Addressing Soil Fertility Challenges in Arid Agriculture: A Two-Year Evaluation of Combined Soil Organic Amendments Under Saline Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Organic Amendments
2.3. Physico-Chemical Analyses
2.4. Soil Humic Substances Investigations
2.5. Plant Analyses
2.6. Statistical Analyses
3. Results
3.1. Monitoring of Soil Physico-Chemical Properties Changes
3.2. Monitoring Agronomic Performance of Barley
3.3. Soluble Sugars Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bestelmeyer, B.T.; Okin, G.S.; Duniway, M.C.; Archer, S.R.; Sayre, N.F.; Williamson, J.C.; Herrick, J.E. Desertification, Land Use, and the Transformation of Global Drylands. Front. Ecol. Environ. 2015, 13, 28–36. [Google Scholar] [CrossRef]
- Yost, J.L.; Hartemink, A.E. Soil Organic Carbon in Sandy Soils: A Review. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 158, pp. 217–310. ISBN 978-0-12-817412-8. [Google Scholar]
- Plaza, C.; Zaccone, C.; Sawicka, K.; Méndez, A.M.; Tarquis, A.; Gascó, G.; Heuvelink, G.B.M.; Schuur, E.A.G.; Maestre, F.T. Soil Resources and Element Stocks in Drylands to Face Global Issues. Sci. Rep. 2018, 8, 13788. [Google Scholar] [CrossRef]
- Nagaz, K.; Mechlia, N.B. Effects of Water Quality and Nitrogen on Yield, Yield Components and Water Use Efficiency of Barley. In Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems Through Basic and Applied Research; Horst, W.J., Schenk, M.K., Bürkert, A., Claassen, N., Flessa, H., Frommer, W.B., Goldbach, H., Olfs, H.-W., Römheld, V., Sattelmacher, B., et al., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 396–397. ISBN 978-0-306-47624-2. [Google Scholar]
- Ravi, S.; Breshears, D.D.; Huxman, T.E.; D’Odorico, P. Land Degradation in Drylands: Interactions among Hydrologic–Aeolian Erosion and Vegetation Dynamics. Geomorphology 2010, 116, 236–245. [Google Scholar] [CrossRef]
- Haj-Amor, Z.; Tóth, T.; Ibrahimi, M.-K.; Bouri, S. Effects of Excessive Irrigation of Date Palm on Soil Salinization, Shallow Groundwater Properties, and Water Use in a Saharan Oasis. Environ. Earth Sci. 2017, 76, 590. [Google Scholar] [CrossRef]
- Liang, J.; Liu, Q.; Zhang, H.; Li, X.; Qian, Z.; Lei, M.; Li, X.; Peng, Y.; Li, S.; Zeng, G. Interactive Effects of Climate Variability and Human Activities on Blue and Green Water Scarcity in Rapidly Developing Watershed. J. Clean. Prod. 2020, 265, 121834. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, X.; Hou, W.; Han, Y.; Wang, R.; Zhang, H. Characteristics of Saline Soil in Extremely Arid Regions: A Case Study Using GF-3 and ALOS-2 Quad-Pol SAR Data in Qinghai, China. Remote Sens. 2021, 13, 417. [Google Scholar] [CrossRef]
- Grünberger, O. Dynamiques Salines des Sols des Milieux Arides et Semi-Arides. Ph.D. Thesis, Université de Montpellier, Montpellier, France, 2015. [Google Scholar]
- Shahid, S.A.; Zaman, M.; Heng, L. Introduction to Soil Salinity, Sodicity and Diagnostics Techniques. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–42. ISBN 978-3-319-96189-7. [Google Scholar]
- Saidi, D.; Bissonnais, Y.L.; Duval, O.; Daoud, Y.; Halitim, A. Effet du sodium échangeable et de la concentration saline sur les propriétés physiques des sols de la plaine du Cheliff (Algérie). Étude Gest. Sols 2004, 11, 137. [Google Scholar]
- Ren, Y.; Xun, W.; Yan, H.; Ma, A.; Xiong, W.; Shen, Q.; Zhang, R. Functional Compensation Dominates the Assembly of Plant Rhizospheric Bacterial Community. Soil Biol. Biochem. 2020, 150, 107968. [Google Scholar] [CrossRef]
- Liang, X.; Chen, Q.; Rana, M.S.; Dong, Z.; Liu, X.; Hu, C.; Tan, Q.; Zhao, X.; Sun, X.; Wu, S. Effects of Soil Amendments on Soil Fertility and Fruit Yield through Alterations in Soil Carbon Fractions. J. Soils Sediments 2021, 21, 2628–2638. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, H.; Wang, M.; Li, H.; Xiang, L.; Pan, F.; Chen, X.; Shen, X.; Yin, C.; Mao, Z. Effects of Soil Texture on the Growth of Young Apple Trees and Soil Microbial Community Structure Under Replanted Conditions. Hortic. Plant J. 2020, 6, 123–131. [Google Scholar] [CrossRef]
- Bukhat, S.; Manzoor, H.; Athar, H.-R.; Zafar, Z.U.; Azeem, F.; Rasul, S. Salicylic Acid Induced Photosynthetic Adaptability of Raphanus Sativus to Salt Stress Is Associated with Antioxidant Capacity. J. Plant Growth Regul. 2020, 39, 809–822. [Google Scholar] [CrossRef]
- Khan, I.; Awan, S.A.; Rizwan, M.; Brestic, M.; Xie, W. Silicon: An Essential Element for Plant Nutrition and Phytohormones Signaling Mechanism under Stressful Conditions. Plant Growth Regul. 2023, 100, 301–319. [Google Scholar] [CrossRef]
- Hueso-González, P.; Muñoz-Rojas, M.; Martínez-Murillo, J.F. The Role of Organic Amendments in Drylands Restoration. Curr. Opin. Environ. Sci. Health 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Howell, C.R.; Jenkins, S.N.; Abbott, L.K.; Mickan, B.S. Amelioration of a Saline-alkaline Soil Using Biochar and Compost: Impacts on Plant Growth, Soil Biological and Chemical Characteristics. Land Degrad. Dev. 2024, 35, 142–155. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, Z.; Si, M.; Zhu, F.; Yang, W.; Zhao, F.; Shi, Y. Application of Biochars in the Remediation of Chromium Contamination: Fabrication, Mechanisms, and Interfering Species. J. Hazard. Mater. 2021, 407, 124376. [Google Scholar] [CrossRef] [PubMed]
- Azzi, E.S.; Li, H.; Cederlund, H.; Karltun, E.; Sundberg, C. Modelling Biochar Long-Term Carbon Storage in Soil with Harmonized Analysis of Decomposition Data. Geoderma 2024, 441, 116761. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to Improve Soil Fertility. A Review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Pokharel, A.; Acharya, B.; Farooque, A. Biochar-Assisted Wastewater Treatment and Waste Valorization. In Applications of Biochar for Environmental Safety; Abdelhafez, A., Abbas, M., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-78985-895-2. [Google Scholar]
- Budai, A.; Wang, L.; Gronli, M.; Strand, L.T.; Antal, M.J., Jr.; Abiven, S.; Dieguez-Alonso, A.; Anca-Couce, A.; Rasse, D.P. Surface Properties and Chemical Composition of Corncob and Miscanthus Biochars: Effects of Production Temperature and Method. J. Agric. Food Chem. 2014, 62, 3791–3799. [Google Scholar] [CrossRef]
- Le Guyader, E.; Morvan, X.; Miconnet, V.; Marin, B.; Moussa, M.; Intrigliolo, D.S.; Delgado-Iniesta, M.J.; Girods, P.; Fontana, S.; Sbih, M.; et al. Influence of Date Palm-Based Biochar and Compost on Water Retention Properties of Soils with Different Sand Contents. Forests 2024, 15, 304. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Liu, F. Biochar Mitigates Salinity Stress in Potato. J. Agron. Crop Sci. 2015, 201, 368–378. [Google Scholar] [CrossRef]
- Lee, X.; Yang, F.; Xing, Y.; Huang, Y.; Xu, L.; Liu, Z.; Holtzman, R.; Kan, I.; Li, Y.; Zhang, L.; et al. Use of Biochar to Manage Soil Salts and Water: Effects and Mechanisms. Catena 2022, 211, 106018. [Google Scholar] [CrossRef]
- Wang, S.; Gao, P.; Zhang, Q.; Shi, Y.; Guo, X.; Lv, Q.; Wu, W.; Zhang, X.; Li, M.; Meng, Q. Application of Biochar and Organic Fertilizer to Saline-alkali Soil in the Yellow River Delta: Effects on Soil Water, Salinity, Nutrients, and Maize Yield. Soil Use Manag. 2022, 38, 1679–1692. [Google Scholar] [CrossRef]
- Janati, M.E.; Akkal-Corfini, N.; Robin, P.; Oukarroum, A.; Sabri, A.; Thomas, Z.; Chikhaoui, M.; Bouaziz, A. Compost from Date Palm Residues Increases Soil Nutrient Availability and Growth of Silage Corn (Zea mays L.) in an Arid Agroecosystem. J. Soil Sci. Plant Nutr. 2022, 22, 3727–3739. [Google Scholar] [CrossRef]
- Abbott, L.K.; Macdonald, L.M.; Wong, M.T.F.; Webb, M.J.; Jenkins, S.N.; Farrell, M. Potential Roles of Biological Amendments for Profitable Grain Production—A Review. Agric. Ecosyst. Environ. 2018, 256, 34–50. [Google Scholar] [CrossRef]
- Ayilara, M.; Olanrewaju, O.; Babalola, O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Gondek, M.; Weindorf, D.C.; Thiel, C.; Kleinheinz, G. Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compos. Sci. Util. 2020, 28, 59–75. [Google Scholar] [CrossRef]
- Alotaibi, K.D.; Alharbi, H.A.; Yaish, M.W.; Ahmed, I.; Alharbi, S.A.; Alotaibi, F.; Kuzyakov, Y. Date Palm Cultivation: A Review of Soil and Environmental Conditions and Future Challenges. Land Degrad. Dev. 2023, 34, 2431–2444. [Google Scholar] [CrossRef]
- Janati, M.E.; Robin, P.; Akkal-Corfini, N.; Bouaziz, A.; Sabri, A.; Chikhaoui, M.; Thomas, Z.; Oukarroum, A. Composting Date Palm Residues Promotes Circular Agriculture in Oases. Biomass Conv. Bioref. 2022, 13, 14859–14872. [Google Scholar] [CrossRef]
- Kavvadias, V.; Le Guyader, E.; El Mazlouzi, M.; Gommeaux, M.; Boumaraf, B.; Moussa, M.; Lamine, H.; Sbih, M.; Zoghlami, I.R.; Guimeur, K.; et al. Using Date Palm Residues to Improve Soil Properties: The Case of Compost and Biochar. Soil Syst. 2024, 8, 69. [Google Scholar] [CrossRef]
- Jien, S.-H.; Wang, C.-S. Effects of Biochar on Soil Properties and Erosion Potential in a Highly Weathered Soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef]
- Zahed, M.A.; Salehi, S.; Madadi, R.; Hejabi, F. Biochar as a Sustainable Product for Remediation of Petroleum Contaminated Soil. Curr. Res. Green Sustain. Chem. 2021, 4, 100055. [Google Scholar] [CrossRef]
- Fortin Faubert, M.; Hijri, M.; Labrecque, M. Short Rotation Intensive Culture of Willow, Spent Mushroom Substrate and Ramial Chipped Wood for Bioremediation of a Contaminated Site Used for Land Farming Activities of a Former Petrochemical Plant. Plants 2021, 10, 520. [Google Scholar] [CrossRef]
- Agoubi, B.; Dabbaghi, R.; Kharroubi, A. A Mamdani Adaptive Neural Fuzzy Inference System for Improvement of Groundwater Vulnerability. Groundwater 2018, 56, 978–985. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014; ISBN 978-92-5-108369-7. [Google Scholar]
- Rhoades, J.D. Soluble Salts. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1982; pp. 167–179. ISBN 978-0-89118-977-0. [Google Scholar]
- ISO 10390:2021. Available online: https://www.iso.org/standard/75243.html (accessed on 19 January 2025).
- Walkley, A.; Black, I.A. an examination of the method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- ISO/TS 14256-1:2003. Available online: https://www.iso.org/fr/standard/36706.html (accessed on 19 January 2025).
- Bremner, J.M.; Keeney, D.R. Steam Distillation Methods for Determination of Ammonium, Nitrate and Nitrite. Anal. Chim. Acta 1965, 32, 485–495. [Google Scholar] [CrossRef]
- Nelson, R.E. Carbonate and Gypsum. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1982; pp. 181–197. ISBN 978-0-89118-977-0. [Google Scholar]
- ISO 10693:1995. Available online: https://www.iso.org/fr/standard/18781.html (accessed on 19 January 2025).
- NF X31-106. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-x31106/qualite-des-sols-determination-du-calcaire-actif/fa123338/20268 (accessed on 19 January 2025).
- NF ISO 10390. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-iso-10390/qualite-du-sol-determination-du-ph/fa117123/25226 (accessed on 4 February 2024).
- Singh, B.; Camps-Arbestain, M.; Lehmann, J. Biochar: A Guide to Analytical Methods; Csiro Publishing: Clayton, VIC, Australia, 2017; ISBN 978-1-4863-0510-0. [Google Scholar]
- Schnitzer, M. Organic Matter Characterization. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1982; pp. 581–594. ISBN 978-0-89118-977-0. [Google Scholar]
- Fourti, O.; Jedidi, N.; Hassen, A. Humic Substances Change during the Co-Composting Process of Municipal Solid Wastes and Sewage Sludge. World J. Microbiol. Biotechnol. 2010, 26, 2117–2122. [Google Scholar] [CrossRef]
- Chen, Y.; Senesi, N.; Schnitzer, M. Information Provided on Humic Substances by E4/E6 Ratios. Soil Sci. Soc. Am. J. 1977, 41, 352–358. [Google Scholar] [CrossRef]
- Booij, I.; Piombo, G.; Risterucci, A.-M.; Coupé, M.; Thomas, D.; Ferry, M. Etude de la composition chimique de dattes à différents stades de maturité pour la caractérisation variétale de divers cultivars de palmier dattier (Phoenix dactylifera L.). Fruits 1992, 47, 667–678. [Google Scholar]
- Mensah, A.K.; Frimpong, K.A. Biochar and/or Compost Applications Improve Soil Properties, Growth, and Yield of Maize Grown in Acidic Rainforest and Coastal Savannah Soils in Ghana. Int. J. Agron. 2018, 2018, 6837404. [Google Scholar] [CrossRef]
- Handbook, No. 60: USDA ARS. Available online: https://www.ars.usda.gov/pacific-west-area/riverside-ca/agricultural-water-efficiency-and-salinity-research-unit/docs/publications/handbook-no-60/ (accessed on 24 January 2024).
- Nobile, C.; Lebrun, M.; Védère, C.; Honvault, N.; Aubertin, M.-L.; Faucon, M.-P.; Girardin, C.; Houot, S.; Kervroëdan, L.; Dulaurent, A.-M.; et al. Biochar and Compost Addition Increases Soil Organic Carbon Content and Substitutes P and K Fertilizer in Three French Cropping Systems. Agron. Sustain. Dev. 2022, 42, 119. [Google Scholar] [CrossRef]
- Alotaibi, K.D.; Arcand, M.; Ziadi, N. Effect of Biochar Addition on Legacy Phosphorus Availability in Long-Term Cultivated Arid Soil. Chem. Biol. Technol. Agric. 2021, 8, 47. [Google Scholar] [CrossRef]
- Chand, T.; Tomar, N.K.; Singh, J.P. Effect of Soil Properties on the Forms of Inorganic Phosphorus in Alkaline-calcareous Soils of Different Agroclimatic Zones. Arid Land Res. Manag. 1991, 5, 199–210. [Google Scholar] [CrossRef]
- Izilan, N.I.S.; Sari, N.A.; Othman, N.M.I.; Mustaffha, S. The Effects of Biochar-Compost on Soil Properties and Plant Growth Performance Grown in a Sandy-Loam Soil. IOP Conf. Ser. Earth Environ. Sci. 2022, 1059, 012021. [Google Scholar] [CrossRef]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T. Physical and Chemical Characterization of Biochars Derived from Different Agricultural Residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The Role of Biochar and Biochar-Compost in Improving Soil Quality and Crop Performance: A Review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Sarwar, G.; Ibrahim, M.; Ali, M.; Iftikhar, Y.; Haider, M.; Sabah, N.; Han, K.-H.; Ha, S.-K.; Zhang, Y.-S. Effect of Compost and Gypsum Application on the Chemical Properties and Fertility Status of Saline-Sodic Soil. Korean J. Soil Sci. Fertil. 2011, 44, 510–516. [Google Scholar] [CrossRef]
- Emami, H.; Astaraei, A.R.; Fotovat, A.; Khotabaei, M. Effect of Soil Conditioners on Cation Ratio of Soil Structural Stability, Structural Stability Indicators in a Sodic Soil, and on Dry Weight of Maize. Arid Land. Res. Manag. 2014, 28, 325–339. [Google Scholar] [CrossRef]
- Gao, G.; Yan, L.; Tong, K.; Yu, H.; Lu, M.; Wang, L.; Niu, Y. The Potential and Prospects of Modified Biochar for Comprehensive Management of Salt-Affected Soils and Plants: A Critical Review. Sci. Total Environ. 2024, 912, 169618. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhang, Z.; Zhai, Y.; Lu, P.; Zhu, C. Effect of Straw Biochar on Soil Properties and Wheat Production under Saline Water Irrigation. Agronomy 2019, 9, 457. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and Its Importance on Nutrient Dynamics in Soil and Plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. Short-term Effect of Biochar and Compost on Soil Fertility and Water Status of a Dystric Cambisol in NE Germany under Field Conditions. J. Plant Nutr. Soil Sci. 2012, 175, 698–707. [Google Scholar] [CrossRef]
- Hevia, G.G.; Buschiazzo, D.E.; Hepper, E.N.; Urioste, A.M.; Antón, E.L. Organic Matter in Size Fractions of Soils of the Semiarid Argentina. Effects of Climate, Soil Texture and Management. Geoderma 2003, 116, 265–277. [Google Scholar] [CrossRef]
- Balík, J.; Suran, P.; Sedlář, O.; Černý, J.; Kulhánek, M.; Procházková, S.; Asrade, D.A.; Smatanová, M. Long-Term Application of Manure and Different Mineral Fertilization in Relation to the Soil Organic Matter Quality of Luvisols. Agronomy 2023, 13, 2678. [Google Scholar] [CrossRef]
- Malou, O.; Sebag, D.; Moulin, P.; Chevallier, T.; Badiane-Ndour, N.; Thiam, A.; Chapuis-Lardy, L. The Rock-Eval® Signature of Soil Organic Carbon in Arenosols of the Senegalese Groundnut Basin. How Do Agricultural Practices Matter? Agric. Ecosyst. Environ. 2020, 301, 12. [Google Scholar] [CrossRef]
- Le Guyader, E.; El Mazlouzi, M.; Guillaneuf, A.; Tandina, B.; Gommeaux, M.; Hubert, J.; Miconnet, V.; Marin, B.; Abiven, S.; Intrigliolo, D.S.; et al. Nitrogen Budget and Barley Response to Organic Amendments in a Sandy Soil under Simulated Arid Climate. Soil Use Manag. 2025, 41, e70008. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Alotaibi, K.D.; Schoenau, J.J. Addition of Biochar to a Sandy Desert Soil: Effect on Crop Growth, Water Retention and Selected Properties. Agronomy 2019, 9, 327. [Google Scholar] [CrossRef]
- Jin, F.; Piao, J.; Miao, S.; Che, W.; Li, X.; Li, X.; Shiraiwa, T.; Tanaka, T.; Taniyoshi, K.; Hua, S.; et al. Long-Term Effects of Biochar One-off Application on Soil Physicochemical Properties, Salt Concentration, Nutrient Availability, Enzyme Activity, and Rice Yield of Highly Saline-Alkali Paddy Soils: Based on a 6-Year Field Experiment. Biochar 2024, 6, 40. [Google Scholar] [CrossRef]
- Mekkaoui, F.; Ait-El-Mokhtar, M.; Zaari Jabri, N.; Amghar, I.; Essadssi, S.; Hmyene, A. The Use of Compost and Arbuscular Mycorrhizal Fungi and Their Combination to Improve Tomato Tolerance to Salt Stress. Plants 2024, 13, 2225. [Google Scholar] [CrossRef]
- Chaplot, V.; Baveye, P.; Guenon, R.; Le guyader, E.; Minasny, B.; Srivastava, A.K. Biochars Improve Agricultural Production: The Evidence Base Is Limited. Pedosphere 2024, 35, 295–298. [Google Scholar] [CrossRef]
Parameters | Soil |
---|---|
Sand (%) | 89.6 ± 0.2 |
Clay (%) | 2.3 ± 0.1 |
Silt (%) | 7.7 ± 0.1 |
pH | 7.2 ± 0.1 |
EC (mS·cm−1) | 6.5 ± 0.1 |
Total C (%) | 0.21 ± 0.02 |
Total N (%) | 0.02 ± 0.003 |
Total CaCO3 (%) | 9.8 ± 0.4 |
Active CaCO3 (%) | 3.0 ± 0.5 |
Gypsum (%) | 4.2 ± 0.6 |
Sampling Date | pH | EC (mS·cm−1) | Ca2+ (mg·L−1) | K+ (mg·L−1) | Mg2+ (mg·L−1) | Na+ (mg·L−1) | Cl− (mg·L−1) | SO42− (mg·L−1) |
---|---|---|---|---|---|---|---|---|
28 February 2023 | 7.19 | 8.51 | 667.4 ± 5.8 | 31.5 ± 2.1 | 245.7 ± 7.9 | 1103 ± 32 | 2275 | 3452 |
Variables | Compost | Biochar | Ramial Chipped Wood |
---|---|---|---|
pH | 7.5 ± 0.02 | 10.0 ± 0.1 | 6.0 ± 0.04 |
EC (mS·cm−1) | 11.7 ± 0.4 | 0.9 ± 0.1 | 4.7 ± 0.03 |
Total C (%) | 14.2 ± 0.1 | 50.18 ± 0.13 | 56.1 ± 0.3 |
Total N (%) | 1.16 ± 0.26 | 0.53 ± 0.05 | 1.14 ± 0.01 |
Total K (mg kg−1) | 1192.9 ± 2.1 | 126.2 ± 4.1 | 117.4 ± 3.1 |
Total Na (mg kg−1) | 6271.3 ± 5.5 | 110.8 ± 2.0 | 984.7 ± 3.1 |
Total Ca (mg kg−1) | 752.1 ± 5.7 | 692.1 ± 5.7 | 4417 ± 2.0 |
Total Mg (mg kg−1) | 233.9 ± 3.0 | 38.1 ± 2.9 | 167.1 ± 1.5 |
2022 | 2023 | |||||||
---|---|---|---|---|---|---|---|---|
Control | C | BCC | RCWC | Control | C | BCC | RCWC | |
Ca 2+ (mmol·L−1) | 23.9 ± 0.8 b* | 22.7 ± 0.8 b** | 28.2 ± 0.9 a | 27.6 ± 0.9 a | 25.5 ± 0.1 b* | 27.4 ± 1.3 a** | 27.6 ± 0.4 a | 26.3 ±0.1 ab |
K+ (mmol·L−1) | 2.8 ± 0.05 b*** | 1.9 ± 0.2 c*** | 2.5 ± 0.1 b** | 3.9 ± 0.3 a | 3.7 ± 0.1 b*** | 4.3 ± 0.03 a*** | 3.6 ± 0.3 b** | 3.7 ± 0.2 b |
Mg2+ (mmol·L−1) | 6.9 ± 0.3 c* | 8.8 ± 0.2 b | 9.0 ± 0.1 b** | 9.7 ± 0.3 a** | 8.0 ± 0.4 c* | 8.9 ± 0.3 b | 9.8 ± 0.2 a** | 7.8 ± 0.4 c** |
Na+ (mmol·L−1) | 38.3 ± 0.4 b | 38.8 ± 0.1 b** | 42.4 ± 0.8 a | 42.6 ± 1.3 a | 39.0 ± 0.5 b | 51.6 ± 4.2 a** | 49.3 ± 5.6 a | 38.2 ± 2.7 b |
CEC (cmol·kg−1) | 0.8 ±0.05 c*** | 9.5 ± 0.4 a*** | 9.3 ± 0.5 a*** | 5.1 ± 0.3 b** | 1.7 ± 0.1 c*** | 6.3 ± 0.03 a*** | 6.1 ± 0.05 a*** | 2.0 ± 0.1 b** |
SAR (mmol·L−1) | 9.8 ± 0.2 a | 9.8 ± 0.1 a** | 9.8 ± 0.3 a | 9.9 ± 0.2 a | 9.5 ± 0.2 bc | 12.1 ± 0.8 a** | 11.4 ± 1.3 ab | 9.2 ± 0.7 c |
CROSS | 10.7 ± 0.3 a | 10.7 ± 0.1 a** | 10.7 ± 0.3 a | 11.0 ± 0.2 a | 10.6 ± 0.2 bc | 13.3 ± 0.8 a** | 12.6 ± 1.3 ab | 10.2 ± 0.7 c |
Parameters | Significance | |
---|---|---|
2022 | 2023 | |
pH | NS | NS |
EC (mS·cm−1) | NS | *** |
TOC (%) | ** | *** |
N (%) | *** | *** |
N-mineral (mgN·kg−1) | *** | *** |
Olsen P (mgP·kg−1) | *** | *** |
CEC (cmol·kg−1) | *** | *** |
SAR (mmol·L−1) | NS | ** |
CROSS | NS | ** |
E4/E6 | NS | ** |
Grain yield (q·ha−1) | NS | * |
2022 | 2023 | |||||||
---|---|---|---|---|---|---|---|---|
Control | C | BCC | RCWC | Control | C | BCC | RCWC | |
Fructose (mg g−1) | 0.0005 ± 0.002 b** | 0.0007 ± 0.0001 b*** | 0.0015 ± 0.0003 a*** | 0.0013 ± 0.0002 a*** | 0.0192 ± 0.004 a*** | 0.0090 ± 0.002 b*** | 0.0095 ± 0.0008 b*** | 0.0077 ± 0.0003 b*** |
Sucrose (mg g−1) | 0.0039 ± 0.003 b*** | 0.0041 ± 0.0004 b*** | 0.0063 ± 0.001 a | 0.0036 ± 0.001 b*** | 0.0345 ± 0.002 a*** | 0.0093 ± 0.0002 c*** | 0.0075 ± 0.001 c | 0.0174 ± 0.002 b*** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oueriemmi, H.; Zoghlami, R.I.; Le Guyader, E.; Mekki, F.; Suidi, Y.; Bennour, A.; Moussa, M.; Sbih, M.; Saidi, S.; Morvan, X.; et al. Addressing Soil Fertility Challenges in Arid Agriculture: A Two-Year Evaluation of Combined Soil Organic Amendments Under Saline Irrigation. Soil Syst. 2025, 9, 16. https://doi.org/10.3390/soilsystems9010016
Oueriemmi H, Zoghlami RI, Le Guyader E, Mekki F, Suidi Y, Bennour A, Moussa M, Sbih M, Saidi S, Morvan X, et al. Addressing Soil Fertility Challenges in Arid Agriculture: A Two-Year Evaluation of Combined Soil Organic Amendments Under Saline Irrigation. Soil Systems. 2025; 9(1):16. https://doi.org/10.3390/soilsystems9010016
Chicago/Turabian StyleOueriemmi, Houda, Rahma Inès Zoghlami, Elie Le Guyader, Fatma Mekki, Yosra Suidi, Ali Bennour, Mohamed Moussa, Mahtali Sbih, Sarra Saidi, Xavier Morvan, and et al. 2025. "Addressing Soil Fertility Challenges in Arid Agriculture: A Two-Year Evaluation of Combined Soil Organic Amendments Under Saline Irrigation" Soil Systems 9, no. 1: 16. https://doi.org/10.3390/soilsystems9010016
APA StyleOueriemmi, H., Zoghlami, R. I., Le Guyader, E., Mekki, F., Suidi, Y., Bennour, A., Moussa, M., Sbih, M., Saidi, S., Morvan, X., & Ouessar, M. (2025). Addressing Soil Fertility Challenges in Arid Agriculture: A Two-Year Evaluation of Combined Soil Organic Amendments Under Saline Irrigation. Soil Systems, 9(1), 16. https://doi.org/10.3390/soilsystems9010016