Sensing and Delineating Mixed-VOC Composition in the Air Using a Single Metal Oxide Sensor
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
3.1. Single Volatile Organic Compound
3.2. Double Volatile Organic Compounds
3.3. Correlation of Single and Double VOC Results
3.4. Predictive Mathematic Model: Development and Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Itoh, T.; Akamatsu, T.; Izu, N.; Shin, W.; Byun, H.-G. Monitoring of disease-related volatile organic compounds in simulated room air. IEEE Sens. Proc. 2014, 1427–1430. [Google Scholar] [CrossRef]
- Karuppuswami, S.; Wiwatcharagoses, N.; Kaur, A.; Chahal, P. Capillary Condensation Based Wireless Volatile Molecular Sensor. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 1455–1460. [Google Scholar]
- Fu, J.L.; Ayazi, F. High- Q AlN-on-Silicon Resonators with Annexed Platforms for Portable Integrated VOC Sensing. J. Microelectromech. Syst. 2015, 24, 503–509. [Google Scholar] [CrossRef]
- Collier-Oxandale, A.; Wong, N.; Navarro, S.; Johnston, J.; Hannigan, M. Using gas-phase air quality sensors to disentangle potential sources in a Los Angeles neighborhood. Atmos. Environ. 2020, 233, 117519. [Google Scholar] [CrossRef]
- Szczurek, A.; Maciejewska, M. Assessment of VOCs in air using sensor array under various exposure conditions. In Proceedings of the 2012 IEEE Sensors Applications Symposium Proceedings, Brescia, Italy, 7–9 February 2012; pp. 1–5. [Google Scholar]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced Micro- and Nano-Gas Sensor Technology: A Review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, R.; Gardner, J.W.; Guha, P.K. Air Pollution Monitoring Using Near Room Temperature Resistive Gas Sensors: A Review. IEEE Trans. Electron Devices 2019, 66, 3254–3264. [Google Scholar] [CrossRef]
- Gao, H.; Guo, J.; Li, Y.; Xie, C.; Li, X.; Liu, L.; Chen, Y.; Sun, P.; Liu, F.; Yan, X.; et al. Highly selective and sensitive xylene gas sensor fabricated from NiO/NiCr2O4 p-p nanoparticles. Sens. Actuators B Chem. 2019, 284, 305–315. [Google Scholar] [CrossRef]
- Collier-Oxandale, A.M.; Thorson, J.; Halliday, H.; Milford, J.; Hannigan, M. Understanding the ability of low-cost MOx sensors to quantify ambient VOCs. Atmos. Meas. Tech. 2019, 12, 1441–1460. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, A. Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network. Sens. Actuators B Chem. 2003, 96, 24–37. [Google Scholar] [CrossRef]
- Lee, D.; Tae, Y.; Huh, J.; Lee, D. Fabrication and characteristics of SnO2 gas sensor array for volatile organic compounds recognition. Thin Solid Films 2002, 416, 271–278. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, R.; Majhi, S.M.; Zhang, X.; Swager, T.M.; Salama, K.N. Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv. Colloid Interface Sci. 2019, 270, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Chavali, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor Metal Oxides as Chemoresistive Sensors for Detecting Volatile Organic Compounds. Sensors 2019, 19, 233. [Google Scholar] [CrossRef] [Green Version]
- Maduraiveeran, G.; Sasidharan, M.; Jin, W. Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Prog. Mater. Sci. 2019, 106, 100574. [Google Scholar] [CrossRef]
- Mirzaei, A.; Lee, J.-H.; Majhi, S.M.; Weber, M.; Bechelany, M.; Kim, H.W.; Kim, S.S. Resistive gas sensors based on metal-oxide nanowires. J. Appl. Phys. 2019, 126, 241102. [Google Scholar] [CrossRef] [Green Version]
- Di Lecce, V.; Calabrese, M.; Dario, R. Computational-based volatile organic compounds discrimination: An experimental low-cost setup. In Proceedings of the 2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, Taranto, Italy, 6–8 September 2010; pp. 54–59. [Google Scholar]
- Alinoori, A.H.; Masoum, S. Multicapillary Gas Chromatography—Temperature Modulated Metal Oxide Semiconductor Sensors Array Detector for Monitoring of Volatile Organic Compounds in Closed Atmosphere Using Gaussian Apodization Factor Analysis. Anal. Chem. 2018, 90, 6635–6642. [Google Scholar] [CrossRef]
- Choi, Y.M.; Cho, S.; Jang, D.; Koh, H.-J.; Choi, J.; Kim, C.-H.; Jung, H.-T. Ultrasensitive Detection of VOCs Using a High-Resolution CuO/Cu2O/Ag Nanopattern Sensor. Adv. Funct. Mater. 2019, 29, 1808319. [Google Scholar] [CrossRef]
- Leidinger, M.; Sauerwald, T.; Conrad, T.; Reimringer, W.; Ventura, G.; Schütze, A. Selective Detection of Hazardous Indoor VOCs Using Metal Oxide Gas Sensors. Procedia Eng. 2014, 87, 1449–1452. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.D.; Lee, D.S. Environmental gas sensors. IEEE Sens. J. 2002, 1, 214–224. [Google Scholar]
- Masson, N.; Piedrahita, R.; Hannigan, M. Approach for quantification of metal oxide type semiconductor gas sensors used for ambient air quality monitoring. Sens. Actuators B Chem. 2015, 208, 339–345. [Google Scholar] [CrossRef]
- Yurko, G.; Roostaei, J.; Dittrich, T.; Xu, L.; Ewing, M.; Zhang, Y.; Shreve, G. Real-Time Sensor Response Characteristics of 3 Commercial Metal Oxide Sensors for Detection of BTEX and Chlorinated Aliphatic Hydrocarbon Organic Vapors. Chemosensors 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Air-Quality Gas Sensor. Available online: https://www.winsen-sensor.com/d/files/MP503.pdf (accessed on 24 February 2021).
- uRADMonitor A3. Available online: https://www.uradmonitor.com/wordpress/wp-content/uploads/2020/01/a3_datasheet_v108_en.pdf (accessed on 24 February 2021).
- Air Quality Sensor Test Results with Raspberry Pi. Available online: https://www.switchdoc.com/2016/06/air-quality-sensor-tested-raspberry-pi/ (accessed on 26 March 2021).
- Motisan, R.; Santos, R.M. Mobility and Measurement Tackle Ongoing Challenge of Air Pollution. Canadian Chemical News 2018, March. Available online: https://www.cheminst.ca/magazine/article/mobility-and-measurement-tackle-ongoing-challenge-of-air-pollution/ (accessed on 24 February 2021).
- Annanouch, F.-E.; Bouchet, G.; Perrier, P.; Morati, N.; Reynard-Carette, C.; Aguir, K.; Bendahan, M. How the Chamber Design Can Affect Gas Sensor Responses. Proceedings 2018, 2, 820. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Qin, H.; Cao, Y.; Zhang, H.; Hu, J. Acetone Sensing Properties and Mechanism of SnO2 Thick-Films. Sensors 2018, 18, 3425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakor, G.S. Testing and Validation of Mobile Air Quality Monitor for Sensing and Delineating VOC Emissions. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2020. Available online: http://hdl.handle.net/10214/17941 (accessed on 26 February 2021).
- Astiaso, D.; Cumo, F.; Gugliermetti, F. Air Quality in Portal Areas: An Index for VOCs Pollution Assessment. In Air Quality–New Perspective; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
Exp. | A 1 Vol (µL) | A 1 Conc (ppmv) | E 1 Vol (µL) | E 1 Conc (ppmv) | Total Vol (µL) | Total Conc (ppmv) | Resistance (kΩ) |
---|---|---|---|---|---|---|---|
1 | 3 | 52.50 | 3 | 66.99 | 6 | 119.49 | 13.59 |
2 | 6 | 104.99 | 6 | 133.98 | 12 | 238.97 | 10.81 |
3 | 9 | 157.49 | 9 | 200.97 | 18 | 358.46 | 9.38 |
Single | Acetone | Ethanol | n-Hexane | |||
---|---|---|---|---|---|---|
Double | Ace+Eth | Ace+Hex | Eth+Ace | Eth+Hex | Hex+Ace | Hex+Eth |
Slope coefficient | 0.878 | 1.009 | 0.538 | 0.939 | 0.168 | 0.254 |
Con (ppm) | Log(Con) | Log(ResMax) | Log(ResMin) | ResMax (kΩ) | ResMin (kΩ) |
---|---|---|---|---|---|
200 | 2.30 | 1.56 | 1.00 | 36.32 | 10.06 |
50 | 1.70 | 1.88 | 1.22 | 76.45 | 16.60 |
Data Set | D/O ResRatio | Log(Con) = D·Log(Res)+E | ||
---|---|---|---|---|
Slope D | Intercept E | |||
1 | Maximum | 2.105 | −1.863 | 5.208 |
2 | Minimum | 1.650 | −2.768 | 5.077 |
3 | Hypothetical (20 kΩ/10 kΩ) | 2.000 | −2.071 1 | 5.178 1 |
Measured D/O ResRatio | Acetone Concentration | n-Hexane Concentration | Ethanol Concentration |
---|---|---|---|
<1.75 | Highest | Lowest | Acetone > Ethanol > Hexane |
>2.15 | Lowest | Highest | Acetone < Hexane < Ethanol |
1.75–2.15 | Acetone < Hexane | Hexane < Ethanol | Highest |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakor, G.S.; Zhang, N.; Santos, R.M. Sensing and Delineating Mixed-VOC Composition in the Air Using a Single Metal Oxide Sensor. Clean Technol. 2021, 3, 519-533. https://doi.org/10.3390/cleantechnol3030031
Thakor GS, Zhang N, Santos RM. Sensing and Delineating Mixed-VOC Composition in the Air Using a Single Metal Oxide Sensor. Clean Technologies. 2021; 3(3):519-533. https://doi.org/10.3390/cleantechnol3030031
Chicago/Turabian StyleThakor, Govind S., Ning Zhang, and Rafael M. Santos. 2021. "Sensing and Delineating Mixed-VOC Composition in the Air Using a Single Metal Oxide Sensor" Clean Technologies 3, no. 3: 519-533. https://doi.org/10.3390/cleantechnol3030031
APA StyleThakor, G. S., Zhang, N., & Santos, R. M. (2021). Sensing and Delineating Mixed-VOC Composition in the Air Using a Single Metal Oxide Sensor. Clean Technologies, 3(3), 519-533. https://doi.org/10.3390/cleantechnol3030031