Different Soil Properties, Wolfberry Yields, and Quality Responses to Organic Fertilizer Levels in Two Fields with Varying Fertility Levels in Qaidam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Measurements and Methods
2.3.1. Collection and Determination of Soil Samples
2.3.2. Wolfberry Yield Determination and Plant Sample Collection
2.3.3. Determination of Nutrient Composition of Fruits
2.3.4. Data Processing and Analysis
3. Results
3.1. Evaluation of Different Organic Fertilizer Levels on the Fruit Yield and Appearance of Wolfberries
3.2. Effect of Different Organic Fertilizer Levels on Soil Properties
3.3. Effects of Organic Fertilizer Level on Wolfberry Nutrient Composition
3.4. Effects of Organic Fertilizer Level on Wolfberry Antioxidant Activity
3.5. Redundancy Analysis of the Effects of Soil Properties on Wolfberry Qualities and Yield
3.6. Analysis of the Relative Importance of Wolfberry Fruit Yield, Appearance and Soil Physicochemical Properties
4. Discussion
4.1. Effect of Organic Fertilizer Application on High-Fertility Fields
4.2. Effect of the Application of Organic Fertilizer on Low-Fertility Fields
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, R.H.; Zhang, X.X.; Kiran, T.; Zhang, J.G.; Wei, Z.J. Research progress of Lycium barbarum L. as functional food: Phytochemical composition and health benefits. Curr. Opin. Food Sci. 2022, 47, 100871. [Google Scholar] [CrossRef]
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.R.; et al. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Chu, P.H.W.; Li, H.Y.; Chin, M.P.; So, K.F.; Chan, H.H.L. Effect of wolfberry (wolfberry) polysaccharides on preserving retinal function after partial optic nerve transection. PLoS ONE 2013, 8, e81339. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Deng, Q.; Zhou, W.; Zhang, Y. Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far? Pharmacol. Ther. 2022, 229, 107921. [Google Scholar] [CrossRef]
- Hu, G.L. Qinghai’s organic wolfberry production ranks first in China. Qinghai Sci. Technol. 2015, 5, 5, (In Chinese with English abstract). [Google Scholar]
- Xu, C.Q. Research and suggestions on the production status of Chinese wolfberry in the main production areas of China. J. Tradit. Chin. Med. 2014, 39, 1979–1984. [Google Scholar]
- Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar]
- Dangi, S.; Gao, S.D.; Duan, Y.H.; Wang, D. Soil microbial community structure affected by biochar and fertilizer sources. Appl. Soil Ecol. 2020, 150, 103452. [Google Scholar] [CrossRef]
- Kiraci, S. Effects of seaweed and different farm manures on growth and yield of organic carrots. J. Plant Nutr. 2018, 41, 716–721. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N.; Mladenović, J. The influence of organic, organo-mineral and mineral fertilizers on tree growth, yielding, fruit quality and leaf nutrient composition of apple cv.‘Golden Delicious Reinders’. Sci. Hortic. 2022, 297, 110978. [Google Scholar] [CrossRef]
- Good, A.G.; Beatty, P.H. Fertilizing nature: A tragedy of excess in the commons. PLoS Biol. 2011, 9, e1001124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.W.; Zhao, G.B.; Yang, R.Q.; Wang, Y. Comprehensive utilization of agricultural straws in recycle economy. Trans. CSAE 2006, 22, 107–109. [Google Scholar]
- Nirere, A.; Sun, J.; Yuhao, Z. A rapid non-destructive detection method for wolfberry moisture grade using hyperspectral imaging technology. J. Nondestruct. Eval. 2023, 42, 45. [Google Scholar] [CrossRef]
- Hu, X.T.; Ma, P.P.; He, Y.Z.; Guo, J.L.; Li, Z.; Li, G.; Zhao, J.; Liu, M. Nondestructive and rapid detection of foreign materials in wolfberry by hyperspectral imaging combing with chemometrics. Vib. Spectrosc. 2023, 128, 103578. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, F.X.; Yue, Y.M.; Zang, Z.P.; Xu, Y.R.; Jiang, C.H.; Shang, J.W.; Wang, T.X.; Huang, X.P. Study on ultrasonic far-Infrared radiation drying and quality characteristics of wolfberry (Lycium barbarum L.) under different pretreatments. Molecules 2023, 28, 1732. [Google Scholar] [CrossRef]
- Xiang, W.J.; Wang, H.W.; Tian, Y.; Sun, D.W. Effects of salicylic acid combined with gas atmospheric control on postharvest quality and storage stability of wolfberries: Quality attributes and interaction evaluation. J. Food Process Eng. 2021, 44, e13764. [Google Scholar] [CrossRef]
- Du, Y.H.; Wang, H.H.; Yuan, S.F.; Yu, H.; Xie, Y.F.; Guo, Y.H.; Cheng, Y.L.; Yao, W.R. Dielectric barrier discharge plasma pretreatment: A cleaner new way to improve energy efficiency and quality of wolfberry drying. J. Clean. Prod. 2024, 450, 141951. [Google Scholar] [CrossRef]
- Bai, S.Q.; Liu, L.; Yu, H.B.; Guan, X.Y.; Li, R.; Hou, L.X.; Ling, B.; Wang, S.J. Thermal and dielectric properties of wolfberries as affected by moisture content and temperature associated with radio frequency and microwave dehydrations. Foods 2022, 11, 3796. [Google Scholar] [CrossRef]
- Liu, Y.W.; Xue, Y.; Zhang, Z.Q.; Ji, J.M.; Li, C.G.; Zheng, K.N.; Lu, J.L.; Gao, Y.T.; Gong, Y.; Zhang, Y.M. Wolfberry enhanced the abundance of Akkermansia muciniphila by YAP1 in mice with acetaminophen-induced liver injury. FASEB J. 2023, 37, e22689. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Ning, M.L.; Qin, S.J.; Yu, K.A. Exploring the molecular mechanism of Lycium barbarum L. against breast cancer based on network pharmacology. J. Funct. Foods 2023, 105, 105545. [Google Scholar] [CrossRef]
- Toh, D.W.K.; Low, J.H.M.; Kim, J.E. Cardiovascular disease risk reduction with wolfberry consumption: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Nutr. 2022, 21, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Toh, D.W.K.; Lee, W.Y.; Zhou, H.Z.; Sutanto, C.N.; Lee, D.P.S.; Tan, D.; Kim, J.E. Wolfberry (Lycium barbarum) Consumption with a Healthy Dietary Pattern Lowers Oxidative Stress in Middle-Aged and Older Adults: A Randomized Controlled Trial. Antioxidants 2021, 10, 567. [Google Scholar] [CrossRef]
- Long, Q.Y.; Zhang, C.J.; Zhu, H.; Zhou, Y.T.; Liu, S.; Liu, Y.C.; Ma, X.M.; An, W.; Zhou, J.; Zhao, J.H.; et al. Comparative metabolomics combined with genome sequencing provides insights into novel wolfberry-specific metabolites and their formation mechanisms. Front. Plant Sci. 2024, 15, 1392175. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.Y.; Li, J.; Zhang, Q.C.; Jia, S.X.; Zhang, Q.Q.; Wang, R.T.; Ju, M.X. Transcriptional response of wolfberry to infestation with the endophytic fusarium nematophilum strain NQ8GII4. Plant Dis. 2024, 108, 1514–1525. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.W.; Du, Y.H.; Gao, F.; Yuan, S.F.; Yu, H.; Guo, Y.H.; Cheng, Y.L.; Yang, L.; Yao, W.R. Metabolomic, transcriptomic and physiological analysis reveal the effects and potential mechanisms of cold plasma treatment on resistance of wolfberry during storage. Postharvest Biol. Technol. 2024, 218, 113128. [Google Scholar]
- Duan, L.Y.; Zhang, B.; Dai, G.L.; He, X.R.; Zhou, X.; Huang, T.; Liang, X.J.; Zhao, J.H.; Qin, K. Integrated analysis of transcriptome and metabolome reveals new insights into the molecular mechanism underlying the color differences in wolfberry (Lycium barbarum). Agronomy 2023, 13, 1926. [Google Scholar] [CrossRef]
- Yin, Y.; Guo, C.; Shi, H.Y.; Zhao, J.H.; Ma, F.; An, W.; He, X.R.; Luo, Q.; Cao, Y.L.; Zhan, X.Q. Genome-wide comparative analysis of the R2R3-MYB gene family in five solanaceae species and identification of members regulating carotenoid biosynthesis in wolfberry. Int. J. Mol. Sci. 2022, 23, 2259. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.Y.; Yin, Y.; Zhao, J.H.; An, W.; Fan, Y.F.; Liang, X.J.; Cao, Y.L. Metabolomic and transcriptomic analysis of Lycium chinese and L. ruthenicum under salinity stress. BMC Plant Biol. 2022, 22, 8. [Google Scholar]
- Jiang, X.N.; Liu, Q.C.; Yan, L.; Cao, X.D.; Chen, Y.; Wei, Y.Q.; Wang, F.; Xing, H. Hyperspectral imaging combined with spectral-imagery feature fusion convolutional neural network to discriminate different geographical origins of wolfberries. J. Food Compos. Anal. 2024, 132, 106259. [Google Scholar] [CrossRef]
- Hao, J.; Dong, F.J.; Wang, S.L.; Li, Y.L.; Cui, J.R.; Men, J.L.; Liu, S.J. Combined hyperspectral imaging technology with 2D convolutional neural network for near geographical origins identification of wolfberry. J. Food Meas. Charact. 2022, 16, 4923–4933. [Google Scholar] [CrossRef]
- He, J.W.; Wang, T.S.; Yan, H.; Guo, S.; Hu, K.F.; Yang, X.C.; Ma, C.L.; Duan, J.A. Intelligent identification method of geographic origin for chinese wolfberries based on color space transformation and texture morphological features. Foods 2023, 12, 2541. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Fan, B.Y.; Zheng, Y.H.; Wang, X.J.; Zhang, Y.; Fu, L. Feasibility study on the geographical indication of Lycium barbarum based on electrochemical fingerprinting technique. Int. J. Electrochem. Sci. 2021, 16, 210714. [Google Scholar] [CrossRef]
- Wang, J.N.; Tan, D.Z.; Sui, L.M.; Guo, J.; Wang, R.W. Wolfberry recognition and picking-point localization technology in natural environments based on improved Yolov8n-Pose-LBD. Comput. Electron. Agric. 2024, 227, 109551. [Google Scholar] [CrossRef]
- Xing, Z.W.; Wang, Y.T.; Qu, A.L.; Yang, C. MFENet: Multi-scale feature extraction network for images deblurring and segmentation of swinging wolfberry branch. Comput. Electron. Agric. 2023, 215, 108413. [Google Scholar] [CrossRef]
- Zhu, L.Z.; Li, X.Y.; He, J.; Zhou, X.P.; Wang, F.; Zhao, Y.; Liang, X.J.; Nan, X.X.; Li, Y.H.; Qin, K.; et al. Development of Lycium barbarum-forage intercropping patterns. Agronomy 2023, 13, 1365. [Google Scholar] [CrossRef]
- Liang, X.J.; An, W.; Li, Y.K.; Qin, X.Y.; Zhao, J.H.; Su, S.C. Effects of different nitrogen application rates and picking batches on the nutritional components of Lycium barbarum L. fruits. Front. Plant Sci. 2024, 15, 1355832. [Google Scholar] [CrossRef]
- Xin, Y.J.; Li, C.C.; Xu, T.T.; Wang, Y.L.; Fu RTahir, S.; Xie, S.Z.; Zhang, R.; Sheng, H.Y.; Gao, Y.J. Improvement of Wolfberry (Lycium barbarum L.) Fruit Yield and Quality and Enhancement of Soil Fertility by Nitrogen Reduction Combined with Organic Fertilizers. J. Agric. Sci. Technol. A 2024, 14, 1–18. [Google Scholar]
- Lu, R.Q. Soil and Agricultural Chemistry Analysis Methods; Chinese Agriculture Science and Technology Press: Beijing, China, 2000; pp. 12–163. [Google Scholar]
- Ti, H.H.; Zhang, R.F.; Zhang, M.W.; Wei, Z.C.; Chi, J.W.; Deng, Y.Y.; Zhang, Y. Effect of extrusion on phytochemical profiles in milled fractions of black rice. Food Chem. 2015, 178, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.X.; Yang, F.; Ming, H.Y.; Yang, J.; Zhu, D.; Ma, X.P. Determination method research of total flavonoids of solidago decurrens lour by UV-Vis. Asia-Pac. Tradit. Med. 2017, 13, 17–19, (In Chinese with English abstract). [Google Scholar]
- Yu, H.C.; Wang, R.B.; Yin, Y.; Liu, Y.H. Detection of polysaccharides and total sugar in Chinese wolfberry based on hyperspectral imaging in different wavebands. Food Sci. 2017, 38, 191–197, (In Chinese with English abstract). [Google Scholar]
- Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and Vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J. Agri. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Güçlü, K.; Altun, M.; Zyürek, M.; Karademir, S.E.; Apak, R. Antioxidant capacity of fresh, sun and sulphited-dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. Int. J. Food Sci. Technol. 2006, 41, 76–85. [Google Scholar] [CrossRef]
- Cheng, X.H.; Wang, X.F.; Zhang, A.; Wang, P.P.; Chen, Q.Y.; Ma, T.T.; Li, W.P.; Liang, Y.Y.; Sun, X.Y.; Fang, Y.L. Foliar phenylalanine application promoted antioxidant activities in cabernet sauvignon by regulating phenolic biosynthesis. J. Agric. Food Chem. 2020, 68, 15390–15402. [Google Scholar] [CrossRef]
- Wilson, S.G.; Lambert, J.; Dahlgren, R. Compost application to degraded vineyard soils: Effect on soil chemistry, fertility, and vine performance. Am. J. Enol. Vitic. 2021, 72, 85–93. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. Composting from organic municipal solid waste: A sustainable tool for the environment and to improve grape quality. J. Agric. Sci. 2022, 160, 502–515. [Google Scholar] [CrossRef]
- Chachar, Q.I.; Solangi, A.G.; Verhoef, A. Influence of sodium chloride on seed germination and seedling root growth of cotton (Gossypium hirsutum L.). Pak. J. Bot. 2008, 40, 183–197. [Google Scholar]
- Cao, L. Effects of Saline Alkali Stress on Physiological Growth of Four Perennial Flowers of Compositae. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, July 2022. [Google Scholar]
- Jia, M. Effects of Saline-Alkali Stress on Growth and Quality of Taraxacum Mongolicum Hand-Mazz. Master’s Thesis, Northeast Agriculture University, Harbin, China, July 2023. [Google Scholar]
- Carroll, A.; Fitzpatrick, M.; Hodge, S. The Effects of Two Organic Soil Amendments, Biochar and Insect Frass Fertilizer, on Shoot Growth of Cereal Seedlings. Plants 2023, 12, 1071. [Google Scholar] [CrossRef]
- Kamrath, B.; Yuan, Y.P. Effectiveness of nutrient management for reducing phosphorus losses from agricultural areas. J. Nat. Resour. Agric. Ecosyst. 2023, 1, 77–88. [Google Scholar] [CrossRef]
- Zhang, F.H.; Liao, W.H.; Liu, J.L. Effect of yield response and intaking nutritious of Chinese cabbage to excessive applying N, P and organic fertilizer. Soils Fertil. Sci. China 2009, 4, 60–63. [Google Scholar]
- Bai, X.L.; Gao, J.J.; Chen, Z.J.; Lei, J.F.; Zhou, J.B. Nutrient accumulation and balances in soils of the new-established greenhouses. Soils Fertil. Sci. China 2014, 2, 1–5. [Google Scholar]
- Liu, C.H.; Liu, Y. Influences of organic manure addition on the maturity and quality of pineapple fruits ripened in winter. J. Soil Sci. Plant Nutr. 2012, 12, 211–220. [Google Scholar] [CrossRef]
- Dalorima, T.; Khandaker, M.M.; Zakaria, A.J.; Mohd, K.S.; Hasbullahet, M. Organic matter and moringa leaf extract’s effects on the physiology and fruit quality of red seedless watermelon (Citrullus lanatus). Biosci. J. 2019, 35, 1560–1574. [Google Scholar] [CrossRef]
- Jiang, C.Y.; Chen, Z.Y.; Xiong, H.M.; Yang, X.; Liao, W.L.; Chen, G.R.; Huang, C.; Zhu, G.Y.; Yu, H.J.; Ma, L.J. Lycium barbarum berry extract improves female fertility against aging-related oxidative stress in the ovary. Food Funct. 2024, 15, 9779–9795. [Google Scholar] [CrossRef]
- Rodríguez-Ortiz, J.C.; Díaz-Flores, P.E.; Zavala-Sierra, D.; Preciado-Rangel, P.; Rodríguez-Fuentes, H.; Estrada-González, A.J.; Carballo-Méndez, F.J. Organic vs. conventional fertilization: Soil nutrient availability, production, and quality of yomato fruit. Water Air Soil Pollut. 2022, 233, 87. [Google Scholar] [CrossRef]
- Wang, F.; Li, W.H.; Gao, Y.M.; Zhu, L.Z.; Chen, H.N.; Yang, L.; Weil, R.R.; Wang, T.N.; Nan, X.X. Radish cover crop and manure alter organic carbon characteristics and improve soil physicochemical properties as well as wolfberry yields. Agric. Ecosyst. Environ. 2024, 371, 109097. [Google Scholar] [CrossRef]
- Yan, P.K.; Chang, S.G.; Sun, Q.; Wang, R. Effect of bio-organic fertilizer on yield, quality and soil fertility of wolfberry. Soils Fertil. Sci. China 2019, 5, 112–118. [Google Scholar]
- Wan, S.; Lin, Y.X.; Hu, H.W.; Deng, M.L.; Fan, J.B.; He, J.Z. Excessive manure application stimulates nitrogen cycling but only weakly promotes crop yields in an acidic Ultisol: Results from a 20-year field experiment. J. Integr. Agric. 2024, 23, 2434–2445. [Google Scholar] [CrossRef]
- Garratt, M.P.D.; Bommarco, R.; Kleijn, D.; Martin, E.; Mortimer, S.R.; Redlich, S.; Senapathi, D.; Steffan-Dewenter, I.; Switek, S.; Takacs, V.; et al. Enhancing soil organic matter as a route to the ecological intensification of European arable systems. Ecosystems 2018, 21, 1404–1415. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Wood, S.A.; Bradford, M.A. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth. Ecol. Appl. 2020, 30, e02073. [Google Scholar] [CrossRef]
- Ozdemir, G. Determination of the effect of some organic and organo-mineral fertilizers on total phenolic, flavonoid and anthocyanin content of Bogazkere (Vitis vinifera L.) grapes. Fresenius Environ. Bull. 2018, 27, 3199–3205. [Google Scholar]
- Serri, F.; Souri, M.K.; Rezapanah, M. Growth, biochemical quality and antioxidant capacity of coriander leaves under organic and inorganic fertilization programs. Chem. Biol. Technol. Agric. 2021, 8, 33. [Google Scholar] [CrossRef]
- Shi, Z.G.; Wei, F.; Wan, R.; Li, Y.X.; Feng, J.Y. Impact of nitrogen fertilizer levels on metabolite profiling of the Lycium barbarum L. fruit. Molecules 2019, 24, 3879. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiao, J.; Yan, Y.; Liu, W.; Cui, P.; Xu, C.; Nan, L.; Liu, X. Multivariate Analysis and Optimization of the Relationship between Soil Nutrients and Berry Quality of Vitis vinifera cv. Cabernet Franc Vineyards in the Eastern Foothills of the Helan Mountains, China. Horticulturae 2024, 10, 61. [Google Scholar] [CrossRef]
Test Site | Soil Depth | Organic Carbon | Total Nitrogen | Total Phosphorus | Mineral Nitrogen | Rapidly Available Phosphorus | Rapidly Available Potassium | pH |
---|---|---|---|---|---|---|---|---|
(cm) | (g/kg) | (g/kg) | (g/kg) | (mg/kg) | (mg/kg) | (mg/kg) | ||
High-fertility field | 0–20 | 10.21 | 1.09 | 1.24 | 228.47 | 95.84 | 255.92 | 7.84 |
20–40 | 7.44 | 0.78 | 0.67 | 178.87 | 16.38 | 154.72 | 8.04 | |
Low-fertility field | 0–20 | 2.03 | 0.1 | 0.87 | 1.43 | 51.3 | 78.93 | 8.73 |
20–40 | 1.37 | 0.05 | 0.45 | 0.83 | 21.92 | 64.72 | 8.77 |
Test Site | Year | CK | M2 | M4 | M6 | M8 | M10 | |
---|---|---|---|---|---|---|---|---|
High-fertility field | Y-2020 | The first harvest | 106.2 ab | 98.5 bc | 112.0 a | 106.3 ab | 92.8 c | 100.8 bc |
The second harvest | 87.2 ab | 91.0 ab | 87.5 ab | 86.3 ab | 79.7 b | 95.6 a | ||
The third harvest | 64.4 a | 59.5 a | 70.1 a | 53.5 a | 61.9 a | 66.9 a | ||
Mean | 85.5 ab | 84.2 ab | 89.7 a | 85.8 ab | 77.6 b | 87.6 a | ||
Y-2021 | The first harvest | 102.8 ab | 103.5 ab | 105.5 a | 101.4 ab | 94.8 c | 98.1 bc | |
The second harvest | 89.3 a | 79.1 bc | 79.1 bc | 84.7 ab | 74.6 c | 73.3 c | ||
The third harvest | 60.2 a | 57.6 a | 59.7 a | 58.5 a | 60.9 a | 55.9 a | ||
Mean | 84.1 a | 80.1 ab | 81.4 ab | 81.5 ab | 76.8 ab | 75.8 b | ||
CK | M3 | M6 | M9 | M12 | M15 | |||
Low-fertility field | Y-2020 | The first harvest | 66.7 d | 87.3 bc | 87.2 bc | 81.5 c | 90.4 b | 98.7 a |
The second harvest | 45.5 c | 54.2 b | 54.1 b | 45.2 c | 51.0 bc | 62.9 a | ||
Mean | 56.1 d | 70.8 b | 70.7 b | 63.4 c | 70.7 b | 80.8 a | ||
Y-2021 | The first harvest | 68.9 a | 73.7 a | 72.6 a | 75.2 a | 74.4 a | 69.8 a | |
The second harvest | 60.7 a | 55.7 a | 59.0 a | 61.1 a | 60.8 a | 57.5 a | ||
Mean | 64.8 a | 64.7 a | 65.8 a | 68.1 a | 67.6 a | 63.7 a |
Test Site | Year | CK | M2 | M4 | M6 | M8 | M10 | |
---|---|---|---|---|---|---|---|---|
High-fertility field | Y-2020 | The first harvest | 2.4 ab | 2.5 a | 2.4 ab | 2.4 ab | 2.4 ab | 2.3 b |
The second harvest | 2.2 ab | 2.3 a | 2.2 ab | 2.2 ab | 2.2 b | 2.2 ab | ||
The third harvest | 2.1 b | 2.2 a | 2.1 ab | 2.1 bc | 2.0 c | 2.0 bc | ||
Mean | 2.2 ab | 2.3 a | 2.3 ab | 2.2 b | 2.2 b | 2.2 b | ||
Y-2021 | The first harvest | 2.1 b | 2.3 ab | 2.3 a | 2.2 ab | 2.2 ab | 2.2 ab | |
The second harvest | 2.0 a | 2.0 a | 2.0 a | 1.9 a | 2.0 a | 1.9 a | ||
The third harvest | 2.0 ab | 2.1 a | 2.1 a | 2.0 b | 2.0 ab | 2.0 ab | ||
Mean | 2.0 a | 2.1 a | 2.1 a | 2.0 a | 2.0 a | 2.1 a | ||
CK | M3 | M6 | M9 | M12 | M15 | |||
Low-fertility field | Y-2020 | The first harvest | 1.9 d | 2.1 a | 2.0 bc | 2.0 cd | 2.1 abc | 2.1 ab |
The second harvest | 2.0 a | 2.1 a | 2.1 a | 2.0 a | 2.1 a | 2.2 a | ||
Mean | 2.0 b | 2.1 ab | 2.0 ab | 2.01 ab | 2.1 abc | 2.1 a | ||
Y-2021 | The first harvest | 2.1 a | 2.1 a | 2.0 a | 2.1 a | 2.1 a | 2.0 a | |
The second harvest | 1.8 a | 1.8 a | 1.8 a | 1.8 a | 1.8 a | 1.8 a | ||
Mean | 1.9 a | 2.0 a | 1.9 a | 1.9 a | 2.0 a | 1.9 a |
Test Site | Years | Soil Properties | Soil Depth (cm) | CK | M2 | M4 | M6 | M8 | M10 |
---|---|---|---|---|---|---|---|---|---|
High-fertility field | Y-2020 | OM (g·kg−1) | 0–20 | 13.4 b | 17.9 a | 18.9 a | 19.2 a | 19.2 a | 19.99 a |
20–40 | 11.9 b | 15.8 a | 15.6 a | 15.3 a | 16.0 a | 16.8 a | |||
TN (g·kg−1) | 0–20 | 0.68 b | 1.12 a | 1.12 a | 1.15 a | 1.36 a | 1.37 a | ||
20–40 | 0.58 b | 0.60 b | 0.73 ab | 0.84 ab | 0.88 a | 0.92 a | |||
pH | 0–20 | 7.72 a | 7.52 a | 7.71 a | 7.66 a | 7.69 a | 7.50 a | ||
20–40 | 7.61 a | 7.53 a | 7.72 a | 7.56 a | 7.51 a | 7.55 a | |||
Nox.-N (kg/hm2) | 0–200 | 3475 ab | 6831 a | 2545 b | 3683 ab | 4703 ab | 4184 ab | ||
EC (μs/cm) | 0–20 | 127.4 b | 198.9 b | 150.8 b | 196.3 b | 290.2 b | 608.2 a | ||
20–40 | 245.5 b | 311.3 b | 262.5 b | 271.9 b | 342.3 b | 435.7 a | |||
Y-2021 | OM (g·kg−1) | 0–20 | 12.3 b | 16.1 a | 16.2 a | 17.2 a | 18.4 a | 18.4 a | |
20–40 | 11.9 b | 15.3 a | 15.6 a | 15.8 a | 15.8 a | 16.0 a | |||
TN (g·kg−1) | 0–20 | 0.711 b | 1.19 ab | 1.21 ab | 1.24 ab | 1.38 ab | 1.49 a | ||
20–40 | 0.684 b | 1.09 a | 1.11 a | 1.16 a | 1.19 a | 1.20 a | |||
pH | 0–20 | 8.38 a | 7.95 b | 7.94 b | 8.03 ab | 8.11 ab | 7.75 b | ||
20–40 | 8.48 a | 7.63 c | 7.82 bc | 7.75 bc | 8.00 b | 7.86 bc | |||
Nox.-N (kg/hm2) | 0–200 | 6554 a | 9945 a | 9427 a | 9364 a | 11,078 a | 9778 a | ||
EC (μs/cm) | 0–20 | 118.6 b | 191.2 b | 161.7 b | 165.2 b | 316.0 b | 697.7 a | ||
20–40 | 115.8 c | 310.3 b | 211.8 bc | 258.7 bc | 284.3 b | 727.5 a | |||
CK | M3 | M6 | M9 | M12 | M15 | ||||
Low-fertility field | Y-2020 | OM (g·kg−1) | 0–20 | 8.1 c | 9.0 bc | 9.2 bc | 9.8 bc | 11.6 b | 17.6 a |
20–40 | 7.8 d | 9.8 cd | 11.3 c | 11.7 bc | 13.9 ab | 14.8 a | |||
TN (g·kg−1) | 0–20 | 0.43 c | 0.50 bc | 0.51 bc | 0.59 b | 0.89 a | 0.94 a | ||
20–40 | 0.29 b | 0.42 ab | 0.64 a | 0.67 a | 0.70 a | 0.71 a | |||
pH | 0–20 | 8.37 a | 8.31 a | 8.23 a | 8.32 a | 8.18 a | 8.27 a | ||
20–40 | 8.38 a | 8.50 a | 8.42 a | 8.32 a | 8.24 a | 8.31 a | |||
Nox.-N (kg/hm2) | 0–100 | 15.4 b | 12.71 b | 52.9 b | 91.5 ab | 192.6 a | 130.4 ab | ||
EC (μs/cm) | 0–20 | 124.9 c | 262.1 ab | 190.2 bc | 277.5 ab | 319.5 a | 178.9 bc | ||
20–40 | 135.7 a | 143.5 a | 147.2 a | 134.7 a | 143.5 a | 148.6 a | |||
Y-2021 | OM (g·kg−1) | 0–20 | 8.5 e | 10.6 de | 11.4 cd | 13.8 bc | 14.5 b | 18.3 a | |
20–40 | 5.9 c | 9.2 bc | 11.2 bc | 11.6 abc | 14.3 ab | 17.5 a | |||
TN (g·kg−1) | 0–20 | 0.33 c | 0.52 bc | 0.55 bc | 0.64 bc | 0.88 b | 1.29 a | ||
20–40 | 0.25 c | 0.31 c | 0.47 bc | 0.55 bc | 0.69 b | 1.13 a | |||
pH | 0–20 | 8.24 cd | 8.46 abc | 8.56 ab | 8.68 a | 8.32 bc | 7.96 d | ||
20–40 | 8.46 ab | 8.70 a | 8.72 a | 8.62 a | 8.34 ab | 8.05 ± b | |||
Nox.-N (kg/hm2) | 0–100 | 386.1 b | 123.6 c | 25.0 c | 109.7 c | 102.3 c | 600.1 a | ||
EC (μs/cm) | 0–20 | 290.5 a | 246.8 ab | 200.1 bc | 170.0 c | 233.0 abc | 208.0 bc | ||
20–40 | 220.4 ab | 126.2 c | 142.2 bc | 145.3 bc | 201.7 bc | 312.3 a |
Test Site | Nutrient Content | CK | M2 | M4 | M6 | M8 | M10 |
---|---|---|---|---|---|---|---|
High fertility field | TPC (mg GAE/g) | 9.9 a | 10.4 a | 10.6 a | 10.4 a | 10.9 a | 10.9 a |
PC (g/100 g) | 2.5 ab | 3.1 a | 3.0 ab | 2.5 ab | 2.4 b | 2.9 ab | |
FC (g/kg) | 5.0 a | 4.2 b | 4.9 ab | 4.8 ab | 5.4 a | 5.1 a | |
SSC (%) | 21.2 a | 21.6 a | 21.2 a | 22.1 a | 22.9 a | 22.5 a | |
AAC (g/100 g) | 8.1 a | 8.3 a | 8.0 a | 8.0 a | 8.6 a | 8.2 a | |
CK | M3 | M6 | M9 | M12 | M15 | ||
Low Fertility field | TPC (mg GAE/g) | 9.8 b | 10.0 ab | 10.3 ab | 10.7 ab | 11.3 a | 10.6 ab |
PC (g/100 g) | 2.2 a | 2.3 a | 2.4 a | 2.1 a | 2.4 a | 2.0 a | |
FC (g/kg) | 3.1 b | 3.9 ab | 3.6 ab | 3.5 ab | 4.4 a | 3.9 ab | |
SSC (%) | 23.1 a | 23.0 a | 22.3 ab | 22.6 ab | 22.0 ab | 21.5 b | |
AAC (g/100 g) | 8.2 b | 9.5 a | 8.7 ab | 9.0 ab | 9.1 ab | 9.1 a |
Test Site | Antioxidant Activity | CK | M2 | M4 | M6 | M8 | M10 |
---|---|---|---|---|---|---|---|
High fertility field | ABTS (μM Trolox/g) | 1.890 b | 1.909 ab | 1.919 ab | 1.932 ab | 1.957 a | 1.933 ab |
DPPH (μM Trolox/g) | 1.401 a | 1.378 a | 1.435 a | 1.436 a | 1.455 a | 1.373 a | |
CUPCAC (μM Trolox/g) | 0.765 b | 0.774 b | 0.812 ab | 0.807 ab | 0.845 a | 0.824 ab | |
PFRAC | 0.066 b | 0.069 ab | 0.068 ab | 0.07 ab | 0.074 a | 0.071 ab | |
CK | M3 | M6 | M9 | M12 | M15 | ||
Low Fertility field | ABTS (μM Trolox/g) | 1.996 a | 1.993 a | 1.994 a | 1.994 a | 2.021 a | 1.987 a |
DPPH (μM Trolox/g) | 1.393 b | 1.533 a | 1.559 a | 1.554 a | 1.527 a | 1.461 ab | |
CUPCAC (μM Trolox/g) | 0.792 a | 0.852 a | 0.885 a | 0.831 a | 0.898 a | 0.858 a | |
PFRAC | 0.085 a | 0.075 a | 0.078 a | 0.075 a | 0.080 a | 0.078 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Xin, Y.; Xu, T.; Wang, Y.; Xie, S.; Shah, T.; Zhang, C.; Ren, H.; Zheng, C.; Zhang, R.; et al. Different Soil Properties, Wolfberry Yields, and Quality Responses to Organic Fertilizer Levels in Two Fields with Varying Fertility Levels in Qaidam. Soil Syst. 2025, 9, 21. https://doi.org/10.3390/soilsystems9010021
Li C, Xin Y, Xu T, Wang Y, Xie S, Shah T, Zhang C, Ren H, Zheng C, Zhang R, et al. Different Soil Properties, Wolfberry Yields, and Quality Responses to Organic Fertilizer Levels in Two Fields with Varying Fertility Levels in Qaidam. Soil Systems. 2025; 9(1):21. https://doi.org/10.3390/soilsystems9010021
Chicago/Turabian StyleLi, Congcong, Yajun Xin, Tingting Xu, Youliang Wang, Shouzhong Xie, Tahir Shah, Chi Zhang, Hangle Ren, Chongpeng Zheng, Rong Zhang, and et al. 2025. "Different Soil Properties, Wolfberry Yields, and Quality Responses to Organic Fertilizer Levels in Two Fields with Varying Fertility Levels in Qaidam" Soil Systems 9, no. 1: 21. https://doi.org/10.3390/soilsystems9010021
APA StyleLi, C., Xin, Y., Xu, T., Wang, Y., Xie, S., Shah, T., Zhang, C., Ren, H., Zheng, C., Zhang, R., Sheng, H., & Gao, Y. (2025). Different Soil Properties, Wolfberry Yields, and Quality Responses to Organic Fertilizer Levels in Two Fields with Varying Fertility Levels in Qaidam. Soil Systems, 9(1), 21. https://doi.org/10.3390/soilsystems9010021