; Turyk, M. Perfluoroalkyl Substances and Fish Consumption. Environ. Res. 2017, 154, 145–151. [Google Scholar] [CrossRef]
- Piva, E.; Fais, P.; Ioime, P.; Forcato, M.; Viel, G.; Cecchetto, G.; Pascali, J.P. Per- and Polyfluoroalkyl Substances (PFAS) Presence in Food: Comparison among Fresh, Frozen and Ready-to-Eat Vegetables. Food Chem. 2023, 410, 135415. [Google Scholar] [CrossRef]
- Death, C.; Bell, C.; Champness, D.; Milne, C.; Reichman, S.; Hagen, T. Per- and Polyfluoroalkyl Substances (PFAS) in Livestock and Game Species: A Review. Sci. Total Environ. 2021, 774, 144795. [Google Scholar] [CrossRef]
- Vendl, C.; Pottier, P.; Taylor, M.D.; Bräunig, J.; Gibson, M.J.; Hesselson, D.; Neely, G.G.; Lagisz, M.; Nakagawa, S. Thermal Processing Reduces PFAS Concentrations in Blue Food—A Systematic Review and Meta-Analysis. Environ. Pollut. 2022, 304, 119081. [Google Scholar] [CrossRef] [PubMed]
- Schwanz, T.G.; Llorca, M.; Farré, M.; Barceló, D. Perfluoroalkyl Substances Assessment in Drinking Waters from Brazil, France and Spain. Sci. Total Environ. 2016, 539, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Post, G.B. Recent US State and Federal Drinking Water Guidelines for Per- and Polyfluoroalkyl Substances. Environ. Toxicol. Chem. 2021, 40, 550–563. [Google Scholar] [CrossRef]
- Ross, I.; McDonough, J.; Miles, J.; Storch, P.; Thelakkat Kochunarayanan, P.; Kalve, E.; Hurst, J.S.; Dasgupta, S.; Burdick, J. A Review of Emerging Technologies for Remediation of PFASs. Remediat. J. 2018, 28, 101–126. [Google Scholar] [CrossRef]
- Wanninayake, D.M. Comparison of Currently Available PFAS Remediation Technologies in Water: A Review. J. Environ. Manag. 2021, 283, 111977. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Wang, Y.; Sun, W. A Review on Degradation of Perfluorinated Compounds Based on Ultraviolet Advanced Oxidation. Environ. Pollut. 2021, 291, 118014. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Prasad, S.; Rtimi, S. Recent Progress and Challenges on the Removal of Per- and Poly-Fluoroalkyl Substances (PFAS) from Contaminated Soil and Water. Environ. Sci. Pollut. Res. 2022, 29, 58405–58428. [Google Scholar] [CrossRef]
- Garg, S.; Wang, J.; Kumar, P.; Mishra, V.; Arafat, H.; Sharma, R.S.; Dumée, L.F. Remediation of Water from Per-/Poly-Fluoroalkyl Substances (PFAS)—Challenges and Perspectives. J. Environ. Chem. Eng. 2021, 9, 105784. [Google Scholar] [CrossRef]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Vagliasindi, F.G.A.; Roccaro, P. Removal of Poly- and Perfluoroalkyl Substances (PFAS) from Water by Adsorption: Role of PFAS Chain Length, Effect of Organic Matter and Challenges in Adsorbent Regeneration. Water Res. 2020, 171, 115381. [Google Scholar] [CrossRef]
- Lei, X.; Lian, Q.; Zhang, X.; Karsili, T.K.; Holmes, W.; Chen, Y.; Zappi, M.E.; Gang, D.D. A Review of PFAS Adsorption from Aqueous Solutions: Current Approaches, Engineering Applications, Challenges, and Opportunities. Environ. Pollut. 2023, 321, 121138. [Google Scholar] [CrossRef] [PubMed]
- Winchell, L.J.; Wells, M.J.M.; Ross, J.J.; Fonoll, X.; Norton, J.W.; Kuplicki, S.; Khan, M.; Bell, K.Y. Analyses of Per- and Polyfluoroalkyl Substances (PFAS) through the Urban Water Cycle: Toward Achieving an Integrated Analytical Workflow across Aqueous, Solid, and Gaseous Matrices in Water and Wastewater Treatment. Sci. Total Environ. 2021, 774, 145257. [Google Scholar] [CrossRef]
- Al Amin, M.; Sobhani, Z.; Liu, Y.; Dharmaraja, R.; Chadalavada, S.; Naidu, R.; Chalker, J.M.; Fang, C. Recent Advances in the Analysis of Per- and Polyfluoroalkyl Substances (PFAS)—A Review. Environ. Technol. Innov. 2020, 19, 100879. [Google Scholar] [CrossRef]
- Liu, Y.; Pereira, A.D.S.; Martin, J.W. Discovery of C5–C17 Poly- and Perfluoroalkyl Substances in Water by In-Line SPE-HPLC-Orbitrap with In-Source Fragmentation Flagging. Anal. Chem. 2015, 87, 4260–4268. [Google Scholar] [CrossRef] [PubMed]
- Bertanza, G.; Capoferri, G.U.; Carmagnani, M.; Icarelli, F.; Sorlini, S.; Pedrazzani, R. Long-Term Investigation on the Removal of Perfluoroalkyl Substances in a Full-Scale Drinking Water Treatment Plant in the Veneto Region, Italy. Sci. Total Environ. 2020, 734, 139154. [Google Scholar] [CrossRef] [PubMed]
- Coggan, T.L.; Moodie, D.; Kolobaric, A.; Szabo, D.; Shimeta, J.; Crosbie, N.D.; Lee, E.; Fernandes, M.; Clarke, B.O. An Investigation into Per- and Polyfluoroalkyl Substances (PFAS) in Nineteen Australian Wastewater Treatment Plants (WWTPs). Heliyon 2019, 5, e02316. [Google Scholar] [CrossRef] [PubMed]
- Barisci, S.; Suri, R. Removal of Polyfluorinated Telomer Alcohol by Advanced Oxidation Processes (AOPs) in Different Water Matrices and Evaluation of Degradation Mechanisms. J. Water Process Eng. 2021, 39, 101745. [Google Scholar] [CrossRef]
- Lin, H.; Lao, J.-Y.; Wang, Q.; Ruan, Y.; He, Y.; Lee, P.K.H.; Leung, K.M.Y.; Lam, P.K.S. Per- and Polyfluoroalkyl Substances in the Atmosphere of Waste Management Infrastructures: Uncovering Secondary Fluorotelomer Alcohols, Particle Size Distribution, and Human Inhalation Exposure. Environ. Int. 2022, 167, 107434. [Google Scholar] [CrossRef] [PubMed]
- Ateia, M.; Chiang, D.; Cashman, M.; Acheson, C. Total Oxidizable Precursor (TOP) Assay─Best Practices, Capabilities and Limitations for PFAS Site Investigation and Remediation. Environ. Sci. Technol. Lett. 2023, 10, 292–301. [Google Scholar] [CrossRef]
- Kwiatkowski, C.F.; Andrews, D.Q.; Birnbaum, L.S.; Bruton, T.A.; DeWitt, J.C.; Knappe, D.R.U.; Maffini, M.V.; Miller, M.F.; Pelch, K.E.; Reade, A.; et al. Scientific Basis for Managing PFAS as a Chemical Class. Environ. Sci. Technol. Lett. 2020, 7, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Banzhaf, S.; Filipovic, M.; Lewis, J.; Sparrenbom, C.J.; Barthel, R. A Review of Contamination of Surface-, Ground-, and Drinking Water in Sweden by Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs). Ambio 2017, 46, 335–346. [Google Scholar] [CrossRef]
- EPA. PFAS Analytical Methods Development and Sampling Research. Available online: https://www.epa.gov/water-research/pfas-analytical-methods-development-and-sampling-research (accessed on 14 June 2023).
- McDonough, C.A.; Guelfo, J.L.; Higgins, C.P. Measuring Total PFASs in Water: The Tradeoff between Selectivity and Inclusivity. Curr. Opin. Environ. Sci. Health 2019, 7, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Miller, M.; Ng, C.A.; Scheringer, M.; Vierke, L.; et al. Strategies for Grouping Per- and Polyfluoroalkyl Substances (PFAS) to Protect Human and Environmental Health. Environ. Sci. Process. Impacts 2020, 22, 1444–1460. [Google Scholar] [CrossRef]
- Newman, M.C.; Unger, M.A. Fundamentals of Ecotoxicology, 2nd ed.; Lewis Publishers (CRC Press): Boca Raton, FL, USA, 2003. [Google Scholar]
- Xu, J.; Wei, D.; Wang, F.; Bai, C.; Du, Y. Bioassay: A Useful Tool for Evaluating Reclaimed Water Safety. J. Environ. Sci. 2020, 88, 165–176. [Google Scholar] [CrossRef]
- Barceló, D.; Žonja, B.; Ginebreda, A. Toxicity Tests in Wastewater and Drinking Water Treatment Processes: A Complementary Assessment Tool to Be on Your Radar. J. Environ. Chem. Eng. 2020, 8, 104262. [Google Scholar] [CrossRef]
- Pedrazzani, R.; Bertanza, G.; Brnardić, I.; Cetecioglu, Z.; Dries, J.; Dvarionienė, J.; García-Fernández, A.J.; Langenhoff, A.; Libralato, G.; Lofrano, G.; et al. Opinion Paper about Organic Trace Pollutants in Wastewater: Toxicity Assessment in a European Perspective. Sci. Total Environ. 2019, 651, 3202–3221. [Google Scholar] [CrossRef]
- Rizzo, L. Bioassays as a Tool for Evaluating Advanced Oxidation Processes in Water and Wastewater Treatment. Water Res. 2011, 45, 4311–4340. [Google Scholar] [CrossRef]
- Campana, O.; Wlodkowic, D. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment. Environ. Sci. Technol. 2018, 52, 932–946. [Google Scholar] [CrossRef] [PubMed]
- Oskarsson, A.; Rosenmai, A.K.; Mandava, G.; Johannisson, A.; Holmes, A.; Tröger, R.; Lundqvist, J. Assessment of Source and Treated Water Quality in Seven Drinking Water Treatment Plants by in Vitro Bioassays—Oxidative Stress and Antiandrogenic Effects after Artificial Infiltration. Sci. Total Environ. 2021, 758, 144001. [Google Scholar] [CrossRef]
- Finlayson, K.A.; van de Merwe, J.P.; Leusch, F.D.L. Review of Ecologically Relevant in Vitro Bioassays to Supplement Current In Vivo Tests for Whole Effluent Toxicity Testing—Part 2: Non-Apical Endpoints. Sci. Total Environ. 2022, 851, 158094. [Google Scholar] [CrossRef]
- Song, M.; McKenna, E.; Ferrer, I.; Thurman, E.M.; Taylor-Edmonds, L.; Hofmann, R.; Ishida, K.P.; Roback, S.L.; Plumlee, M.H.; Hanigan, D. Comparison of Oxidants Used in Advanced Oxidation for Potable Reuse: Non-Target Analysis and Bioassays. ACS EST Water 2023, 3, 690–700. [Google Scholar] [CrossRef]
- Kienle, C.; Werner, I.; Fischer, S.; Lüthi, C.; Schifferli, A.; Besselink, H.; Langer, M.; McArdell, C.S.; Vermeirssen, E.L.M. Evaluation of a Full-Scale Wastewater Treatment Plant with Ozonation and Different Post-Treatments Using a Broad Range of In Vitro and In Vivo Bioassays. Water Res. 2022, 212, 118084. [Google Scholar] [CrossRef] [PubMed]
- Papa, M.; Paredes, L.; Feretti, D.; Viola, G.; Mazzoleni, G.; Steimberg, N.; Pedrazzani, R.; Lema, J.; Omil, F.; Carballa, M. How Should Ecohazard of Micropollutants in Wastewater Be Gauged? Using Bioassays to Profile Alternative Tertiary Treatments. Environ. Eng. Res. 2020, 26, 200153. [Google Scholar] [CrossRef]
- Bertanza, G.; Papa, M.; Pedrazzani, R.; Repice, C.; Mazzoleni, G.; Steimberg, N.; Feretti, D.; Ceretti, E.; Zerbini, I. EDCs, Estrogenicity and Genotoxicity Reduction in a Mixed (Domestic + Textile) Secondary Effluent by Means of Ozonation: A Full-Scale Experience. Sci. Total Environ. 2013, 458, 160–168. [Google Scholar] [CrossRef]
- Orozco-Hernández, L.; Gómez-Oliván, L.M.; Elizalde-Velázquez, A.; Natividad, R.; Fabian-Castoño, L.; SanJuan-Reyes, N. 17-β-Estradiol: Significant Reduction of Its Toxicity in Water Treated by Photocatalysis. Sci. Total Environ. 2019, 669, 955–963. [Google Scholar] [CrossRef]
- Neale, P.A.; Munz, N.A.; Aït-Aïssa, S.; Altenburger, R.; Brion, F.; Busch, W.; Escher, B.I.; Hilscherová, K.; Kienle, C.; Novák, J.; et al. Integrating Chemical Analysis and Bioanalysis to Evaluate the Contribution of Wastewater Effluent on the Micropollutant Burden in Small Streams. Sci. Total Environ. 2017, 576, 785–795. [Google Scholar] [CrossRef]
- Alias, C.; Feretti, D.; Benassi, L.; Zerbini, I.; Zani, C.; Sorlini, S. Tools for Monitoring Toxicological and Genotoxicological Changes in a Drinking Water Treatment Plant in Northeast Italy. Water Environ. J. 2023, 37, 81–94. [Google Scholar] [CrossRef]
- Neale, P.A.; Altenburger, R.; Aït-Aïssa, S.; Brion, F.; Busch, W.; de Aragão Umbuzeiro, G.; Denison, M.S.; Du Pasquier, D.; Hilscherová, K.; Hollert, H.; et al. Development of a Bioanalytical Test Battery for Water Quality Monitoring: Fingerprinting Identified Micropollutants and Their Contribution to Effects in Surface Water. Water Res. 2017, 123, 734–750. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carnevale Miino, M.; Halešová, T.; Macsek, T.; Raček, J.; Hlavínek, P. Evaluation of the Effectiveness of Treatments to Remove Per- and Polyfluoroalkyl Substances from Water—Are We Using the Right Approach? Proposal of a Paradigm Shift from “Chemical Only” towards an Integrated Bio-Chemical Assessment. Clean Technol. 2023, 5, 1203-1213. https://doi.org/10.3390/cleantechnol5040060
Carnevale Miino M, Halešová T, Macsek T, Raček J, Hlavínek P. Evaluation of the Effectiveness of Treatments to Remove Per- and Polyfluoroalkyl Substances from Water—Are We Using the Right Approach? Proposal of a Paradigm Shift from “Chemical Only” towards an Integrated Bio-Chemical Assessment. Clean Technologies. 2023; 5(4):1203-1213. https://doi.org/10.3390/cleantechnol5040060
Chicago/Turabian StyleCarnevale Miino, Marco, Taťána Halešová, Tomáš Macsek, Jakub Raček, and Petr Hlavínek. 2023. "Evaluation of the Effectiveness of Treatments to Remove Per- and Polyfluoroalkyl Substances from Water—Are We Using the Right Approach? Proposal of a Paradigm Shift from “Chemical Only” towards an Integrated Bio-Chemical Assessment" Clean Technologies 5, no. 4: 1203-1213. https://doi.org/10.3390/cleantechnol5040060
APA StyleCarnevale Miino, M., Halešová, T., Macsek, T., Raček, J., & Hlavínek, P. (2023). Evaluation of the Effectiveness of Treatments to Remove Per- and Polyfluoroalkyl Substances from Water—Are We Using the Right Approach? Proposal of a Paradigm Shift from “Chemical Only” towards an Integrated Bio-Chemical Assessment. Clean Technologies, 5(4), 1203-1213. https://doi.org/10.3390/cleantechnol5040060