Sustainability Assessment of Cotton-Based Textile Wet Processing
Abstract
:1. Introduction
2. Conceptual Framework: Triple Bottom Line (TBL)
3. Textile Wet Processing (TWP)
4. Environmental Aspects of TWP
5. Economic Aspects of TWP
6. Social Aspects of TWP
7. Technical Limitations
8. Recommendations on Using Advanced Technologies to Reduce Environmental Impacts
8.1. Use of BIO-Based Materials
8.2. Use of Advanced Dyeing Machinery and Technologies
8.3. Use of Recycled Process Input and Waste
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nawab, Y. Textile Engineering: An introduction; De Gruyter GmbH & Co KG: Berlin, Germany, 2016. [Google Scholar]
- Choudhury, A.R. Textile Preparation and Dyeing; Science Publishers: Enfield, NH, USA, 2006. [Google Scholar]
- Khadijah, Q.; Heba, M. Environmental production of fashion colors from natural dyes. Int. J. Phys. Sci. 2013, 8, 670–683. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.R.; Rahman, M.M.; Shaid, A.; Bashar, M.; Khan, M.A. Scope of reusing and recycling the textile wastewater after treatment with gamma radiation. J. Clean. Prod. 2016, 112, 3063–3071. [Google Scholar] [CrossRef]
- Mathur, N.; Bhatnagar, P. Mutagenicity assessment of textile dyes from Sanganer (Rajasthan). J. Environ. Biol. 2007, 28, 123–126. [Google Scholar] [PubMed]
- Saxena, S.; Raja, A.; Arputharaj, A. Challenges in sustainable wet processing of textiles. In Textiles and Clothing Sustainability; Springer: Berlin/Heidelberg, Germany, 2017; pp. 43–79. [Google Scholar]
- Vibes, B. 30 Shocking Figures and Facts about Global Textile and Apparel Industry. Available online: https://www.business2community.com/fashion-beauty/30-shocking-figures-facts-global-textile-apparel-industry-01222057 (accessed on 26 August 2019).
- Keiner, M. History, Definition (s) and Models of Sustainable Development; ETH Zurich: Zürich, Switzerland, 2005. [Google Scholar]
- Chakraborty, S. A Detailed Study on Environmental Sustainability in Knit Composite Industries of Bangladesh. Am. J. Environ. Prot. 2016, 5, 121–127. [Google Scholar] [CrossRef]
- Hassan, A.M.; Lee, H. The paradox of the sustainable city: Definitions and examples. Environ. Dev. Sustain. 2015, 17, 1267–1285. [Google Scholar] [CrossRef]
- Rahman, S.; Yadlapalli, A. Sustainable practices in luxury apparel industry. In Handbook of Sustainable Luxury Textiles and Fashion; Springer: Berlin/Heidelberg, Germany, 2015; pp. 187–211. [Google Scholar]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: in search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Cao, H.; Scudder, C.; Dickson, M.A. Sustainability of apparel supply chain in South Africa: Application of the triple top line model. Cloth. Text. Res. J. 2017, 35, 81–97. [Google Scholar] [CrossRef]
- Montoya-Torres, J.R. Designing sustainable supply chains based on the triple bottom line approach. In Proceedings of the 2015 4th International Conference on Advanced Logistics and Transport (ICALT), Valenciennes, France, 20–22 May 2015; pp. 1–6. [Google Scholar]
- Park, H.S.; Kim, J.W.; Hong, C.S. The prevalence of specific IgE and IgG to reactive dye-human serum albumin conjugate in workers of a dye factory and neighboring factories. J. Korean Med Sci. 1991, 6, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, C.; Gupta, A.K.; Pillai, I.M.S. Heterogeneous photocatalysis of real textile wastewater: Evaluation of reaction kinetics and characterization. J. Environ. Sci. Health Part A 2012, 47, 2109–2119. [Google Scholar] [CrossRef]
- Global Risks Report 2016. Available online: http://www3.weforum.org/docs/GRR17_Report_web.pdf (accessed on 22 April 2019).
- Grady, C.L., Jr.; Daigger, G.T.; Love, N.G.; Filipe, C.D. Biological Wastewater Treatment; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Amutha, K. Sustainable Practices in Textile Industry: Standards and Certificates. In Sustainability in the Textile Industry; Springer: Berlin/Heidelberg, Germany, 2017; pp. 79–107. [Google Scholar]
- Roy, R.; Fakhruddin, A.; Khatun, R.; Islam, M.; Ahsan, M.; Neger, A. Characterization of textile industrial effluents and its effects on aquatic macrophytes and algae. Bangladesh J. Sci. Ind. Res. 2010, 45, 79–84. [Google Scholar] [CrossRef]
- Khan, S.; Malik, A. Environmental and health effects of textile industry wastewater. In Environmental Deterioration and Human Health; Springer: Berlin/Heidelberg, Germany, 2014; pp. 55–71. [Google Scholar]
- Patel, H.; Vashi, R. Characterization and Treatment of Textile Wastewater; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Athanasopoulos, N. Cotton fabric desizing and scouring wastewater treatment in upflow anaerobic filter. Biotechnol. Lett. 1986, 8, 377–378. [Google Scholar] [CrossRef]
- Babu, B.R.; Parande, A.; Raghu, S.; Kumar, T.P. Cotton textile processing: Waste generation and effluent treatment. J. Cotton Sci. 2007, 11, 141–153. [Google Scholar]
- Choudhury, A.R. Environmental impacts of the textile industry and its assessment through life cycle assessment. In Roadmap to Sustainable Textiles and Clothing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–39. [Google Scholar]
- Heumann, S.; Eberl, A.; Pobeheim, H.; Liebminger, S.; Fischer-Colbrie, G.; Almansa, E.; Cavaco-Paulo, A.; Gübitz, G.M. New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres. J. Biochem. Biophys. Methods 2006, 69, 89–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, L.-T.; Gharpuray, M.M.; Lee, Y.-H. Cellulose Hydrolysis; Springer Science & Business Media: Berlin, Germany, 2012; Volume 3. [Google Scholar]
- Chen, H.-L.; Burns, L.D. Environmental analysis of textile products. Cloth. Text. Res. J. 2006, 24, 248–261. [Google Scholar] [CrossRef]
- Hartzell, M.M.; Hsieh, Y.-L. Enzymatic scouring to improve cotton fabric wettability. Text. Res. J. 1998, 68, 233–241. [Google Scholar] [CrossRef]
- Kabir, S.F.; Iqbal, M.I.; Sikdar, P.P.; Rahman, M.M.; Akhter, S. Optimization of parameters of cotton fabric whiteness. Eur. Sci. J. 2014, 10, 200–210. [Google Scholar]
- Trotman, E.R. Dyeing and Chemical Technology of Textile Fibres; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Hardin, I. Enzymatic treatment versus conventional chemical processing of cotton. In Advances in Textile Biotechnology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 132–149. [Google Scholar]
- Chen, J.; Wang, Q.; Hua, Z.; Du, G. Research and application of biotechnology in textile industries in China. Enzym. Microb. Technol. 2007, 40, 1651–1655. [Google Scholar] [CrossRef]
- Prabaharan, M.; Nayar, R.C.; Kumar, N.S.; Rao, J.V. A study on the advanced oxidation of a cotton fabric by ozone. Coloration Technol. 2000, 116, 83–86. [Google Scholar] [CrossRef]
- Imran, M.A.; Hussain, T.; Memon, M.H.; Rehman, M.M.A. Sustainable and economical one-step desizing, scouring and bleaching method for industrial scale pretreatment of woven fabrics. J. Clean. Prod. 2015, 108, 494–502. [Google Scholar] [CrossRef]
- Xu, C.; Hinks, D.; Sun, C.; Wei, Q. Establishment of an activated peroxide system for low-temperature cotton bleaching using N-[4-(triethylammoniomethyl) benzoyl] butyrolactam chloride. Carbohydr. Polym. 2015, 119, 71–77. [Google Scholar] [CrossRef]
- Bashar, M.M.; Siddiquee, M.A.B.; Khan, M.A. Preparation of cotton knitted fabric by gamma radiation: A new approach. Carbohydr. Polym. 2015, 120, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Harifi, T.; Montazer, M. A review on textile sonoprocessing: A special focus on sonosynthesis of nanomaterials on textile substrates. Ultrason. Sonochem. 2015, 23, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, S.R. Chemical Technology in the Pre-Treatment Processes of Textiles; Elsevier: Amsterdam, The Netherlands, 1999; Volume 12. [Google Scholar]
- Anon. APEOs and NPEOs in Textiles. Available online: https://oecotextiles.wordpress.com/2013/01/24/apeos-and-npeos-in-textiles-2/ (accessed on 21 April 2019).
- Hannan, M.A.; Haque, P.; Kabir, S.F.; Rahman, M.M. Chemical-Free Scouring and Bleaching of Cotton Knit Fabric for Optimum Dyeing Performance. Cloth. Text. Res. J. 2019. [Google Scholar] [CrossRef]
- Hannan, M.A.; Haque, P.; Kabir, S.F.; Rahman, M.M. Scope of Sustainable Pretreatment of Cotton Knit Fabric Avoiding Major Chemicals. J. Nat. Fibers 2018. [Google Scholar] [CrossRef]
- Niaz, A.; Malik, Q.J.; Muhammad, S.; Shamim, T.; Asghar, S. Bioscouring of cellulosic textiles. Coloration Technol. 2011, 127, 211–216. [Google Scholar] [CrossRef]
- Tzanov, T.; Basto, C.; Gübitz, G.M.; Cavaco-Paulo, A. Laccases to improve the whiteness in a conventional bleaching of cotton. Macromol. Mater. Eng. 2003, 288, 807–810. [Google Scholar] [CrossRef]
- Buschle-Diller, G.; Yang, X.D.; Yamamoto, R. Enzymatic bleaching of cotton fabric with glucose oxidase. Text. Res. J. 2001, 71, 388–394. [Google Scholar] [CrossRef]
- Abdel-Halim, E.; Al-Deyab, S.S. Low temperature bleaching of cotton cellulose using peracetic acid. Carbohydr. Polym. 2011, 86, 988–994. [Google Scholar] [CrossRef]
- Tomasino, C. Chemistry & Technology of Fabric Preparation & Finishing; NC State University: Raleigh, NC, USA, 1992. [Google Scholar]
- Afreen, S. Developing a new combination and proportion of chemicals for the production of laundry detergent at low cost in context of Bangladesh. J. Chem. Eng. 2011, 26, 50–53. [Google Scholar] [CrossRef]
- Splitstoser, J.C.; Dillehay, T.D.; Wouters, J.; Claro, A. Early pre-Hispanic use of indigo blue in Peru. Sci. Adv. 2016, 2, e1501623. [Google Scholar] [CrossRef]
- Mahapatra, N. Textile Dyes; WPI Publishing: Delhi, Indian, 2016. [Google Scholar]
- Zaharia, C.; Suteu, D.; Muresan, A.; Muresan, R.; Popescu, A. Textile wastewater treatment by homogenous oxidation with hydrogen peroxide. Environ. Eng. Manag. J. 2009, 8, 1359–1369. [Google Scholar] [CrossRef]
- Christie, R.M. Environmental Aspects of Textile Dyeing; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Bhuiyan, M.R.; Ali, A.; Islam, A.; Hannan, M.; Kabir, S.F.; Islam, M. Coloration of polyester fiber with natural dye henna (Lawsonia inermis L.) without using mordant: A new approach towards a cleaner production. Fash. Text. 2018, 5, 2. [Google Scholar] [CrossRef]
- Shahid, M.; Mohammad, F. Perspectives for natural product based agents derived from industrial plants in textile applications—A review. J. Clean. Prod. 2013, 57, 2–18. [Google Scholar] [CrossRef]
- Saxena, S.; Raja, A. Natural dyes: Sources, chemistry, application and sustainability issues. In Roadmap to Sustainable Textiles and Clothing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 37–80. [Google Scholar]
- Yusuf, M.; Shabbir, M.; Mohammad, F. Natural colorants: Historical, processing and sustainable prospects. Nat. Prod. Bioprospect. 2017, 7, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Samanta, A.K.; Agarwal, P. Application of natural dyes on textiles. Indian J. Fibre Text. Res. 2009, 34, 384–399. [Google Scholar]
- Räisänen, R.; Nousiainen, P.; Hynninen, P.H. Emodin and dermocybin natural anthraquinones as high-temperature disperse dyes for polyester and polyamide. Text. Res. J. 2001, 71, 922–927. [Google Scholar] [CrossRef]
- Vankar, P.S.; Shanker, R.; Verma, A. Enzymatic natural dyeing of cotton and silk fabrics without metal mordants. J. Clean. Prod. 2007, 15, 1441–1450. [Google Scholar] [CrossRef]
- Chairat, M.; Bremner, J.B.; Samosorn, S.; Sajomsang, W.; Chongkraijak, W.; Saisara, A. Effects of additives on the dyeing of cotton yarn with the aqueous extract of Combretum latifolium Blume stems. Coloration Technol. 2015, 131, 310–315. [Google Scholar] [CrossRef]
- Mohammad, F. Natural colorants in the presence of anchors so-called mordants as promising coloring and antimicrobial agents for textile materials. ACS Sustain. Chem. Eng. 2015, 3, 2361–2375. [Google Scholar]
- Siva, R. Status of natural dyes and dye-yielding plants in India. Curr. Sci. 2007, 92, 916–925. [Google Scholar]
- Hebeish, A.; Kamel, M.; Helmy, H.; El Hawary, N. Science-based options for application of cellulase biotreatment and reactive dyeing to cotton fabrics. Life Sci. J. 2013, 10, 3281–3289. [Google Scholar]
- Boström, M.; Micheletti, M. Introducing the sustainability challenge of textiles and clothing. J. Consum. Policy 2016, 39, 367–375. [Google Scholar] [CrossRef]
- Samanta, K.K.; Basak, S.; Chattopadhyay, S. Environment-friendly textile processing using plasma and UV treatment. In Roadmap to Sustainable Textiles and Clothing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 161–201. [Google Scholar]
- Sarmadi, M. Advantages and disadvantages of plasma treatment of textile materials. In Proceedings of the 21st International Symposium on Plasma Chemistry (ISPC 21), Queensland, Australia, 4–9 August 2013. [Google Scholar]
- Annapoorani, S.G. Social Sustainability in Textile Industry. In Sustainability in the Textile Industry; Springer: Berlin/Heidelberg, Germany, 2017; pp. 57–78. [Google Scholar]
- Imperatives, S. Report of the World Commission on Environment and Development: Our common future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Vallance, S.; Perkins, H.C.; Dixon, J.E. What is social sustainability? A clarification of concepts. Geoforum 2011, 42, 342–348. [Google Scholar] [CrossRef]
- Sudha, B.; Meenaxi, T. Occupational health hazards in textiles industry. Asian J. Home Sci. 2014, 9, 267–271. [Google Scholar]
- Ahmed, S.; Tapley, K.; Clemett, A.; Chadwick, M. Health and Safety in the Textile Dyeing Industry; Genesis (Pvt.) Ltd.: Dhaka, Bangladesh, 1998; Volume 80. [Google Scholar]
- Gonzales, C.A.; Riboli, E.; Lopez-Abente, G. Bladder cancer among workers in the textile industry: Results of a spanish case-control study. Am. J. Ind. Med. 1988, 14, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Singh, Z.; Chadha, P. Textile industry and occupational cancer. J. Occup. Med. Toxicol. 2016, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Newhouse, M. Mortality study of bleachers and dyers. Ann. Occup. Hyg. 1978, 21, 293–296. [Google Scholar] [PubMed]
- Morikawa, Y.; Shiomi, K.; Ishihara, Y.; Matsuura, N. Triple primary cancers involving kidney, urinary bladder, and liver in a dye worker. Am. J. Ind. Med. 1997, 31, 44–49. [Google Scholar] [CrossRef]
- Wynder, E.L.; Onderdonk, J.; Mantel, N. An epidemiological investigation of cancer of the bladder. Cancer 1963, 16, 1388–1407. [Google Scholar] [CrossRef]
- De Roos, A.; Ray, R.; Gao, D.; Wernli, K.; Fitzgibbons, E.; Ziding, F.; Astrakianakis, G.; Thomas, D.; Checkoway, H. Colorectal cancer incidence among female textile workers in Shanghai, China: A case-cohort analysis of occupational exposures. Cancer Causes Control 2005, 16, 1177–1188. [Google Scholar] [CrossRef]
- Li, W.; Ray, R.; Gao, D.; Fitzgibbons, E.; Seixas, N.; Camp, J.; Wernli, K.; Astrakianakis, G.; Feng, Z.; Thomas, D. Occupational risk factors for nasopharyngeal cancer among female textile workers in Shanghai, China. Occup. Environ. Med. 2006, 63, 39–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nodoushan, M.S.; Mehrparvar, A.H.; Loukzadeh, Z.; Rahimian, M. Evaluation of respiratory system in textile-dyeing workers. Med J. Islamic Repub. Iran 2014, 28, 88. [Google Scholar]
- Nilsson, R.; Nordlinder, R.; Wass, U.; Meding, B.; Belin, L. Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes. Occup. Environ. Med. 1993, 50, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Soni, B.P.; Sherertz, E.F. Contact dermatitis in the textile industry: A review of 72 patients. Am. J. Contact Dermat. 1996, 7, 226–230. [Google Scholar] [PubMed]
- Singh, Z. Health Status of Textile Industry Workers: Prevalence and Socioeconomic Correlates of Different Health Problems. Public Health Prev. Med. 2015, 1, 137–143. [Google Scholar]
- Upadhyay, K.K.; Pandey, A.C. Occupational exposure and awareness of occupational safety and health among cloth dyeing workers in Jaipur India. Iran. J. Health Saf. Environ. 2016, 3, 540–546. [Google Scholar]
- Cetışlı Korkmaz, N.; Kirdi, N. Pain and occupational risk factors in textile industry workers. Pain Clin. 2003, 15, 219–223. [Google Scholar] [CrossRef]
- Biswas, G.; Bhattacharya, A.; Bhattacharya, R. Occupational health hazards among yarn dyeing workers of Santipur and Phulia in the Nadia district of West Bengal. Int. J. Med Sci. Public Health 2018, 7, 365–371. [Google Scholar] [CrossRef]
- Woolf, A.D. Health hazards for children at work. J. Toxicol. Clin. Toxicol. 2002, 40, 477–482. [Google Scholar] [CrossRef]
- Rajapakshe, W. An analysis of major factors affecting labor turnover in the apparel industry in Sri Lanka: Policy Alternations for Solving the Problem. Int. J. Acad. Res. Econ. Manag. Sci. 2018, 7, 214–231. [Google Scholar]
- Ahlawat, V.; Renu. An Analysis of Growth and Association between Labour Productivity and Wages in Indian Textile Industry. Manag. Labour Stud. 2018, 43, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.N.; Alias, R.B.; Azim, M.T. Social Compliance Factors (SCF) Affecting Employee Productivity (EP): An Empirical Study on RMG Industry in Bangladesh. Pac. Bus. Rev. Int. 2018, 10, 87–96. [Google Scholar]
- Menzel, A.; Woodruff, C. Gender Wage Gaps and Worker Mobility: Evidence from the Garment Sector in Bangladesh; National Bureau of Economic Research: Cambridge, MA, USA, 2019. [Google Scholar]
- Srivastava, P. The Political Economy of the Textile Industry and Its Labor. In The Well-Being of the Labor Force in Colonial Bombay; Springer: Berlin/Heidelberg, Germany, 2018; pp. 29–67. [Google Scholar]
- Duval, A.; Partiti, E. The UN Guiding Principles on Business and Human Rights in (National) Action: The Dutch Agreement on Sustainable Garment and Textile. In Netherlands Yearbook of International Law 2017; Springer: Berlin/Heidelberg, Germany, 2018; pp. 381–409. [Google Scholar]
- Kumar, V.; Agrawal, T.K.; Wang, L.; Chen, Y. Contribution of traceability towards attaining sustainability in the textile sector. Text. Cloth. Sustain. 2017, 3, 5. [Google Scholar] [CrossRef]
- LoMonaco-Benzing, R.; Ha-Brookshire, J. Sustainability as social contract: Textile and apparel professionals’ value conflicts within the corporate moral responsibility spectrum. Sustainability 2016, 8, 1278. [Google Scholar] [CrossRef]
- Gopalakrishnan, D. The rise of sustainability in textile manufacturing life cycle. In Sustainability in Fashion and Apparels; WPI Publishing: Delhi, India, 2018; pp. 66–83. [Google Scholar]
- Harris, F.; Roby, H.; Dibb, S. Sustainable clothing: Challenges, barriers and interventions for encouraging more sustainable consumer behaviour. Int. J. Consum. Stud. 2016, 40, 309–318. [Google Scholar] [CrossRef]
- Kong, H.M.; Ko, E.; Chae, H.; Mattila, P. Understanding fashion consumers’ attitude and behavioral intention toward sustainable fashion products: Focus on sustainable knowledge sources and knowledge types. J. Glob. Fash. Mark. 2016, 7, 103–119. [Google Scholar] [CrossRef]
- Engle, K.J.; Nelson, A.; Zhao, Z.; Chi, T. Impact of Life Cycle Assessment (LCA) Labelling on US Consumers’ Purchase intentions toward Sustainable Denim Jeans. In Proceedings of the 2018 International Textile and Apparel Association (ITAA) Annual Conference Proceedings, Cleveland, OH, USA, 5–9 November 2018. [Google Scholar]
- Moon, K.K.-L.; Lai, C.S.-Y.; Lam, E.Y.-N.; Chang, J.M. Popularization of sustainable fashion: Barriers and solutions. J. Text. Inst. 2015, 106, 939–952. [Google Scholar] [CrossRef]
- Desore, A.; Narula, S.A. An overview on corporate response towards sustainability issues in textile industry. Environ. Dev. Sustain. 2018, 20, 1439–1459. [Google Scholar] [CrossRef]
- Austgulen, M.H. Environmentally Sustainable Textile Consumption—What Characterizes the Political Textile Consumers? J. Consum. Policy 2016, 39, 441–466. [Google Scholar] [CrossRef]
- Dreyer, H.; Botha, E.; Van der Merwe, D.; Le Roux, N.; Ellis, S. Consumers’ understanding and use of textile eco-labels during pre-purchase decision making. J. Consum. Sci. 2016, 1, 1–19. [Google Scholar]
- Siddiqui, J.; Uddin, S. Human rights disasters, corporate accountability and the state: Lessons learned from Rana Plaza. Account. Audit. Account. J. 2016, 29, 679–704. [Google Scholar] [CrossRef]
- Nasir, S.B.; Sarker, M.M.; Kabir, S.F. CSR as a way of employee satisfaction and profit maximization. Bangladesh Text. Today 2014, 7, 1–7. [Google Scholar]
- Bauman, C.W.; Skitka, L.J. Corporate social responsibility as a source of employee satisfaction. Res. Organ. Behav. 2012, 32, 63–86. [Google Scholar] [CrossRef] [Green Version]
- Valentine, S.; Fleischman, G. Ethics programs, perceived corporate social responsibility and job satisfaction. J. Bus. Ethics 2008, 77, 159–172. [Google Scholar] [CrossRef]
- Albinger, H.S.; Freeman, S.J. Corporate social performance and attractiveness as an employer to different job seeking populations. J. Bus. Ethics 2000, 28, 243–253. [Google Scholar] [CrossRef]
- Fombrun, C.; Shanley, M. What’s in a name? Reputation building and corporate strategy. Acad. Manag. J. 1990, 33, 233–258. [Google Scholar]
- Branco, M.C.; Rodrigues, L.L. Corporate social responsibility and resource-based perspectives. J. Bus. Ethics 2006, 69, 111–132. [Google Scholar] [CrossRef]
- Nierstrasz, V.; Cavaco-Paulo, A. Advances in Textile Biotechnology; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Anderson, K. Natural Dyes. Available online: http://www.tc2.com/newsletter/2009/081909.html#thr (accessed on 10 August 2019).
- Plummy Fashions. Available online: http://plummyfashions.com/environment/ (accessed on 26 August 2019).
- Hoque, M.S.; Chakraborty, S.; Hossain, M.F.; Alam, M.M. Knit Fabric Scouring with Soapnut: A Sustainable Approach towards Textile Pre-Treatment. Am. J. Environ. Prot. 2018, 7, 19–22. [Google Scholar] [CrossRef]
Processes | Reagents/Chemicals Used | Effluents Generated |
---|---|---|
Sizing | Starch, waxes, carboxymethyl, cellulose (CMC), polyvinyl alcohol (PVA), wetting agents | High in biological oxygen demand (BOD), Chemical oxygen demand (COD) |
Desizing | Starch, CMC, PVA, fats, waxes, Pectin | High in BOD, COD, suspended solid (SS), Dissolved Solid (DS) |
Bleaching | Sodium hypochlorite, Cl2, NaOH, H2O2, acids, surfactant, NaSiO3, sodium phosphate, cotton fiber | High alkalinity, high SS |
Mercerizing | Sodium hydroxide, cotton wax | High pH, low BOD, high DS |
Dyeing | Dyestuffs urea, reducing agents, oxidizing agents, acetic acid, detergents, wetting agents | Strong colored, high BOD, high DS, low SS, low heavy metals, high salinity, electric conductivity |
Dye Type | Unfixed Dye % |
---|---|
Azoic dyes | 5–10 |
Reactive dyes | 20–50 |
Direct dyes | 5–20 |
Pigment | 1 |
Vat dyes | 5–20 |
Sulphur dyes | 30–40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, S.M.F.; Chakraborty, S.; Hoque, S.M.A.; Mathur, K. Sustainability Assessment of Cotton-Based Textile Wet Processing. Clean Technol. 2019, 1, 232-246. https://doi.org/10.3390/cleantechnol1010016
Kabir SMF, Chakraborty S, Hoque SMA, Mathur K. Sustainability Assessment of Cotton-Based Textile Wet Processing. Clean Technologies. 2019; 1(1):232-246. https://doi.org/10.3390/cleantechnol1010016
Chicago/Turabian StyleKabir, S M Fijul, Samit Chakraborty, S M Azizul Hoque, and Kavita Mathur. 2019. "Sustainability Assessment of Cotton-Based Textile Wet Processing" Clean Technologies 1, no. 1: 232-246. https://doi.org/10.3390/cleantechnol1010016
APA StyleKabir, S. M. F., Chakraborty, S., Hoque, S. M. A., & Mathur, K. (2019). Sustainability Assessment of Cotton-Based Textile Wet Processing. Clean Technologies, 1(1), 232-246. https://doi.org/10.3390/cleantechnol1010016