Effects of Different Tillage Systems on Soil Properties and Crop Yield in a Mollisol After 9, 22, and 25 Years of Implementation in Chapingo, Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. System Design and Management
2.3. Experimental Design
2.4. Sample Selection and Processing
2.5. Statistical Analysis
3. Results
3.1. Physicochemical and Biochemical Properties
Long-Term Dynamics
3.2. Physical Properties
3.3. Productive Yield
4. Discussion
4.1. Physical Properties
4.2. Physicochemical Properties
4.2.1. pH
4.2.2. Electrical Conductivity (EC)
4.2.3. Cation Exchange Capacity (CEC)
4.2.4. Exchangeable Potassium (EK)
4.3. Biochemical Properties
4.3.1. Soil Organic Carbon (SOC)
4.3.2. Total Nitrogen (TN)
4.3.3. Available Phosphorus (AP)
4.4. Yield
4.5. Relationship Between Yield and Soil Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AF | Air Fraction |
| ANOVA | Analysis of Variance |
| AP | Available Phosphorus |
| BD | Bulk Density |
| BY | Biological Yield |
| CEC | Cation Exchange Capacity |
| CT | Conventional Tillage |
| DM | Dry Matter |
| EC | Electrical Conductivity |
| EK | Exchangeable Potassium |
| GM | Gravimetric Moisture |
| GY | Grain Yield |
| HI | Harvest Index |
| MCT | Minimum Conservation Tillage |
| NT | No-Tillage |
| PD | Population Density |
| Por | Porosity |
| SOC | Soil Organic Carbon |
| SOM | Soil Organic Matter |
| TN | Total Nitrogen |
| UACh | Universidad Autónoma Chapingo |
| VM | Volumetric Moisture |
| VR | Void Ratio |
References
- Denardin, L.G.d.O.; Carmona, F.d.C.; Veloso, M.G.; Martins, A.P.; de Freitas, T.F.S.; Carlos, F.S.; Marcolin, É.; Camargo, F.A.d.O.; Anghinoni, I. No-Tillage Increases Irrigated Rice Yield through Soil Quality Improvement along Time. Soil Tillage Res. 2019, 186, 64–69. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q. Residue Retention and Minimum Tillage Improve Physical Environment of the Soil in Croplands: A Global Meta-Analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Panday, D.; Nkongolo, N.V. No Tillage Improved Soil Pore Space Indices under Cover Crop and Crop Rotation. Soil Syst. 2021, 5, 38. [Google Scholar] [CrossRef]
- Adil, M.; Lu, S.; Yao, Z.; Zhang, C.; Lu, H.; Bashir, S.; Maitah, M.; Gul, I.; Razzaq, S.; Qiu, L. No-Tillage Enhances Soil Water Storage, Grain Yield and Water Use Efficiency in Dryland Wheat (Triticum aestivum) and Maize (Zea mays) Cropping Systems: A Global Meta-Analysis. Funct. Plant Biol. 2024, 51, FP23267. [Google Scholar] [CrossRef] [PubMed]
- Shaxson, F.; Barber, R. Optimizacion de La Humedad Del Suelo Para La Producción Vegetal; FAO: Roma, Italy, 2005. [Google Scholar]
- Romaneckas, K.; Kimbirauskienė, R.; Sinkevičienė, A. Impact of Tillage Intensity on Planosol Bulk Density, Pore Size Distribution, and Water Capacity in Faba Bean Cultivation. Agronomy 2022, 12, 2311. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Guo, Z.; Li, J.; Tian, C.; Hua, D.; Shi, C.-D.; Wang, H.-Y.; Han, J.; Xu, Y. Effects of Conservation Tillage on Soil Physicochemical Properties and Crop Yield in an Arid Loess Plateau, China. Sci. Rep. 2020, 10, 4716. [Google Scholar] [CrossRef]
- Behrends Kraemer, F.; Morrás, H.; Fernández, P.L.; Duval, M.; Galantini, J.; Garibaldi, L. Influence of Edaphic and Management Factors on Soils Aggregates Stability under No-Tillage in Mollisols and Vertisols of the Pampa Region, Argentina. Soil Tillage Res. 2021, 209, 104901. [Google Scholar] [CrossRef]
- Fonteyne, S.; Burgueño, J.; Albarrán Contreras, B.A.; Andrio Enríquez, E.; Castillo Villaseñor, L.; Enyanche Velázquez, F.; Escobedo Cruz, H.; Espidio Balbuena, J.; Espinosa Solorio, A.; Garcia Meza, P.; et al. Effects of Conservation Agriculture on Physicochemical Soil Health in 20 Maize-based Trials in Different Agro-ecological Regions across Mexico. Land Degrad. Dev. 2021, 32, 2242–2256. [Google Scholar] [CrossRef]
- Rashmi, M.R.; Gopalakrishnan, M.; Rajeswari, R.; Senthil, K.M.; Kavitha, M.; Maragatham, S. Resilient Soils for a Changing Climate: Navigating the Future of Sustainable Agriculture. Plant Sci. Today 2024, 11, 1–12. [Google Scholar] [CrossRef]
- Fontana, M.; Berner, A.; Mäder, P.; Lamy, F.; Boivin, P. Soil Organic Carbon and Soil Bio-Physicochemical Properties as Co-Influenced by Tillage Treatment. Soil Sci. Soc. Am. J. 2015, 79, 1435–1445. [Google Scholar] [CrossRef]
- Saini, A.; Manuja, S.; Singh, G.; Bindra, A.; Sahoo, C.; Singh, A.; Yadi, R.; Johnson, R.; Joel, J.; Fayezizadeh, M.R. Effect of Cultivation Practices on Productivity and Nutrient Dynamics of Wheat Varieties under Northern Hill Zone of India. BMC Plant Biol. 2025, 25, 497. [Google Scholar] [CrossRef]
- Cakpo, S.S.; Aostăcioaei, T.G.; Mihu, G.; Molocea, C.-C.; Ghelbere, C.; Ursu, A.; Țopa, D. Long-Term Effect of Tillage Practices on Soil Physical Properties and Winter Wheat Yield in North-East Romania. Agriculture 2025, 15, 989. [Google Scholar] [CrossRef]
- Pöhlitz, J.; Schlüter, S.; Rücknagel, J. Short-term Effects of Double-layer Ploughing Reduced Tillage on Soil Structure and Crop Yield. Soil Use Manag. 2024, 40, e13043. [Google Scholar] [CrossRef]
- Singh, K.; Mishra, A.; Singh, B.; Singh, R.; Patra, D. Tillage Effects on Crop Yield and Physicochemical Properties of Sodic Soils. Land Degrad. Dev. 2016, 27, 223–230. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, S.; Sun, Z.; Wang, H.; Qu, S.; Lei, N.; He, J.; Dong, Q. Tillage Effects on Soil Properties and Crop Yield after Land Reclamation. Sci Rep 2021, 11, 4611. [Google Scholar] [CrossRef]
- Yildirim, Y.; Kuş, E. Determination of Some Soil Characteristics Depending on Conventional and Reduced Tillage Circumstances. J. Inst. Sci. Technol. 2017, 7, 51–61. [Google Scholar] [CrossRef]
- Sun, L.; Wang, R.; Li, J.; Wang, Q.; Lyu, W.; Wang, X.; Cheng, K.; Mao, H.; Zhang, X. Reasonable Fertilization Improves the Conservation Tillage Benefit for Soil Water Use and Yield of Rain-Fed Winter Wheat: A Case Study from the Loess Plateau, China. Field Crops Res. 2019, 242, 107589. [Google Scholar] [CrossRef]
- Badagliacca, G.; Lo Presti, E.; Ferrarini, A.; Fornasier, F.; Laudicina, V.A.; Monti, M.; Preiti, G. Early Effects of No-Till Use on Durum Wheat (Triticum durum Desf.): Productivity and Soil Functioning Vary between Two Contrasting Mediterranean Soils. Agronomy 2022, 12, 3136. [Google Scholar] [CrossRef]
- Zhou, M.; Xiao, Y.; Zhang, X.; Xiao, L.; Ding, G.; Cruse, R.; Liu, X. Fifteen Years of Conservation Tillage Increases Soil Aggregate Stability by Altering the Contents and Chemical Composition of Organic Carbon Fractions in Mollisols. Land Degrad. Dev. 2022, 33, 2932–2944. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, D. Global Meta-Analysis Suggests That No-Tillage Favourably Changes Soil Structure and Porosity. Geoderma 2022, 405, 115443. [Google Scholar] [CrossRef]
- Han, Z.; Wu, X.; Liang, A.; Li, S.; Gao, H.; Song, X.; Liu, X.; Jia, A.; Degré, A. Conservation Tillage Enhances the Sequestration and Iron-Mediated Stabilization of Aggregate-Associated Organic Carbon in Mollisols. Catena 2024, 243, 108197. [Google Scholar] [CrossRef]
- Liao, K.; Gao, Z.; Zhu, Q.; Zhu, J.; Lv, L. Impact of Conservation Tillage on the Distribution of Soil Nutrients with Depth. Soil Tillage Res. 2022, 225, 105527. [Google Scholar] [CrossRef]
- Wen, L.; Peng, Y.; Zhou, Y.; Cai, G.; Lin, Y.; Li, B. Effects of Conservation Tillage on Soil Enzyme Activities of Global Cultivated Land: A Meta-Analysis. J. Environ. Manag. 2023, 345, 118904. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.; Karlen, D.; Veum, K.; Moorman, T.; Cambardella, C. Biological Soil Health Indicators Respond to Tillage Intensity: A US Meta-Analysis. Geoderma 2020, 369, 114335. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, W.; Cao, W.; Jiao, J.; Yin, Z.; Xu, H. Response of Erosion Reduction Effect of Typical Soil and Water Conservation Measures in Cropland to Rainfall and Slope Gradient Changes and Their Applicable Range in the Chinese Mollisols Region, Northeast China. Int. Soil Water Conserv. Res. 2023, 11, 251–262. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, J.; Ji, W.; Sun, J.; Huo, D.-Y.; Liu, Y.; Chen, H. Effects of Crop Residue Managements and Tillage Practices on Variations of Soil Penetration Resistance in Sloping Farmland of Mollisols. Int. J. Agric. Biol. Eng. 2021, 15, 164–171. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, S.; Sun, J.; Liu, Z.; He, X.; Qiao, J. Effects of Tillage and Sowing Methods on Soil Physical Properties and Corn Plant Characters. Agriculture 2023, 13, 600. [Google Scholar] [CrossRef]
- Liu, C.; Si, B.; Zhao, Y.; Wu, Z.; Lu, X.; Chen, X.; Han, X.; Zhu, Y.; Zou, W. Drivers of Soil Quality and Maize Yield under Long-Term Tillage and Straw Incorporation in Mollisols. Soil Tillage Res. 2025, 246, 106360. [Google Scholar] [CrossRef]
- Duran, A.; Morrás, H.; Studdert, G.; Liu, X. Distribution, Properties, Land Use and Management of Mollisols in South America. Chin. Geogr. Sci. 2011, 21, 511–530. [Google Scholar] [CrossRef]
- Liu, X.; Burras, C.L.; Kravchenko, Y.S.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.; Zhang, X.; Cruse, R.M.; Yuan, X. Overview of Mollisols in the World: Distribution, Land Use and Management. Can. J. Soil Sci. 2012, 92, 383–402. [Google Scholar] [CrossRef]
- Casas-Andreu, G. Climas Del Estado de México, Escala 1:500000. Available online: http://geoportal.conabio.gob.mx/descargas/mapas/imagen/96/clima500kgw (accessed on 4 November 2025).
- Leyva-Mir, S.G.; González-Solano, C.M.; Rodríguez-Pérez, J.E.; Montalvo-Hernández, D. Comportamiento de Líneas Avanzadas de Tomate (Solanum lycopersicum L.) a Fitopatógenos En Chapingo, México. Rev. Chapingo Ser. Hortic. 2013, 19, 301–313. [Google Scholar] [CrossRef]
- SEMARNAT. Zonas de Granizadas. Available online: https://www.gits.igg.unam.mx/idea/inicio (accessed on 21 July 2024).
- SEMARNAT. Zonas de Heladas. Available online: https://www.gits.igg.unam.mx/idea/inicio (accessed on 20 July 2024).
- USDA. The Twelve Orders of Soil Taxonomy. Available online: https://www.nrcs.usda.gov/resources/education-and-teaching-materials/the-twelve-orders-of-soil-taxonomy (accessed on 31 July 2023).
- Cachón-Ayora, L.E.; Nery-Genes, H.; Cuanalo-de la Cerda, H.E. Los Suelos Del Área de Influencia de Chapingo (Rama de Suelos, Sección de Pedología); Secretaría de Agricultura y Ganadería, Colegio de Postgraduados, Escuela Nacional de Agricultura: Chapingo, Mexico, 1976. [Google Scholar]
- Dane, J.H.; Topp, G.C. (Eds.) Methods of Soil Analysis. Part 4: Physical Methods; Soil Science Society of America: Madison, WI, USA, 2002. [Google Scholar]
- Porta-Casanellas, J.; López-Acevedo-Reguerín, M.; Poch-Claret, R.M. Introducción a la Edafología: Uso y Protección del Suelo; Ediciones Mundi-Prensa: Madrid, Spain, 2008. [Google Scholar]
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). NOM-021-RECNAT-2000, Que Establece las Especificaciones de Fertilidad, Salinidad y Clasifi-cación de Suelos. Estudios, Muestreo y Análisis; Diario Oficial de la Federación: Ciudad de Mexico, Mexico, 2002; pp. 1–73. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org (accessed on 6 November 2024).
- Li, Y.; Li, Z.; Cui, S.; Zhang, Q. Trade-off between Soil PH, Bulk Density and Other Soil Physical Properties under Global No-Tillage Agriculture. Geoderma 2020, 361, 114099. [Google Scholar] [CrossRef]
- Chen, Y.; Tessier, S.; Rouffignat, J. Soil Bulk Density Estimation for Tillage Systems and Soil Textures. Trans. ASABE 1998, 41, 1601–1610. [Google Scholar] [CrossRef]
- Stošić, M.; Zebec, V.; Kluz, M.; Ravnjak, B.; Vinković, T.; Brozović, B. Soil Resistance and Bulk Density under Different Tillage System. Poljoprivreda 2020, 26, 17–24. [Google Scholar] [CrossRef]
- Ruis, S.; Blanco-Canqui, H. How Does No-till Affect Soil-Profile Distribution of Roots? Can. J. Soil Sci. 2024, 104, 350–361. [Google Scholar] [CrossRef]
- Moraes, M.; Debiasi, H.; Franchini, J.; Mastroberti, A.; Levien, R.; Leitner, D.; Schnepf, A. Soil Compaction Impacts Soybean Root Growth in an Oxisol from Subtropical Brazil. Soil Tillage Res. 2020, 200, 104611. [Google Scholar] [CrossRef]
- Javaheri, F.; Esfandiarpour-Boroujeni, I.; Kourki, H.; Farpoor, M.; Stewart, R. Rheological Evaluation of Soil Aggregate Microstructure and Stability across a Forested Catena. Geoderma 2021, 403, 115196. [Google Scholar] [CrossRef]
- Reynolds, W.; Drury, C.; Yang, X.; Tan, C. Optimal Soil Physical Quality Inferred through Structural Regression and Parameter Interactions. Geoderma 2008, 146, 466–474. [Google Scholar] [CrossRef]
- Corstanje, R.; Mercer, T.; Rickson, J.; Deeks, L.; Newell-Price, P.; Holman, I.; Kechavarsi, C.; Waine, T. Physical Soil Quality Indicators for Monitoring British Soils. Solid Earth 2016, 8, 1003–1016. [Google Scholar] [CrossRef]
- Gregory, A.S.; Watts, C.W.; Whalley, W.R.; Kuan, H.L.; Griffiths, B.S.; Hallett, P.D.; Whitmore, A.P. Physical Resilience of Soil to Field Compaction and the Interactions with Plant Growth and Microbial Community Structure. Eur. J. Soil Sci. 2007, 58, 1221–1232. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.; Zhan, N.; Wang, Z.; Li, S. Factors Contributing to Soil Acidification in the Past Two Decades in China. Environ. Earth Sci. 2023, 82, 1–12. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, X.; Sun, Y.; Yan, J.; Zhao, Y.; Chen, J. Soil Acidification and Factors Controlling Topsoil PH Shift of Cropland in Central China from 2008 to 2018. Geoderma 2022, 408, 115586. [Google Scholar] [CrossRef]
- Tian, D.; Niu, S. A Global Analysis of Soil Acidification Caused by Nitrogen Addition. Environ. Res. Lett. 2015, 10, 024019. [Google Scholar] [CrossRef]
- Bautista, F.; Bautista-Hernández, D.; Pacheco, A.; Goguitchaichvili, A.; Morales, J. An Automated Monitoring System of Urban Pollution Using Geochemical and Magnetic Parameters. Bol. De La Soc. Geol. Mex. 2023, 75, A100523. [Google Scholar] [CrossRef]
- Qi, J.-Y.; Jing, Z.-H.; He, C.; Liu, Q.-Y.; Wang, X.; Kan, Z.; Zhao, X.; Xiao, X.-P.; Zhang, H. Effects of Tillage Management on Soil Carbon Decomposition and Its Relationship with Soil Chemistry Properties in Rice Paddy Fields. J. Environ. Manag. 2020, 279, 111595. [Google Scholar] [CrossRef]
- Rahmati, M.; Eskandari, I.; Kouselou, M.; Feiziasl, V.; Mahdavinia, G.; Aliasgharzad, N.; McKenzie, B. Changes in Soil Organic Carbon Fractions and Residence Time Five Years after Implementing Conventional and Conservation Tillage Practices. Soil Tillage Res. 2020, 200, 104632. [Google Scholar] [CrossRef]
- Haynes, R.J.; Swift, R.S. Effects of Soil Acidification and Subsequent Leaching on Levels of Extractable Nutrients in a Soil. Plant Soil 1986, 95, 327–336. [Google Scholar] [CrossRef]
- Meng, C.; Tian, D.; Zeng, H.; Li, Z.; Yi, C.; Niu, S. Global Soil Acidification Impacts on Belowground Processes. Environ. Res. Lett. 2019, 14, 074003. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, J.; Gao, S.; Li, T.; Li, Y.; Vinay, N.; Mo, F.; Liao, Y.; Wen, X.-X. Conservation Tillage Enhances Crop Productivity and Decreases Soil Nitrogen Losses in a Rainfed Agroecosystem of the Loess Plateau, China. J. Clean. Prod. 2020, 274, 122854. [Google Scholar] [CrossRef]
- Çelik, İ.; Günal, H.; Acar, M.; Gök, M.; Barut, Z.; Pamiralan, H. Long-Term Tillage and Residue Management Effect on Soil Compaction and Nitrate Leaching in a Typic Haploxerert Soil. Int. J. Plant Prod. 2017, 11, 131–149. [Google Scholar] [CrossRef]
- Wilson, C.; Keisling, T.; Miller, D.; Dillon, C.; Pearce, A.; Frizzell, D.; Counce, P. Tillage Influence on Soluble Salt Movement in Silt Loam Soils Cropped to Paddy Rice. Soil Sci. Soc. Am. J. 2000, 64, 1771–1776. [Google Scholar] [CrossRef]
- Liu, H.; Lv, H.; Chen, S.; Su, J.; Zhao, G.; Zhou, D.; Yang, M.; Hang, H.; Jia, H. Effects of Balancing Exchangeable Cations Ca, Mg, and K on the Growth of Tomato Seedlings (Solanum lycopersicum L.) Based on Increased Soil Cation Exchange Capacity. Agronomy 2024, 14, 629. [Google Scholar] [CrossRef]
- Ellerbrock, R.; Kaiser, M.; Gerke, H. Cation Exchange Capacity and Composition of Soluble Soil Organic Matter Fractions. Soil Sci. Soc. Am. J. 2008, 72, 1278–1285. [Google Scholar] [CrossRef]
- Ramos, F.; Dores, E.; Weber, O.; Beber, D.; Campelo, J.; Maia, J. Soil Organic Matter Doubles the Cation Exchange Capacity of Tropical Soil under No-till Farming in Brazil. J. Sci. Food Agric. 2018, 98, 3595–3602. [Google Scholar] [CrossRef]
- Hayashi, R.; Maie, N.; Wagai, R.; Hirano, Y.; Matsuda, Y.; Makita, N.; Mizoguchi, T.; Wada, R.; Tanikawa, T. An Increase of Fine-Root Biomass in Nutrient-Poor Soils Increases Soil Organic Matter but Not Soil Cation Exchange Capacity. Plant Soil 2023, 482, 89–110. [Google Scholar] [CrossRef]
- Sadiq, M.; Li, G.; Rahim, N.; Tahir, M. Sustainable Conservation Tillage Technique for Improving Soil Health by Enhancing Soil Physicochemical Quality Indicators under Wheat Mono-Cropping System Conditions. Sustainability 2021, 13, 8177. [Google Scholar] [CrossRef]
- Wen, L.; Peng, Y.; Lin, Y.; Zhou, Y.; Cai, G.; Li, B.; Chen, B. Conservation Tillage Increases Nutrient Accumulation by Promoting Soil Enzyme Activity: A Meta-Analysis. Plant Soil 2024, 508, 531–546. [Google Scholar] [CrossRef]
- Kypritidou, Z.; Doulgeris, C.; Tziritis, E.; Kinigopoulou, V.; Jellali, S.; Jeguirim, M. Geochemical Modelling of Inorganic Nutrients Leaching from an Agricultural Soil Amended with Olive-Mill Waste Biochar. Agronomy 2022, 12, 480. [Google Scholar] [CrossRef]
- Yakovleva, L.; Danilov, D.; Nikolaeva, E. Effect of Mineral and Organic Fertilizers on Potassium Leaching in Sandy Loam Soils. IOP Conf. Ser. Mater. Sci. Eng. 2020, 828, 012032. [Google Scholar] [CrossRef]
- Kaewu, N. Effects of Agricultural Potassium Fertilizer Application on Soil Carbon Cycle. Acad. J. Sci. Technol. 2024, 11, 122–125. [Google Scholar] [CrossRef]
- Colunga, S.; Wahab, L.; Cabo, A.F.; Pereira, E. Carbon Sequestration through Conservation Tillage in Sandy Soils of Arid and Semi-Arid Climates: A Meta-Analysis. Soil Tillage Res. 2024, 245, 106310. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Chang, S.; Cui, S.; Jagadamma, S.; Zhang, Q.; Cai, Y. Residue Retention Promotes Soil Carbon Accumulation in Minimum Tillage Systems: Implications for Conservation Agriculture. Sci. Total Environ. 2020, 740, 140147. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, J.F. La Materia Orgánica Del Suelo; Universidad Autónoma de Chapingo: Texcoco, Mexico, 2017. [Google Scholar]
- Chung, H.; Ngo, K.; Plante, A.; Six, J. Evidence for Carbon Saturation in a Highly Structured and Organic-Matter-Rich Soil. Soil Sci. Soc. Am. J. 2010, 74, 130–138. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, T.; Shi, L.; Kurganova, I.; De Gerenyu, V.L.; Kalinina, O.; Giani, L.; Kuzyakov, Y. Organic Carbon Accumulation and Microbial Activities in Arable Soils after Abandonment: A Chronosequence Study. Geoderma 2023, 435, 116496. [Google Scholar] [CrossRef]
- Kader, M.; Jahangir, M.; Islam, M.; Begum, R.; Nasreen, S.; Islam, M.; Mahmud, A.; Haque, M.; Bell, R.; Jahiruddin, M. Long-Term Conservation Agriculture Increases Nitrogen Use Efficiency by Crops, Land Equivalent Ratio and Soil Carbon Stock in a Subtropical Rice-Based Cropping System. Field Crops Res. 2022, 287, 108636. [Google Scholar] [CrossRef]
- Yuan, J.-L.; Liang, Y.; Zhuo, M.; Sadiq, M.; Liu, L.; Wu, J.; Xu, G.; Liu, S.; Li, G.; Yan, L. Soil Nitrogen and Carbon Storages and Carbon Pool Management Index under Sustainable Conservation Tillage Strategy. Front. Ecol. Evol. 2022, 10, 1082624. [Google Scholar] [CrossRef]
- Mukherjee, S.; Sarkar, D.; Mandal, B.; Kanthal, S.; Ghosh, S.; Sahu, B.; Singh, P.; Dey, A.; Jaison, M.; Dutta, J.; et al. Conservation Agriculture Influences Soil Nitrogen Availability in the Lower Indo-Gangetic Plains. Plant Soil 2024, 508, 731–747. [Google Scholar] [CrossRef]
- Han, B.; He, Y.; Chen, J.; Wang, Y.; Shi, L.; Lin, Z.; Yu, L.; Wei, X.; Zhang, W.; Geng, Y.; et al. Different Microbial Functional Traits Drive Bulk and Rhizosphere Soil Phosphorus Mobilization in an Alpine Meadow after Nitrogen Input. Sci. Total Environ. 2024, 931, 172904. [Google Scholar] [CrossRef]
- Yang, J.; Xin, X.; Zhang, X.; Zhong, X.; Yang, W.; Ren, G.; Zhu, A. Effects of Soil Physical and Chemical Properties on Phosphorus Adsorption-Desorption in Fluvo-Aquic Soil under Conservation Tillage. Soil Tillage Res. 2023, 234, 105840. [Google Scholar] [CrossRef]
- Hua, H.; Shi, Y.-X.-X.; Wang, R.; Hong, Z.; Jiang, J. Phosphorus Adsorption, Availability, and Potential Loss Characteristics in an Ultisol-derived Paddy Soil Chronosequence, Using a Stirred-flow Chamber Study. Soil Sci. Soc. Am. J. 2023, 87, 485–497. [Google Scholar] [CrossRef]
- Salas, A.; Elliott, E.; Westfall, D.; Cole, C.; Six, J. The Role of Particulate Organic Matter in Phosphorus Cycling. Soil Sci. Soc. Am. J. 2003, 67, 181–189. [Google Scholar] [CrossRef]
- Li, H.; Song, C.; Cao, X.; Zhou, Y.-Y. The Phosphorus Release Pathways and Their Mechanisms Driven by Organic Carbon and Nitrogen in Sediments of Eutrophic Shallow Lakes. Sci. Total Environ. 2016, 572, 280–288. [Google Scholar] [CrossRef]
- Schaap, K.; Fuchslueger, L.; Hoosbeek, M.; Hofhansl, F.; Martins, N.; Valverde-Barrantes, O.; Hartley, I.; Lugli, L.; Quesada, C. Litter Inputs and Phosphatase Activity Affect the Temporal Variability of Organic Phosphorus in a Tropical Forest Soil in the Central Amazon. Plant Soil 2021, 469, 423–441. [Google Scholar] [CrossRef]
- Larney, F.; Kladivko, E. Soil Strength Properties Under Four Tillage Systems at Three Long-Term Study Sites in Indiana. Soil Sci. Soc. Am. J. 1989, 53, 1539–1545. [Google Scholar] [CrossRef]
- Salem, H.; Valero, C.; Muñoz, M.; Rodríguez, M.G.; Silva, L.L. Short-Term Effects of Four Tillage Practices on Soil Physical Properties, Soil Water Potential, and Maize Yield. Geoderma 2015, 237, 60–70. [Google Scholar] [CrossRef]
- Becker, R.K.; Barbosa, E.; Giarola, N.; Kochinski, E.; Povh, F.; Paula, A.; Cherubin, M. Mechanical Intervention in Compacted No-Till Soil in Southern Brazil: Soil Physical Quality and Maize Yield. Agronomy 2022, 12, 2281. [Google Scholar] [CrossRef]
- Acquah, K.; Chen, Y. Soil Compaction from Wheel Traffic under Three Tillage Systems. Agriculture 2022, 12, 219. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, R. Combining Ability for Harvest Index and Its Components in Wheat. Indian. J. Genet. Plant Breed. 1983, 43, 229–231. [Google Scholar]
- Hühn, M. Character Associations Among Grain Yield, Biological Yield and Harvest Index. J. Agron. Crop. Sci. 1991, 166, 308–317. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Kundu, S.; Pandey, S.; Singh, K.; Gupta, H. Tillage and Irrigation Effects on Crop Yields and Soil Properties under the Rice–Wheat System in the Indian Himalayas. Agric. Water Manag. 2008, 95, 993–1002. [Google Scholar] [CrossRef]
- Farahani, E.; Emami, H.; Forouhar, M. Effects of Tillage Systems on Soil Organic Carbon and Some Soil Physical Properties. Land Degrad. Dev. 2022, 33, 1307–1320. [Google Scholar] [CrossRef]
- Souri, M.K.; Hatamian, M. Aminochelates in Plant Nutrition: A Review. J. Plant Nutr. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Kladivko, E.J.; Griffith, D.R.; Mannering, J.V. Conservation Tillage Effects on Soil Properties and Yield of Corn and Soya Beans in Indiana. Soil Tillage Res. 1986, 8, 277–287. [Google Scholar] [CrossRef]
- Miller, J.; Larney, F.; Lindwall, C. Physical Properties of a Chernozemic Clay Loam Soil under Long-Term Conventional Tillage and No-Till. Can. J. Soil Sci. 1999, 79, 325–331. [Google Scholar] [CrossRef]
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonella, A. Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat. Water 2019, 11, 484. [Google Scholar] [CrossRef]
- Ordoñez-Morales, K.D.; Cadena-Zapata, M.; Zermeño-González, A.; Campos-Magaña, S. Effect of Tillage Systems on Physical Properties of a Clay Loam Soil under Oats. Agriculture 2019, 9, 62. [Google Scholar] [CrossRef]
- Rücknagel, J.; Rademacher, A.; Götze, P.; Hofmann, B.; Christen, O. Uniaxial Compression Behaviour and Soil Physical Quality of Topsoils under Conventional and Conservation Tillage. Geoderma 2017, 286, 1–7. [Google Scholar] [CrossRef]




| Surface Depth (0–3 cm) | Arable Depth (15–18 cm) | Subsurface Depth (30–33 cm) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Year | Variable | CT | MCT | NT | CT | MCT | NT | CT | MCT | NT |
| 1999 | pH | 6.9 ± 0.2 aA | 7.0 ± 0.2 aA | 7.1 ± 0.2 aA | 7.1 ± 0.5 aA | 7.4 ± 0.5 aA | 7.6 ± 0.5 aA | 7.5 ± 0.4 aA | 7.4 ± 0.4 aA | 7.7 ± 0.4 aA |
| EC (dS m−1) | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
| SOC (%) | 1.5 ± 0.07 aA | 1.5 ± 0.07 aA | 1.4 ± 0.07 aA | 0.81 ± 0.07 bA | 0.77 ± 0.07 bA | 0.77 ± 0.07 bA | 0.71 ± 0.06 bA | 0.73 ± 0.06 bA | 0.89 ± 0.06 bA | |
| TN (%) | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
| Soil C/N | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
| AP (mg P kg−1) | 21 ± 4 aA | 20 ± 4 aA | 23 ± 4 aA | 21 ± 5 aA | 25 ± 4 aA | 19 ± 5 abA | 10.6 ± 0.9 aB | 19.5 ± 0.9 aA | 14.4 ± 0.9 bB | |
| EK (mg K kg−1) | 81 ± 67 aA | 134 ± 83 aA | 136 ± 67 aA | 532 ± 47 aA | 474 ± 47 aA | 499 ± 47 aA | 495 ± 44 aA | 449 ± 44 aA | 467 ± 44 aA | |
| CEC (cmol(+) kg−1) | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
| 2008 | pH | 7.4 ± 0.2 bA | 7.2 ± 0.2 aA | 7.3 ± 0.2 aA | 7.6 ± 0.09 abA | 7.4 ± 0.09 aA | 7.3 ± 0.09 aA | 7.7 ± 0.09 aA | 7.5 ± 0.09 aA | 7.4 ± 0.09 aA |
| EC (dS m−1) | 0.31 ± 0.04 aA | 0.29 ± 0.04 aA | 0.32 ± 0.04 aA | 0.28 ± 0.04 aA | 0.22 ± 0.04 aA | 0.22 ± 0.04 aA | 0.3 ± 0.05 aA | 0.2 ± 0.05 aA | 0.19 ± 0.05 aA | |
| SOC (%) | 1.2 ± 0.1 aB | 2.2 ± 0.1 aA | 2.8 ± 0.1 aA | 1.2 ± 0.1 aA | 1.4 ± 0.1 bA | 1.1 ± 0.1 bA | 0.76 ± 0.08 bB | 1.3 ± 0.1 bA | 0.82 ± 0.08 bB | |
| TN (%) | 0.129 ± 0.005 aC | 0.186 ± 0.005 aB | 0.258 ± 0.006 aA | 0.118 ± 0.005 aA | 0.114 ± 0.005 bA | 0.117 ± 0.005 bA | 0.094 ± 0.003 bA | 0.097 ± 0.003 cA | 0.093 ± 0.003 bA | |
| Soil C/N | 9.5 ± 0.6 aA | 11.7 ± 0.6 aA | 10.9 ± 0.6 aA | 9.9 ± 0.9 aA | 12 ± 0.9 aA | 9.2 ± 0.9 abA | 8.1 ± 0.8 aB | 13.6 ± 0.9 aA | 8.8 ± 0.8 bB | |
| AP (mg P kg−1) | 31 ± 3 aB | 48 ± 3 aA | 58 ± 3 aA | 28 ± 3 abA | 32 ± 3 bA | 30 ± 3 bA | 16 ± 3 bA | 16 ± 3 cA | 21 ± 3 bA | |
| EK (mg K kg−1) | 607 ± 62 aB | 1032 ± 62 aA | 951 ± 76 aA | 479 ± 75 aA | 520 ± 75 bA | 558 ± 75 abA | 378 ± 65 aA | 358 ± 65 cA | 452 ± 65 bA | |
| CEC (cmol(+) kg−1) | 32 ± 1 aA | 32 ± 1 aA | 33 ± 1 aA | 29 ± 2 aA | 33 ± 2 aA | 29 ± 2 aA | 32 ± 2 aA | 29 ± 2 aA | 31 ± 2 aA | |
| 2021 | pH | 7.4 ± 0.1 aA | 7.5 ± 0.1 aA | 7.5 ± 0.1 aA | 7.79 ± 0.08 aA | 7.7 ± 0.08 bA | 7.7 ± 0.1 abA | 7.79 ± 0.08 aA | 7.99 ± 0.08 bA | 7.85 ± 0.08 bA |
| EC (dS m−1) | 0.06 ± 0.01 aA | 0.1 ± 0.01 aA | 0.1 ± 0.01 aA | 0.056 ± 0.004 aA | 0.53 ± 0.004 bA | 0.06 ± 0.004 aA | 0.053 ± 0.003 aA | 0.5 ± 0.003 bA | 0.053 ± 0.003 aA | |
| SOC (%) | 1.2 ± 0.1 aC | 2.6 ± 0.1 aB | 3.5 ± 0.1 aA | 1.1 ± 0.09 aA | 0.9 ± 0.09 bA | 1.3 ± 0.1 bA | 0.6 ± 0.1 bA | 0.7 ± 0.1 bA | 0.6 ± 0.1 cA | |
| TN (%) | 0.17 ± 0.01 aB | 0.27 ± 0.02 aA | 0.32 ± 0.01 aA | 0.18 ± 0.01 aA | 0.19 ± 0.01 bA | 0.19 ± 0.01 bA | 0.143 ± 0.009 aA | 0.166 ± 0.009 bA | 0.15 ± 0.009 cA | |
| Soil C/N | 7 ± 0.6 aB | 8.8 ± 0.7 aAB | 11 ± 0.6 aA | 6.1 ± 0.8 aA | 4.2 ± 0.8 bA | 5.9 ± 0.8 bA | 4 ± 1 aA | 4 ± 1 bA | 4 ± 1 bA | |
| AP (mg P kg−1) | 30 ± 7 aB | 69 ± 7 aA | 90 ± 9 aA | 30 ± 7 aA | 38 ± 7 bA | 33 ± 7 bA | 6 ± 3 aA | 15 ± 3 bA | 14 ± 3 bA | |
| EK (mg K kg−1) | 920 ± 98 aB | 1433 ± 80 aA | 1660 ± 80 aA | 625 ± 84 aA | 823 ± 84 bA | 965 ± 84 bA | 514 ± 64 aA | 522 ± 64 bA | 553 ± 64 cA | |
| CEC (cmol(+) kg−1) | 21 ± 4 aA | 32 ± 4 aA | 26 ± 4 aA | 27 ± 3 aA | 25 ± 3 aA | 26 ± 3 aA | 24 ± 1 aA | 25 ± 1 aA | 28 ± 1 aA | |
| 2024 | pH | 6.5 ± 0.1 aA | 6.5 ± 0.1 aA | 6.5 ± 0.1 aA | 6.6 ± 0.2 aA | 6.8 ± 0.2 aA | 6.7 ± 0.2 aA | 6.8 ± 0.1 aA | 7 ± 0.1 aA | 6.7 ± 0.1 aA |
| EC (dS m−1) | 0.16 ± 0.03 aA | 0.21 ± 0.03 aA | 0.22 ± 0.03 aA | 0.2 ± 0.03 aA | 0.16 ± 0.03 aA | 0.2 ± 0.03 aA | 0.24 ± 0.06 aA | 0.19 ± 0.06 aA | 0.25 ± 0.06 aA | |
| SOC (%) | 1.2 ± 0.2 aC | 2.4 ± 0.2 aB | 3.2 ± 0.2 aA | 1.2 ± 0.1 aA | 1.3 ± 0.1 bA | 1.5 ± 0.1 bA | 1.1 ± 0.4 aA | 0.9 ± 0.4 bA | 1.8 ± 0.4 bA | |
| TN (%) | 0.09 ± 0.004 aC | 0.157 ± 0.004 aB | 0.203 ± 0.004 aA | 0.08 ± 0.01 aA | 0.1 ± 0.01 bA | 0.1 ± 0.01 bA | 0.07 ± 0.03 aA | 0.06 ± 0.03 bA | 0.13 ± 0.03 bA | |
| Soil C/N | 13 ± 1 aA | 15 ± 1 aA | 16 ± 1 aA | 15 ± 1 aA | 13 ± 1 aA | 14 ± 1 aA | 15 ± 1 aA | 14 ± 1 aA | 14 ± 1 aA | |
| AP (mg P kg−1) | 27 ± 5 aB | 58 ± 5 aA | 63 ± 5 aA | 29 ± 8 aA | 31 ± 8 aA | 42 ± 8 aA | 21 ± 8 aA | 35 ± 8 aA | 40 ± 8 aA | |
| EK (mg K kg−1) | 434 ± 35 aB | 797 ± 35 aA | 826 ± 35 aA | 305 ± 51 aA | 434 ± 51 bA | 485 ± 51 bA | 402 ± 88 aA | 396 ± 88 bA | 773 ± 108 aA | |
| CEC (cmol(+) kg−1) | 28.3 ± 0.9 aA | 29.1 ± 0.9 aA | 28 ± 0.9 aA | 29 ± 1 aA | 28 ± 1 aA | 29 ± 1 aA | 30.8 ± 0.8 aA | 29.2 ± 0.6 aA | 29.9 ± 0.6 aA | |
| Surface Depth (0–3 cm) | Arable Depth (15–18 cm) | Subsurface Depth (30–33 cm) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Variable | CT | MCT | NT | CT | MCT | NT | CT | MCT | NT |
| GM (%) | 18 ± 1 bA | 15 ± 1 bA | 17 ± 1 bA | 31 ± 2 aA | 32 ± 2 aA | 27 ± 2 aA | 35 ± 2 aA | 28 ± 2 aA | 29 ± 2 aA |
| BD (g cm−3) | 1.1 ± 0.1 aA | 0.9 ± 0.1 aA | 0.9 ± 0.1 aA | 1.01 ± 0.04 aA | 0.98 ± 0.04 aA | 0.99 ± 0.04 aA | 1.15 ± 0.06 aA | 0.99 ± 0.06 aA | 0.92 ± 0.06 aA |
| Por (%) | 60 ± 2 aA | 66 ± 2 aA | 67 ± 2 aA | 61 ± 2 aA | 63 ± 2 aA | 63 ± 2 aA | 57 ± 2 aA | 62 ± 2 aA | 65 ± 2 aA |
| VR | 1.5 ± 0.2 aA | 1.9 ± 0.2 aA | 2.0 ± 0.2 aA | 1.6 ± 0.1 aA | 1.7 ± 0.1 aA | 1.7 ± 0.1 aA | 1.3 ± 0.2 aA | 1.7 ± 0.2 aA | 1.9 ± 0.2 aA |
| VM (%) | 19 ± 2 bA | 13 ± 2 bA | 15 ± 2 bA | 32 ± 2 aA | 31 ± 2 aA | 25 ± 2 abA | 36 ± 3 aA | 28 ± 3 aA | 26 ± 3 aA |
| AF (%) | 41 ± 4 aA | 52 ± 4 aA | 52 ± 4 aA | 29 ± 2 abA | 32 ± 2 bA | 37 ± 2 aA | 20 ± 5 bA | 35 ± 5 bA | 39 ± 5 aA |
| Variable/Treatment | CT | MCT | NT |
|---|---|---|---|
| PD (thousand plants ha−1) | 69 ± 2 b | 71 ± 2 b | 83 ± 2 a |
| BY (t DM ha−1) | 10.7 ± 0.6 b | 13.1 ± 0.6 a | 9.7 ± 0.6 b |
| GY (t DM ha−1) | 5.8 ± 0.3 b | 7.2 ± 0.6 a | 5.4 ± 0.6 b |
| HI (GY/BY) | 0.55 ± 0.02 a | 0.56 ± 0.02 a | 0.55 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Breijo, F.; Santos-Hernández, A.F.; Sahagún-García, A.; Hernández-Pedraza, L.A.; Gallardo-Lancho, J.F.; Pérez-Nieto, J. Effects of Different Tillage Systems on Soil Properties and Crop Yield in a Mollisol After 9, 22, and 25 Years of Implementation in Chapingo, Mexico. Soil Syst. 2025, 9, 125. https://doi.org/10.3390/soilsystems9040125
González-Breijo F, Santos-Hernández AF, Sahagún-García A, Hernández-Pedraza LA, Gallardo-Lancho JF, Pérez-Nieto J. Effects of Different Tillage Systems on Soil Properties and Crop Yield in a Mollisol After 9, 22, and 25 Years of Implementation in Chapingo, Mexico. Soil Systems. 2025; 9(4):125. https://doi.org/10.3390/soilsystems9040125
Chicago/Turabian StyleGonzález-Breijo, Francisco, Antonio Fidel Santos-Hernández, Alejandra Sahagún-García, Luis Antonio Hernández-Pedraza, Juan Fernando Gallardo-Lancho, and Joel Pérez-Nieto. 2025. "Effects of Different Tillage Systems on Soil Properties and Crop Yield in a Mollisol After 9, 22, and 25 Years of Implementation in Chapingo, Mexico" Soil Systems 9, no. 4: 125. https://doi.org/10.3390/soilsystems9040125
APA StyleGonzález-Breijo, F., Santos-Hernández, A. F., Sahagún-García, A., Hernández-Pedraza, L. A., Gallardo-Lancho, J. F., & Pérez-Nieto, J. (2025). Effects of Different Tillage Systems on Soil Properties and Crop Yield in a Mollisol After 9, 22, and 25 Years of Implementation in Chapingo, Mexico. Soil Systems, 9(4), 125. https://doi.org/10.3390/soilsystems9040125

