A Framework Based on Isoparameters for Clustering and Mapping Geophysical Data in Pedogeomorphological Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acquisition of Proximal Geophysical Variables and Synthetic Soil Image (SYSI)
2.3. Satellite Images, Digital Elevation Model, and Morphometric Data
2.4. Geophysical-Isoparameters, Principal Component Analysis and Modeling Process
2.5. Selection of Covariates
2.6. Training and Spatialization of Geophysical-Isoparameters
2.7. Model’s Performance Evaluation
2.8. Generation of Final Maps and Final Statistics
3. Results and Discussion
3.1. The Performance of the Model in Predicting Geophysical Parameters
3.2. Relationship Between Geophysical-Isoparameters Classes, Lithology and Soil Types
3.3. A Systematic Methodology for Soil Scientists Engaged in Soil-Lithological Surveys
4. Conclusions
- This study introduces a conceptual and operational framework based on “geophysical-isoparameters,” integrating proximal geophysical sensing, remote sensing, and morphometric data to generate quantitative descriptors of soil–lithological variability. The concept represents both a methodological and theoretical advance by transforming qualitative expert interpretation into quantitative, reproducible indicators of soil and lithological variation.
- The SVM algorithm efficiently classified geophysical-isoparameter classes through the integration of gamma-ray spectrometry, magnetic susceptibility (κ), apparent electrical conductivity (ECa), and satellite imagery. The clustering of geophysical variables successfully captured distinct soil attributes linked to pedogenic and lithological processes, confirming the capacity of multi-source sensing to represent soil–landscape variability.
- The resulting geophysical-isoparameter maps showed strong correspondence with pedological and lithological units, with prediction errors mainly occurring in transitional zones between lithologies and on steep slopes, areas that are inherently complex for both conventional and digital soil mapping.
- Satellite bands and SYSI, combined with morphometric variables, were the most influential predictors in the modeling process. Statistical analysis grouped the geophysical variables into two main clusters, while k-means clustering revealed finer distinctions, enhancing mapping detail and interpretability.
- The proposed protocol establishes a systematic and data-driven approach for delineating soil–lithological units by integrating proximal geophysical data, satellite imagery, and machine learning. This framework reduces subjectivity, improves reproducibility, and provides a consistent quantitative foundation for generating homogeneous classes of geophysical parameters (geophysical-isoparameters).
- While expert judgment remains essential for final interpretation and validation, the geophysical-isoparameter framework bridges the gap between traditional qualitative surveys and modern data-driven mapping approaches. It fosters interdisciplinary collaboration and advances innovative methodologies for soil–lithology characterization through the combined use of gamma-ray spectrometry, magnetic and electrical surveys, and morphometric data.
- Future research should focus on refining the integration of additional environmental covariates, testing the protocol in diverse geomorphological and geological settings, and automating class recognition and validation. In doing so, the geophysical-isoparameter framework may serve as a cornerstone for the next generation of objective, quantitative, and transferable soil–lithological mapping methodologies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burrough, P.A. Soil Variability: A Late 20th Century View. Soils Fert. 1993, 56, 529–562. [Google Scholar]
- Jenny, H. Factors of Soil Formation; McGraw-Hill: New York, NY, USA, 1941. [Google Scholar]
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; Dover Publication: New York, NY, USA, 1994. [Google Scholar]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van Der Putten, W.H. The Significance of Soils and Soil Science towards Realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.J.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Singh Aulakh, M.; Yagi, K. World’s Soils Are under Threat. Soil 2015, 2, 1263–1272. [Google Scholar] [CrossRef]
- Lagacherie, P.; McBratney, A.B. Spatial Soil Information Systems and Spatial Soil Inference Systems: Perspectives for Digital Soil Mapping. Dev. Soil Sci. 2006, 31, 3–22. [Google Scholar]
- Stenberg, B. Effects of Soil Sample Pretreatments and Standardised Rewetting as Interacted with Sand Classes on Vis-NIR Predictions of Clay and Soil Organic Carbon. Geoderma 2010, 158, 15–22. [Google Scholar] [CrossRef]
- de Mello, D.C.; Veloso, G.V.; de Lana, M.G.; Mello, F.A.d.O.; Poppiel, R.R.; Cabrero, D.R.O.; Di Raimo, L.A.D.L.; Schaefer, C.E.G.R.; Leite, E.P.; Demattê, J.A.M. A New Methodological Framework for Geophysical Sensor Combinations Associated with Machine Learning Algorithms to Understand Soil Attributes. Geosci. Model Dev. 2022, 15, 1219–1246. [Google Scholar] [CrossRef]
- de Mello, D.C.; Alexandre Melo Demattê, J.; Alcantara de Oliveira Mello, F.; Roberto Poppiel, R.; ElizabetQuiñonez Silvero, N.; Lucas Safanelli, J.; Barros e Souza, A.; Augusto Di Loreto Di Raimo, L.; Rizzo, R.; Eduarda Bispo Resende, M.; et al. Applied Gamma-Ray Spectrometry for Evaluating Tropical Soil Processes and Attributes. Geoderma 2021, 381, 114736. [Google Scholar] [CrossRef]
- Mello, D.; Demattê, J.A.M.; Silvero, N.E.Q.; Di Raimo, L.A.D.L.; Poppiel, R.R.; Mello, F.A.O.; Souza, A.B.; Safanelli, J.L.; Resende, M.E.B.; Rizzo, R. Soil Magnetic Susceptibility and Its Relationship with Naturally Occurring Processes and Soil Attributes in Pedosphere, in a Tropical Environment. Geoderma 2020, 372, 114364. [Google Scholar] [CrossRef]
- de Mello, D.C.; Safanelli, J.L.; Poppiel, R.R.; Veloso, G.V.; Cabrero, D.R.O.; Greschuk, L.T.; Mello, F.A.d.O.; Francelino, M.R.; Ker, J.C.; Leite, E.P.; et al. Soil Apparent Electrical Conductivity Survey in Different Pedoenvironments by Geophysical Sensor EM38: A Potential Tool in Pedology and Pedometry Studies. Geocarto Int. 2022, 37, 13057–13078. [Google Scholar] [CrossRef]
- Dickson, B.L.; Scott, K.M. Interpretation of Aerial Gamma-Ray Surveys—Adding the Geochemical Factors. AGSO J. Aust. Geol. Geophys. 1997, 17, 187–200. [Google Scholar]
- Rochette, P.; Jackson, M.; Aubourg, C. Rock Magnetism Andn the Interpretation of Magnetic Susceptibility. Rev. Geophys. 1992, 30, 209–226. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Application of Soil Electrical Conductivity to Precision Agriculture: Theory, Principles, and Guidelines. Agron. J. 2003, 95, 455–471. [Google Scholar] [CrossRef]
- Mello, D.C.; Veloso, G.V.; Moquedace, C.M.; de Angeli Oliveira, I.; de Oliveira, F.S.; Gomes, L.C.; de Souza, J.J.L.L.; Francelino, M.R.; Fernandes-Filho, E.I.; Schaefer, C.E.G.R.; et al. Radiometric and Magnetic Susceptibility Characterization of Soil Profiles: Geophysical Data and Their Relationship with Antarctic Periglacial Processes, Pedogenesis, and Lithology. CATENA 2023, 232, 107427. [Google Scholar] [CrossRef]
- Mello, D.C.; Vieira, G.; Marques, C.; De Angeli, I.; Soares, F.; Oliveira, D.; Demattê, M. Chemical Weathering Detection in the Periglacial Landscapes of Maritime Antarctica: New Approach Using Geophysical Sensors, Topographic Variables and Machine Learning Algorithms. Geoderma 2023, 438, 116615. [Google Scholar] [CrossRef]
- de Mello, D.C.; Ferreira, T.O.; Veloso, G.V.; de Lana, M.G.; de Oliveira Mello, F.A.; Di Raimo, L.A.D.L.; Cabrero, D.R.O.; de Souza, J.J.L.L.; Fernandes-Filho, E.I.; Francelino, M.R. Digital Mapping of Soil Weathering Using Field Geophysical Sensor Data Coupled with Covariates and Machine Learning. J. S. Am. Earth Sci. 2023, 128, 104449. [Google Scholar] [CrossRef]
- Rentschler, T.; Werban, U.; Ahner, M.; Behrens, T.; Gries, P.; Scholten, T.; Teuber, S.; Schmidt, K. 3D Mapping of Soil Organic Carbon Content and Soil Moisture with Multiple Geophysical Sensors and Machine Learning. Vadose Zone J. 2020, 19, e20062. [Google Scholar] [CrossRef]
- Luiz do Carmo Leal, A.; da Costa Lauria, D.; Ribeiro, F.C.A.; Viglio, E.P.; Franzen, M.; de Albuquerque Medeiros Lima, E. Spatial Distributions of Natural Radionuclides in Soils of the State of Pernambuco, Brazil: Influence of Bedrocks, Soils Types and Climates. J. Environ. Radioact. 2020, 211, 106046. [Google Scholar] [CrossRef]
- Ribeiro, F.C.A.; Lauria, D.d.C.; do Rio, M.A.P.; da Cunha, F.G.; de Oliveira Sousa, W.; de Albuquerque Medeiros Lima, E.; Franzen, M. Mapping Soil Radioactivity in the Fernando de Noronha Archipelago, Brazil. J. Radioanal. Nucl. Chem. 2017, 311, 577–587. [Google Scholar] [CrossRef]
- Ribeiro, F.C.A.; Silva, J.I.R.; Lima, E.S.A.; do Amaral Sobrinho, N.M.B.; Perez, D.V.; Lauria, D.C. Natural Radioactivity in Soils of the State of Rio de Janeiro (Brazil): Radiological Characterization and Relationships to Geological Formation, Soil Types and Soil Properties. J. Environ. Radioact. 2018, 182, 34–43. [Google Scholar] [CrossRef]
- Silva, F.M.; Silva, S.H.G.; Andrade, R.; Coblinski, J.A.; Inda, A.V.; Frosi, G.; Lima, S.d.S.F.; de Menezes, M.D.; Tavares, T.R.; Guilherme, L.R.G.; et al. Proximal Sensors for Modeling Clay Mineralogy and Characterization of Soil Textural Fractions Developed from Contrasting Parent Materials. CATENA 2024, 241, 108053. [Google Scholar] [CrossRef]
- Ramos, P.V.; Dalmolin, R.S.D.; Marques Júnior, J.; Siqueira, D.S.; De Almeida, J.A.; Moura-Bueno, J.M. Magnetic Susceptibility of Soil to Differentiate Soil Environments in Southern Brazil. Rev. Bras. Cienc. Do Solo 2017, 41, 1–13. [Google Scholar] [CrossRef]
- Farzamian, M.; Monteiro Santos, F.A.; Khalil, M.A. Application of EM38 and ERT Methods in Estimation of Saturated Hydraulic Conductivity in Unsaturated Soil. J. Appl. Geophys. 2015, 112, 175–189. [Google Scholar] [CrossRef]
- Narjary, B.; Meena, M.D.; Kumar, S.; Kamra, S.K.; Sharma, D.K.; Triantafilis, J. Digital Mapping of Soil Salinity at Various Depths Using an EM38. Soil Use Manag. 2019, 35, 232–244. [Google Scholar] [CrossRef]
- Bonfatti, B.R.; Demattê, J.A.M.; Marques, K.P.P.; Poppiel, R.R.; Rizzo, R.; Mendes, W.d.S.; Silvero, N.E.Q.; Safanelli, J.L. Digital Mapping of Soil Parent Material in a Heterogeneous Tropical Area. Geomorphology 2020, 367, 107305. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Georesults. Terraplus KT-10 v2 User Manual 2021, User’s Guide Ver. 2.1; Georesults: Cumming, GA, USA, 2021. [Google Scholar]
- de Sousa, G.P.B.; Bellinaso, H.; Rosas, J.T.F.; de Mello, D.C.; Rosin, N.A.; Amorim, M.T.A.; dos Anjos Bartsch, B.; Cardoso, M.C.; Mallah, S.; Francelino, M.R.; et al. Assessing Soil Degradation in Brazilian Agriculture by a Remote Sensing Approach to Monitor Bare Soil Frequency: Impact on Soil Carbon. Soil Adv. 2024, 2, 100011. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A Powerful Data Mining Procedure to Retrieve Soil Spectral Reflectance from Satellite Images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Van Etten, J. Raster: Geographic Data Analysis and Modeling; R Package Version 2.5-8; R Core Team: Vienna, Austria, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Matsuura, D.; Chounan, Y.; Sugahara, Y.; Takeda, Y. Wearable Working Assist Mechanism for Hemiplegics Capable of Changing Step Length and Walking Direction. In New Trends in Medical and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 126–133. [Google Scholar]
- Halkidi, M.; Vazirgiannis, M.; Batistakis, Y. Quality Scheme Assessment in the Clustering Process. In Proceedings of the Principles of Data Mining and Knowledge Discovery: 4th European Conference, PKDD 2000, Lyon, France, 13–16 September 2000; Proceedings 4. Springer: Berlin/Heidelberg, Germany, 2000; pp. 265–276. [Google Scholar]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Meng, E.; Huang, S.; Huang, Q.; Fang, W.; Wu, L.; Wang, L. A Robust Method for Non-Stationary Streamflow Prediction Based on Improved EMD-SVM Model. J. Hydrol. 2019, 568, 462–478. [Google Scholar] [CrossRef]
- Deka, P.C. Support Vector Machine Applications in the Field of Hydrology: A Review. Appl. Soft Comput. 2014, 19, 372–386. [Google Scholar] [CrossRef]
- Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Ernesto, C.; Schaefer, G.R.; Inácio, E.; Filho, F. Modelling and Mapping Soil Organic Carbon Stocks in Brazil. Geoderma 2019, 340, 337–350. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Islam, F.; Ahmad, M.N.; Janjuhah, H.T.; Ullah, M.; Islam, I.U.; Kontakiotis, G.; Skilodimou, H.D.; Bathrellos, G.D. Modelling and Mapping of Soil Erosion Susceptibility of Murree, Sub-Himalayas Using GIS and RS-Based Models. Appl. Sci. 2022, 12, 12211. [Google Scholar] [CrossRef]
- Segoni, S.; Rossi, G.; Catani, F. Improving Basin Scale Shallow Landslide Modelling Using Reliable Soil Thickness Maps. Nat. Hazards 2012, 61, 85–101. [Google Scholar] [CrossRef]
- Barman, U.; Choudhury, R.D. Soil Texture Classification Using Multi Class Support Vector Machine. Inf. Process. Agric. 2020, 7, 318–332. [Google Scholar] [CrossRef]
- Al Masmoudi, Y.; Bouslihim, Y.; Doumali, K.; Hssaini, L.; Ibno Namr, K. Use of Machine Learning in Moroccan Soil Fertility Prediction as an Alternative to Laborious Analyses. Model. Earth Syst. Environ. 2021, 8, 3707–3717. [Google Scholar] [CrossRef]
- Azadnia, R.; Jahanbakhshi, A.; Rashidi, S. Developing an Automated Monitoring System for Fast and Accurate Prediction of Soil Texture Using an Image-Based Deep Learning Network and Machine Vision System. Measurement 2022, 190, 110669. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Pham, T.D.; Nguyen, C.T.; Delfos, J.; Archibald, R.; Dang, K.B.; Hoang, N.B.; Guo, W.; Ngo, H.H. A Novel Intelligence Approach Based Active and Ensemble Learning for Agricultural Soil Organic Carbon Prediction Using Multispectral and SAR Data Fusion. Sci. Total Environ. 2022, 804, 150187. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Taylor, R.G.; Hill, J.; Demattê, J.A.M.; Whiting, M.L.; Chabrillat, S.; Sommer, S. Imaging Spectrometry for Soil Applications. Adv. Agron. 2008, 97, 321–392. [Google Scholar]
- Arnedo, M.A.; Rubiano, J.G.; Alonso, H.; Tejera, A.; González, A.; González, J.; Gil, J.M.; Rodríguez, R.; Martel, P.; Bolivar, J.P. Mapping Natural Radioactivity of Soils in the Eastern Canary Islands. J. Environ. Radioact. 2017, 166, 242–258. [Google Scholar] [CrossRef]
- Boyle, R.W. Geochemical Prospecting for Thorium and Uranium Deposits; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Wilford, J.R.; Bierwirth, P.N.; Craig, M.A. Application of Airborne Gamma-Ray Spectrometry in Soil/Regolith Mapping and Applied Geomorphology. AGSO J. Aust. Geol. Geophys. 1997, 17, 201–216. [Google Scholar]
- Sawyer, E.W. The Influence of Source Rock Type, Chemical Weathering and Sorting on the Geochemistry of Clastic Sediments from the Quetico Metasedimentary Belt, Superior Province, Canada. Chem. Geol. 1986, 55, 77–95. [Google Scholar] [CrossRef]
- Dierke, C.; Werban, U. Relationships between Gamma-Ray Data and Soil Properties at an Agricultural Test Site. Geoderma 2013, 199, 90–98. [Google Scholar] [CrossRef]
- Herrmann, L.; Schuler, U.; Rangubpit, W.; Erbe, P.; Surinkum, A.; Zarei, M.; Stahr, K. The Potential of Gamma-Ray Spectrometry for Soil Mapping. In Proceedings of the 19th World Congress of Soil Science, Brisbane, Australia, 1–6 August 2010; pp. 117–120. [Google Scholar]
- Wilford, J.; Minty, B. The Use of Airborne Gamma-Ray Imagery for Mapping Soils and Understanding Landscape Processes. Dev. Soil Sci. 2006, 31, 207–610. [Google Scholar]
- Lourenço, A.M.; Sequeira, E.; Sant’Ovaia, H.; Gomes, C.R. Magnetic, Geochemical and Pedological Characterisation of Soil Profiles from Different Environments and Geological Backgrounds near Coimbra, Portugal. Geoderma 2014, 213, 408–418. [Google Scholar] [CrossRef]
- Fabre, S.; Briottet, X.; Lesaignoux, A. Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 Μm Domain. Sensors 2015, 15, 3262–3281. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Saleh, A.M.; Belal, A.B.; Gad, A. Application of Near-Infrared Reflectance for Quantitative Assessment of Soil Properties. Egypt. J. Remote Sens. Space Sci. 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Haile, G.; Itanna, F.; Teklu, B.; Agegnehu, G. Variation in Soil Properties under Different Land Use Types Managed by Smallholder Farmers in Central Ethiopia. Sustain. Environ. 2022, 8, 2093058. [Google Scholar] [CrossRef]
- Batista, R.F.; Reichert, J.M.; Holthusen, D.; Batistão, A.C.; Daher, M.; Schünemann, A.L.; Fernandes Filho, E.I.; Schaefer, C.E.G.R.; Francelino, M.R. Freeze–thaw Cycles Affecting Rheological Properties of Antarctic Soils. Geoderma 2022, 428, 116220. [Google Scholar] [CrossRef]
- Odgers, N.P.; McBratney, A.B.; Minasny, B. Bottom-up Digital Soil Mapping. I. Soil Layer Classes. Geoderma 2011, 163, 38–44. [Google Scholar] [CrossRef]






| Geophysical Data | Abbreviations | Brief Description |
|---|---|---|
| Equivalent uranium | eU | Estimated concentrations of uranium, derived indirectly by measuring the gamma radiation emitted by its daughter products (Bi-214 for uranium-238) |
| Equivalent thorium | eTh | Estimated concentrations of thorium, derived indirectly by measuring the gamma radiation emitted by its daughter products (Tl-208 for thorium-232). |
| Potassium 40 | K40 | refers to the estimated concentration of potassium derived indirectly by measuring the gamma radiation emitted by the naturally occurring radioactive isotope potassium-40 (K-40). |
| Soil apparent electric conductivity | ECa | the ability of the soil to conduct electrical current |
| Soil magnetic susceptibility | κ | the degree to which soils can be magnetized |
| Ratio equivalent thorium/potassium 40 | eTh/K40 | Indicates the relative abundance of thorium compared to potassium-bearing minerals; useful for assessing weathering intensity and mineralogical variations in soils. |
| Ratio equivalent uranium/potassium 40 | eU/K40 | Reflects the enrichment or depletion of uranium relative to potassium; helps infer pedogeochemical processes such as leaching, mineral alteration, or secondary uranium mobility. |
| Ratio equivalent uranium + equivalent thorium/potassium 40 | (eU + eTh)/K40 | Measures the combined relative enrichment of heavy radioactive elements (U + Th) compared to potassium; often used as an index of soil or rock evolution and weathering degree. |
| Ratio potassium 40/soil magnetic susceptibility | K40/κ | Relates the potassium content to the concentration of magnetic minerals; provides insight into soil formation processes and the balance between mineral weathering and ferrimagnetic mineral input. |
| Ratio equivalent thorium/soil magnetic susceptibility | eTh/κ | Indicates thorium enrichment relative to magnetic mineral content; useful for tracing sediment sources and differentiating soil types. |
| Ratio equivalent uranium/soil magnetic susceptibility | eU/κ | Assesses uranium distribution relative to ferrimagnetic minerals; can reveal soil-forming processes, pollution sources, or geochemical anomalies. |
| Ratio soil magnetic susceptibility/Soil apparent electrical conductivity | κ/ECa | Combines magnetic and electrical soil properties; helps differentiate between soil texture, moisture conditions, and mineralogical composition. |
| Sentinel 2 | Landsat 8 | ||||||
|---|---|---|---|---|---|---|---|
| Band | Wavelength Range (μm) | Center Wavelength (μm) | FWHM (nm) | Band | Wavelength Range (μm) | Center Wavelength (μm) | FWHM (nm) |
| Band 2 (Blue) | 0.45–0.52 | 0.485 | 70 | Band 1 (Coastal/Aerosol) | 0.43–0.45 | 0.44 | 30 |
| Band 3 (Green) | 0.54–0.58 | 0.56 | 70 | Band 2 (Blue) | 0.45–0.51 | 0.48 | 60 |
| Band 4 (Red) | 0.65–0.68 | 0.665 | 30 | Band 3 (Green) | 0.53–0.59 | 0.56 | 60 |
| Band 5 (Red-edge) | 0.69–0.72 | 0.705 | 15 | Band 4 (Red) | 0.64–0.67 | 0.655 | 30 |
| Band 6 (Red-edge) | 0.73–0.75 | 0.74 | 15 | Band 5 (NIR) | 0.85–0.88 | 0.865 | 30 |
| Band 7 (Red-edge) | 0.77–0.79 | 0.78 | 20 | Band 6 (SWIR-1) | 1.57–1.65 | 1.61 | 80 |
| Band 8 (NIR) | 0.78–0.89 | 0.835 | 106 | Band 7 (SWIR-2) | 2.11–2.29 | 2.20 | 180 |
| Band 8A (NIR narrow) | 0.85–0.87 | 0.86 | 20 | Band 8 (Panchromatic) | 0.50–0.68 | 0.59 | 180 |
| Band 9 (Water vapour) | 0.93–0.95 | 0.94 | 20 | Band 10 (TIR-1) | 10.6–11.19 | 10.895 | 590 |
| Band 9 (Cirrus/SWIR-1) | 1.36–1.39 | 1.375 | 20 | Band 11 (TIR-2) | 11.5–12.51 | 12.005 | 1010 |
| Band 10 (SWIR-1) | 1.57–1.65 | 1.61 | 90 | - | - | - | - |
| Band 11 (SWIR-2) | 2.11–2.29 | 2.20 | 180 | - | - | - | - |
| Terrain Attributes | Abbreviations | Brief Description |
|---|---|---|
| Aspect | AS | Slope orientation |
| Convergence index | CI | Convergence/divergence index in relation to runoff |
| Cross sectional curvature | CSC | Measures the curvature perpendicular to the down slope direction |
| Diurnal anisotropic heating | DAH | Continuous measurement of exposure dependent energy |
| Flow line curvature | FLC | Represents the projection of a gradient line to a horizontal plane |
| General curvature | GC | The combination of both plan and profile curvatures |
| Hill | HI | Analytical hill shading |
| Hill index | HIINDEX | Analytical index hill shading |
| Longitudinal curvature | LC | Measures the curvature in the down slope direction |
| Mass balance index | MBI | Balance index between erosion and deposition |
| Maximal curvature | MAXC | Maximum curvature in local normal section |
| Mid-slope position | MSP | Represents the distance from the top to the valley, ranging from 0 to 1 |
| Minimal curvature | MINC | Minimum curvature for local normal section |
| Multiresolution index of ridge top flatness | MRRTF | Indicates flat positions in high altitude areas |
| Multiresolution index of valley bottom flatness | MRVBF | Indicates flat surfaces at bottom of valley |
| Normalized height | NH | Vertical distance between base and ridge of normalized slope |
| Plan curvature | PLANC | Described as the curvature of the hypothetical contour line passing through a specific cell |
| Profile curvature | PROC | Describes surface curvature in the direction of the steepest incline |
| Real surface area | RSA | Actual calculation of cell area |
| Slope | S | Represents local angular slope |
| Slope height | SH | Vertical distance between base and ridge of slope |
| Slope Index | SI | Represents a local angular slope index |
| Standardized height | STANH | Vertical distance between base and standardized slope index |
| Surface specific points | SSP | Indicates differences between specific surface shift points |
| Tangential curvature | TANC | Measured in the normal plane in a direction perpendicular to the gradient |
| Terrain ruggedness index | TRI | Quantitative index of topography heterogeneity |
| Terrain surface convexity | TSC | Ratio of the number of cells that have positive curvature to the number of all valid cells within a specified search radius |
| Terrain surface texture | TST | Splits surface texture into 8, 12, or 16 classes |
| Total curvature | TC | General measure of surface curvature |
| Topographic position index | TPI | Difference between a point elevation with surrounding elevation |
| Valley depth | VD | Calculation of vertical distance at drainage base level |
| Valley | VA | Calculation fuzzy valley using the Top Hat approach |
| Valley Index | VA | Calculation fuzzy valley index using the Top Hat approach |
| Vector ruggedness measure | VRM | Measures the variation in terrain roughness |
| Topographic wetness index | TWI | Describes the tendency of each cell to accumulate water as a function of relief |
| No. | Covariate Name | No. | Covariate Name |
|---|---|---|---|
| s1 | land_1 | 11 | Sentinel_B11 |
| 2 | land_2 | 12 | SYSI_2 |
| 3 | land_3 | 13 | SYSI_4 |
| 4 | land_6 | 14 | SYSI_6 |
| 5 | land_7 | 15 | curv_cross sectional |
| 6 | Sentinel_B02 | 16 | curv_plan |
| 7 | Sentinel_B05 | 17 | curv_profile |
| 8 | Sentinel_B06 | 18 | mass_balance_index |
| 9 | Sentinel_B08 | 19 | terrain_ruggedness_index |
| 10 | Sentinel_B8A | ||
| Parameter of Performance | Algorithms | ||||
|---|---|---|---|---|---|
| avNNet | C5.0 | kknn | RF | SVM | |
| F-1 Score | 0.495 a | 0.467 a | 0.473 a | 0.473 a | 0.497 a |
| Accuracy | 0.547 b | 0.514 b | 0.549 a | 0.543 b | 0.565 a |
| Kappa | 0.351 ab | 0.318 b | 0.367 a | 0367 b | 0.37 ab |
| Sensitivity | 0.421 a | 0.418 a | 0.442 a | 0.435 a | 0.430 a |
| Specificity | 0.875 b | 0.866 b | 0.879 b | 0.875 ab | 0.879 ab |
| Geophysical Isoparameters Classes | eU (ppm) | eTh (ppm) | K40 (%) | κ (m3 kg−1) | ECa (mSm−1) | Th/K | U/K | U + (K/Th) | K. κ | Th. κ | U. κ | κ. ECa |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 3.44 a | 13.02 ab | 0.98 a | 2.47 a | 25.67 a | 17.32 a | 5.13 a | 22.44 a | 1.75 a | 19.86 a | 5.21 a | 0.12 a |
| 2 | 3.93 ab | 11.34 ab | 0.49 b | 22.36 b | −12.83 b | 134.70 b | 49.83 b | 184.56 b | 0.17 b | 2.90 b | 1.07 bc | −0.32 ab |
| 3 | 3.73 a | 10.83 a | 0.16 b | 32.2 b | −27.48 b | 645.78 c | 239.84 b | 885.64 b | 0.18 b | 2.83 b | 0.77 b | −0.55 b |
| 4 | 2.98 a | 9.40 ab | 0.12 b | 50.18 b | −47.25 ab | 75.08 bc | 22.58 b | 97.65 b | 0.2 b | 0.20 b | 0.08 b | −0.48 ab |
| 5 | 5.59 b | 14.30 b | 0.31 b | 5.55 ab | 9.93 ab | 275.72 bc | 140.29 b | 416.01 b | 9.44 ab | 9.44 ab | 3.15 ac | −0.19 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veloso, G.V.; Mello, D.C.d.; Palma, H.P.; Mello, M.F.; Silva, L.V.; Fernandes-Filho, E.I.; Francelino, M.R.; Ferreira, T.O.; Zanuncio, J.C.; Gjorup, D.F.; et al. A Framework Based on Isoparameters for Clustering and Mapping Geophysical Data in Pedogeomorphological Studies. Soil Syst. 2025, 9, 124. https://doi.org/10.3390/soilsystems9040124
Veloso GV, Mello DCd, Palma HP, Mello MF, Silva LV, Fernandes-Filho EI, Francelino MR, Ferreira TO, Zanuncio JC, Gjorup DF, et al. A Framework Based on Isoparameters for Clustering and Mapping Geophysical Data in Pedogeomorphological Studies. Soil Systems. 2025; 9(4):124. https://doi.org/10.3390/soilsystems9040124
Chicago/Turabian StyleVeloso, Gustavo Vieira, Danilo César de Mello, Heitor Paiva Palma, Murilo Ferre Mello, Lucas Vieira Silva, Elpídio Inácio Fernandes-Filho, Márcio Rocha Francelino, Tiago Osório Ferreira, José Cola Zanuncio, Davi Feital Gjorup, and et al. 2025. "A Framework Based on Isoparameters for Clustering and Mapping Geophysical Data in Pedogeomorphological Studies" Soil Systems 9, no. 4: 124. https://doi.org/10.3390/soilsystems9040124
APA StyleVeloso, G. V., Mello, D. C. d., Palma, H. P., Mello, M. F., Silva, L. V., Fernandes-Filho, E. I., Francelino, M. R., Ferreira, T. O., Zanuncio, J. C., Gjorup, D. F., Oliveira, R. B. d., Nanni, M. R., Falcioni, R., & Demattê, J. A. M. (2025). A Framework Based on Isoparameters for Clustering and Mapping Geophysical Data in Pedogeomorphological Studies. Soil Systems, 9(4), 124. https://doi.org/10.3390/soilsystems9040124

