Soil-Forming Factors of High-Elevation Mountains along the East African Rift Valley: The Case of the Mount Guna Volcano, Ethiopia
Abstract
:1. Introduction
Country | Mountain 1 | Pedons | References |
---|---|---|---|
Ethiopia | Simien range | 6 | [13] |
Simien range | 5 | [14] | |
Kenya | Mount Kenya | 5 | [13] |
Mount Kenya | 11 | [15] | |
Mau escarpment 2 | 2 | [16] | |
Kenya/Uganda | Mount Elgon | 15 | [17] |
Tanzania | Mount Kilimanjaro | 2 | [18] |
Mount Kilimanjaro | 1 | [19] | |
Rwanda | Virunga volcanoes | 5 | [20] |
Mount Bisoke 3 | 9 | [21] |
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.3. Statistical Analysis
3. Results
3.1. Soil Morphological Characteristics
3.2. Variability in Physicochemical Characteristics along the Toposequence
3.3. Factor Analysis
3.4. Clay Mineralogy
3.5. Soil Classification and Relation with Landcover and Lithology
4. Discussion
4.1. Soil-Forming Factors
4.2. Implication for the Hydrology
4.3. Potential for Soil Carbon Sequestration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. In Climate Variability and Change in High Elevation Regions: Past, Present & Future; Diaz, H.F., Ed.; Advances in Global Change Research; Springer: Dordrecht, The Netherlands, 2003; Volume 15, pp. 5–31. ISBN 978-90-481-6322-9. [Google Scholar]
- Buytaert, W.; Cuesta-Camacho, F.; Tobón, C. Potential Impacts of Climate Change on the Environmental Services of Humid Tropical Alpine Regions. Glob. Ecol. Biogeogr. 2011, 20, 19–33. [Google Scholar] [CrossRef]
- Marta, S.; Zimmer, A.; Caccianiga, M.; Gobbi, M.; Ambrosini, R.; Azzoni, R.S.; Gili, F.; Pittino, F.; Thuiller, W.; Provenzale, A.; et al. Heterogeneous Changes of Soil Microclimate in High Mountains and Glacier Forelands. Nat. Commun. 2023, 14, 5306. [Google Scholar] [CrossRef]
- Rogora, M.; Frate, L.; Carranza, M.L.; Freppaz, M.; Stanisci, A.; Bertani, I.; Bottarin, R.; Brambilla, A.; Canullo, R.; Carbognani, M.; et al. Assessment of Climate Change Effects on Mountain Ecosystems through a Cross-Site Analysis in the Alps and Apennines. Sci. Total Environ. 2018, 624, 1429–1442. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Chen, J.; Feng, L.; Li, F.; Yu, L. Characteristics and Drivers of Soil Organic Carbon Saturation Deficit in Karst Forests of China. Diversity 2022, 14, 62. [Google Scholar] [CrossRef]
- Nissan, A.; Alcolombri, U.; Peleg, N.; Galili, N.; Jimenez-Martinez, J.; Molnar, P.; Holzner, M. Global Warming Accelerates Soil Heterotrophic Respiration. Nat. Commun. 2023, 14, 3452. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Williams, R.A.; Chen, Y.; Peng, R.; Liu, X.; Qi, Y.; Wang, Z. Responses of Soil Respiration and Its Sensitivities to Temperature and Precipitation: A Meta-Analysis. Ecol. Inform. 2023, 75, 102057. [Google Scholar] [CrossRef]
- Grunwald, S.; Thompson, J.; Boettinger, J. Digital Soil Mapping and Modeling at Continental Scales: Finding Solutions for Global Issues. Soil Sci. Soc. Am. J. 2011, 75, 1201–1213. [Google Scholar] [CrossRef]
- Rusakova, E.; Sukhacheva, E.; Hartemink, A.E. Vasiliy Dokuchaev–A Biographical Sketch on the Occasion of His 175th Birthday. Geoderma 2022, 412, 115718. [Google Scholar] [CrossRef]
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; Unabridged Dover edition 1994; Dover Publications: New York, NY, USA, 1941; ISBN 978-0-486-68128-3. [Google Scholar]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Leenaars, J.G.B.; van Oostrum, A.J.M.; Ruiperez Gonzalez, M. Africa Soil Profiles Database, Version 1.2. A Compilation of Georeferenced and Standardised Legacy Soil Profile Data for Sub-Saharan Africa (with Dataset); ISRIC-World Soil Information: Wageningen, The Netherlands, 2014. [Google Scholar]
- Frei, E. Andepts in Some High Mountains of East Africa. Geoderma 1978, 21, 119–131. [Google Scholar] [CrossRef]
- Assen, M.; Tegene, B. Characteristics and Classification of the Soils of the Plateau of SIMEN Mountains National Park (Smnp), Ethiopia. SEJS 2011, 31, 89–102. [Google Scholar] [CrossRef]
- Speck, H. Soils of the Mount Kenya Area: Their Formation, Ecological, and Agricultural Significance. Mt. Res. Dev. 1982, 2, 201. [Google Scholar] [CrossRef]
- Wielemaker, W.G.; Wakatsuki, T. Properties, Weathering and Classification of Some Soils Formed in Peralkaline Volcanic Ash in Kenya. Geoderma 1984, 32, 21–44. [Google Scholar] [CrossRef]
- Wesche, K. The High-Altitude Environment of Mt Elgon (Uganda, Kenya): Climate, Vegetation and the Impact of Fire; Ecotropical monographs; Society for Tropical Ecology: Bonn, Germany, 2002; ISBN 3-98007780-1-0. [Google Scholar]
- Zech, M.; Hörold, C.; Leiber-Sauheitl, K.; Kühnel, A.; Hemp, A.; Zech, W. Buried Black Soils on the Slopes of Mt. Kilimanjaro as a Regional Carbon Storage Hotspot. Catena 2014, 112, 125–130. [Google Scholar] [CrossRef]
- Zech, M.; Leiber, K.; Zech, W.; Poetsch, T.; Hemp, A. Late Quaternary Soil Genesis and Vegetation History on the Northern Slopes of Mt. Kilimanjaro, East Africa. Quat. Int. 2011, 243, 327–336. [Google Scholar] [CrossRef]
- Mizota, C.; Chapelle, J. Characterization of Some Andepts and Andic Soils in Rwanda, Central Africa. Geoderma 1988, 41, 193–209. [Google Scholar] [CrossRef]
- Dondeyne, S.; Deckers, S.; Chapelle, J. The Soils and the Vegetation of the Bisoke Volcano (Rwanda): Habitat of Mountain Gorillas. Pedologie 1993, 43, 301–322. [Google Scholar]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); U.S. Geological Survey Open-File Report; US Geological Survey: Reston, VA, USA, 2011; Open-File report 2011-1073; p. 26. [Google Scholar]
- Nachtergaele, F.; van Velthuizen, H.; Verelst, L.; Wiberg, D.; Henry, M.; Chiozza, F.; Yigini, Y. (Eds.) Harmonized World Soil Database Version 2.0; FAO: Rome, Italy; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2023; ISBN 978-92-5-137499-3. [Google Scholar]
- Astuti, A.J.D.; Annys, S.; Dessie, M.; Nyssen, J.; Dondeyne, S. To What Extent Is Hydrologic Connectivity Taken into Account in Catchment Studies in the Lake Tana Basin, Ethiopia? A Review. Land 2022, 11, 2165. [Google Scholar] [CrossRef]
- Poppe, L.; Frankl, A.; Poesen, J.; Admasu, T.; Dessie, M.; Adgo, E.; Deckers, J.; Nyssen, J. Geomorphology of the Lake Tana Basin, Ethiopia. J. Maps 2013, 9, 431–437. [Google Scholar] [CrossRef]
- Yenehun, A.; Dessie, M.; Azeze, M.; Nigate, F.; Belay, A.S.; Nyssen, J.; Adgo, E.; Van Griensven, A.; Van Camp, M.; Walraevens, K. Water Resources Studies in Headwaters of the Blue Nile Basin: A Review with Emphasis on Lake Water Balance and Hydrogeological Characterization. Water 2021, 13, 1469. [Google Scholar] [CrossRef]
- Haro, W.; Hailemariam, D.; Getachew, I.; Kassahun, T.; Ashenafi, S.; Burisa, G.; Edris, M. Geology, Geochemistry and Gravity Survey of the Debre Tabor Area; Basic Geoscience Mapping Core Process; Geological Survey of Ethiopia, Ministry of Mines: Addis Ababa, Ethiopia, 2010; p. vii + 77. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Clim. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200. 2022. Available online: https://esa-worldcover.org/en/data-access (accessed on 15 November 2023). [CrossRef]
- FAO. Guidelines for Soil Description, 4th ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; ISBN 978-92-5-105521-2. [Google Scholar]
- IUSS Working Group WRB World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; ISBN 979-8-9862451-1-9. [Google Scholar]
- van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; International Soil Reference and Information Centre: Wageningen, The Netherlands, 2002. [Google Scholar]
- Siregar, A.; Kleber, M.; Mikutta, R.; Jahn, R. Sodium Hypochlorite Oxidation Reduces Soil Organic Matter Concentrations without Affecting Inorganic Soil Constituents. Eur. J. Soil Sci. 2005, 56, 481–490. [Google Scholar] [CrossRef]
- Downs, R.T.; Hall-Wallace, M. The American Mineralogist Crystal Structure Database. Am. Mineral. 2003, 88, 247–250. [Google Scholar]
- Gražulis, S.; Daškevič, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quirós, M.; Serebryanaya, N.R.; Moeck, P.; Downs, R.T.; Le Bail, A. Crystallography Open Database (COD): An Open-Access Collection of Crystal Structures and Platform for World-Wide Collaboration. Nucleic Acids Res. 2012, 40, D420–D427. [Google Scholar] [CrossRef] [PubMed]
- Gražulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database–an Open-Access Collection of Crystal Structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef] [PubMed]
- IBM Corp. Released IBM SPSS Statistics for Windows, Version 26.0; IBM Corp: Armonk, NY, USA, 2019. [Google Scholar]
- Kaiser, H.F. The Varimax Criterion for Analytic Rotation in Factor Analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Abdi, H. Factor Rotations in Factor Analyses. In Encyclopedia of Social Sciences Research Methods; Sage: Thousand Oaks, CA, USA, 2004; Volume 8. [Google Scholar]
- McNemar, Q. Note on the Sampling Error of the Difference between Correlated Proportions or Percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Arrouays, D.; Lagacherie, P.; Hartemink, A.E. Digital Soil Mapping across the Globe. Geoderma Reg. 2017, 9, 1–4. [Google Scholar] [CrossRef]
- Eger, A.; Koele, N.; Caspari, T.; Poggio, M.; Kumar, K.; Burge, O.R. Quantifying the Importance of Soil-Forming Factors Using Multivariate Soil Data at Landscape Scale. JGR Earth Surf. 2021, 126, e2021JF006198. [Google Scholar] [CrossRef]
- Gray, J.M.; Bishop, T.F.A.; Wilford, J.R. Lithology and Soil Relationships for Soil Modelling and Mapping. Catena 2016, 147, 429–440. [Google Scholar] [CrossRef]
- Amundson, R. Factors of Soil Formation in the 21st Century. Geoderma 2021, 391, 114960. [Google Scholar] [CrossRef]
- Wilson, J.P. Digital Terrain Modeling. Geomorphology 2012, 137, 107–121. [Google Scholar] [CrossRef]
- Driessen, P.M.; Deckers, J.; Spaargaren, O. (Eds.) Lecture Notes on the Major Soils of the World; World Soil Resources Reports; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001; ISBN 978-92-5-104637-1. [Google Scholar]
- Harrison, R.; Van Tol, J.; Amiotte Suchet, P. Hydropedological Characteristics of the Cathedral Peak Research Catchments. Hydrology 2022, 9, 189. [Google Scholar] [CrossRef]
- Harrison, R.; Van Tol, J.; Toucher, M.L. Using Hydropedological Characteristics to Improve Modelling Accuracy in Afromontane Catchments. J. Hydrol. Reg. Stud. 2022, 39, 100986. [Google Scholar] [CrossRef]
- Zech, W.; Schad, P.; Hintermaier-Erhard, G. Soils of the World; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 978-3-540-30460-9. [Google Scholar]
- Kironchi, G.; Mbuvi, J.; Gichuki, F. Hydraulic Properties of Andosols Following Deforestation in the Northern Slopes of Mt. Kenya. East Afr. Agric. For. J. 1999, 65, 115–124. [Google Scholar] [CrossRef]
- Rodríguez Rodríguez, A.; Guerra, J.A.; Gorrín, S.P.; Arbelo, C.D.; Mora, J.L. Aggregates Stability and Water Erosion in Andosols of the Canary Islands. Land Degrad. Dev. 2002, 13, 515–523. [Google Scholar] [CrossRef]
- Tebebu, T.Y.; Abiy, A.Z.; Zegeye, A.D.; Dahlke, H.E.; Easton, Z.M.; Tilahun, S.A.; Collick, A.S.; Kidnau, S.; Moges, S.; Dadgari, F.; et al. Surface and Subsurface Flow Effect on Permanent Gully Formation and Upland Erosion near Lake Tana in the Northern Highlands of Ethiopia. Hydrol. Earth Syst. Sci. 2010, 14, 2207–2217. [Google Scholar] [CrossRef]
- Fenta, H.M.; Aynalem, D.W.; Malmquist, L.; Haileslassie, A.; Tilahun, S.A.; Barron, J.; Adem, A.A.; Adimassu, Z.; Zimale, F.A.; Steenhuis, T.S. A Critical Analysis of Soil (and Water) Conservation Practices in the Ethiopian Highlands: Implications for Future Research and Modeling. CATENA 2024, 234, 107539. [Google Scholar] [CrossRef]
- Frankl, A.; Nyssen, J.; Adgo, E.; Wassie, A.; Scull, P. Can Woody Vegetation in Valley Bottoms Protect from Gully Erosion? Insights Using Remote Sensing Data (1938–2016) from Subhumid NW Ethiopia. Reg. Environ. Chang. 2019, 19, 2055–2068. [Google Scholar] [CrossRef]
- Weldegebriel, L.; Thompson, S.; Tilahun, S.; Dietrich, W.; Assouline, S.; Nyssen, J. Organization of the Soil Profile Controls the Risks of Runoff in the Humid Ethiopian Highlands. J. Hydrol. 2023, 617, 129031. [Google Scholar] [CrossRef]
- Dondeyne, S.; Mantel, S.; Deckers, S. Factors of Soil Formation: Climate. In Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2023; Volume 4, pp. 14–24. ISBN 978-0-12-409548-9. [Google Scholar]
- Bossio, D.A.; Cook-Patton, S.C.; Ellis, P.W.; Fargione, J.; Sanderman, J.; Smith, P.; Wood, S.; Zomer, R.J.; von Unger, M.; Emmer, I.M.; et al. The Role of Soil Carbon in Natural Climate Solutions. Nat. Sustain. 2020, 3, 391–398. [Google Scholar] [CrossRef]
- Alavi-Murillo, G.; Diels, J.; Gilles, J.; Willems, P. Soil Organic Carbon in Andean High-Mountain Ecosystems: Importance, Challenges, and Opportunities for Carbon Sequestration. Reg. Environ. Chang. 2022, 22, 128. [Google Scholar] [CrossRef]
- Gebrehiwot, K.; Desalegn, T.; Woldu, Z.; Demissew, S.; Teferi, E. Soil Organic Carbon Stock in Abune Yosef Afroalpine and Sub-Afroalpine Vegetation, Northern Ethiopia. Ecol. Process. 2018, 7, 6. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Chadwick, O.A.; Matson, P.A. Carbon Cycling and Soil Carbon Storage in Mesic to Wet Hawaiian Montane Forests. Ecology 2001, 82, 3182–3196. [Google Scholar] [CrossRef]
Elevation (m a.s.l.) | n | Depth (cm) | Sand (%) | Silt (%) | Clay (%) | Silt: Clay | BD (g cm−3) | SOC (%) | SOCs (kg C m−2) | Ntotal (%) | C:N | Colour |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3000–3200 | 55 | 0–25 | 25.4 ± 9.1 | 28.6 ± 4.4 | 45.6 ± 8.6 | 0.7 ± 0.2 | 1.2 ± 0.1 | 2.8 ± 0.7 | 8.4 ± 1.6 | 0.21 ± 0.07 | 14.1 ± 2.6 | 10YR3/1 to 10YR2/1 |
41 | 25–50 | 18.6 ± 6.5 | 23.8 ± 5.9 | 57.8 ± 9.2 | 0.4 ± 0.2 | 1.2 ± 0.1 | 2.6 ± 0.5 | 8.0 ± 1.5 | 0.16 ± 0.05 | 17.1 ± 4.1 | 10YR4/1 to 10YR3/2 | |
36 | 50–100 | 15.9 ± 5.5 | 20.4 ± 4.6 | 64.2 ± 8.5 | 0.3 ± 0.1 | 1.3 ± 0.1 | 2.0 ± 0.5 | 12.9 ± 3.4 | 0.12 ± 0.04 | 17.8 ± 0.5 | 10YR4/2 | |
3200–3500 | 20 | 0–25 | 28.6 ± 8.7 | 26.8 ± 5.3 | 44.2 ± 9.3 | 0.6 ± 0.2 | 1.2± 0.1 | 2.7 ± 0.6 | 8.2 ± 1.7 | 0.20 ± 0.05 | 14.1 ± 2.5 | 7.5YR3/3 to 10YR3/1 |
14 | 25–50 | 20.6 ± 6.5 | 22.6 ± 6.5 | 56.6 ± 10.9 | 0.4 ± 0.2 | 1.3 ± 0.1 | 2.5 ± 0.6 | 7.9 ± 1.7 | 0.15 ± 0.03 | 16.4 ± 3.0 | 10YR4/3 to 10YR4/4 | |
12 | 50–100 | 17.9 ± 6.8 | 21.2 ± 5.6 | 60.8 ± 11.2 | 0.5 ± 0.2 | 1.3 ± 0.1 | 2.1 ± 0.5 | 13.9 ± 3.1 | 0.11 ± 0.02 | 18.8 ± 3.9 | 5YR3/2 | |
3500–4200 | 10 | 0–25 | 32.9 ± 8.9 | 30.3 ± 5.1 | 36.8 ± 9.2 | 0.9 ± 0.2 | 0.9 ± 0.3 | 4.9 ± 1.7 | 10.3 ± 3.0 | 0.42 ± 0.16 | 12.2 ± 1.0 | 10YR2/1 |
10 | 25–50 | 29.4 ± 11.0 | 26.3 ± 5.6 | 44.3 ± 14.8 | 0.7 ± 0.3 | 1.0 ± 0.2 | 3.3 ± 1.2 | 8.2 ± 2.3 | 0.21 ± 0.05 | 16.2 ± 4.9 | 10YR5/4 | |
4 | 50–100 | 18.5 ± 8.6 | 22.5 ± 7.6 | 59.0 ± 15.4 | 0.4 ± 0.3 | 1.2 ± 0.1 | 2.1 ± 0.6 | 12.7 ± 4.1 | 0.11 ± 0.01 | 18.4 ± 4.4 | 10YR8/1 | |
pH H2O | Ca | Mg | K | Na | CEC | CEC Clay | BS (%) | Av. P (mg/kg) | ||||
(cmolc/kg) | ||||||||||||
3000–3200 | 55 | 0–25 | 5.6 ± 0.6 | 10.7 ± 1.4 | 2.8 ± 0.8 | 0.6 ± 0.4 | 0.2 ± 0.2 | 25.7 ± 1.8 | 36.5 ± 9 | 55.6 ± 5.0 | 5.1 ± 1.6 | |
41 | 25–50 | 5.9 ± 0.6 | 11.8 ± 1.4 | 3.4 ± 0.8 | 0.6 ± 0.3 | 0.3 ± 0.2 | 27.1 ± 1.5 | 37.8 ± 9 | 59.0 ± 5.3 | 4.8 ± 1.4 | ||
36 | 50–100 | 6.1 ± 0.5 | 12.6 ± 1.5 | 3.7 ± 0.8 | 0.6 ± 0.4 | 0.3 ± 0.2 | 27.9 ± 1.7 | 21.5 ± 12 | 61.6 ± 5.8 | 3.8 ± 1.3 | ||
3200–3500 | 20 | 0–25 | 5.8 ± 0.5 | 10.6± 0.9 | 3.0 ± 0.9 | 0.7 ± 0.3 | 0.3 ± 0.2 | 25.3 ± 1.7 | 32.2 ± 6 | 57.5 ± 5.8 | 4.6 ± 1.5 | |
14 | 25–50 | 6.0 ± 0.5 | 11.7 ± 1.2 | 3.6 ± 1.0 | 0.7 ± 0.3 | 0.3 ± 0.2 | 26.7 ± 2.2 | 33.1 ± 8. | 60.7 ± 6.1 | 4.3 ± 1.1 | ||
12 | 50–100 | 6.3 ± 0.5 | 12.5 ± 1.4 | 3.8 ± 1.2 | 0.6 ± 0.3 | 0.3 ± 0.3 | 27.5 ± 2.5 | 35.4 ± 11 | 62.7 ± 5.9 | 3.2 ± 1.0 | ||
3500–4200 | 10 | 0–25 | 5.3 ± 0.4 | 10.3 ± 0.8 | 2.7 ± 0.7 | 0.7 ± 0.3 | 0.3 ± 0.3 | 25.5 ± 1.6 | 33.5 ± 8 | 55.0 ± 3.9 | 5.3 ± 0.8 | |
10 | 25–50 | 5.7 ± 0.3 | 11.2 ± 1.0 | 3.5 ± 1.3 | 0.6 ± 0.4 | 0.3 ± 0.3 | 26.3 ± 1.7 | 34.2 ± 8 | 59.5 ± 6.1 | 4.2 ± 0.8 | ||
4 | 50–100 | 6.1 ± 0.5 | 12.4 ± 1.0 | 3.9 ± 0.8 | 0.4 ± 0.2 | 0.2 ± 0.2 | 27.7 ± 0.9 | 36.2 ± 9 | 60.8 ± 4.1 | 3.7 ± 0.7 |
Characteristics | 0–25 cm | 25–50 cm | 50–100 cm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FA-1 | FA-2 | FA-3 | FA-4 | FA-1 | FA-2 | FA-3 | FA-4 | FA-1 | FA-2 | FA-3 | FA-4 | |
Sand (%) | - | 0.86 | - | - | 0.86 | - | - | - | 0.86 | - | - | - |
Silt (%) | - | - | - | −0.89 | 0.74 | - | - | - | 0.84 | - | - | - |
Clay (%) | - | −0.82 | - | 0.45 | −0.96 | - | - | - | −0.98 | - | - | - |
Silt/clay ratio | - | 0.58 | - | −0.76 | 0.92 | - | - | - | 0.96 | - | - | - |
f(BD) (g/cm3) | −0.62 | - | - | 0.47 | −0.71 | - | - | - | - | - | - | 0.41 |
pH H2O | - | - | - | 0.55 | - | 0.45 | - | −0.52 | - | - | - | 0.60 |
Ca2+ (cmolc/kg) | - | - | 0.81 | - | - | 0.84 | - | - | - | 0.90 | - | - |
Mg2+ (cmolc/kg) | - | - | 0.79 | - | - | 0.73 | - | - | - | 0.85 | - | - |
K+ (cmolc/kg) | - | 0.47 | - | - | 0.44 | - | - | - | - | - | - | - |
f(Na+) (cmolc/kg) | - | 0.54 | - | - | 0.60 | - | - | - | - | - | - | 0.46 |
CEC (cmolc/kg) | - | - | 0.56 | - | - | 0.53 | - | - | - | 0.63 | - | - |
f(BS) (%) | - | - | 0.82 | - | - | 0.84 | - | - | - | 0.75 | - | - |
f(SOC) (%)/SOC 1 | 0.90 | - | - | - | - | - | 0.96 | - | - | - | 0.96 | - |
f(Ntotal (%)) | 0.96 | - | - | - | - | - | 0.56 | −0.77 | 0.42 | 0.71 | ||
f(C:N)/C:N 1 | −0.54 | - | - | - | - | - | - | 0.91 | 0.76 | −0.46 | ||
av. P (mg/kg) | 0.47 | −0.58 | - | - | - | 0.46 | - | - | ||||
f(SOCs)/SOCs 1 (t C m−2) | 0.81 | - | - | - | - | - | 0.88 | - | 0.96 | |||
Total var. (%) | 20.6 | 16.8 | 15.3 | 12.9 | 26.4 | 17.1 | 13.5 | 11.0 | 21.7 | 18.1 | 16.8 | 9.9 |
Cum var. (%) | 23.6 | 37.4 | 52.8 | 65.6 | 26.4 | 43.5 | 56.9 | 67.9 | 21.7 | 39.7 | 56.5 | 66.4 |
Elevation (m a.s.l.) | Lithology | ||||||
---|---|---|---|---|---|---|---|
RSG\ Landcover | n | 3000–3200 | 3200–3500 | 3500–4200 | Basalt | Trachyte | Tuff |
Andosols | |||||||
Cropland | 3 | - | 1 | 2 | - | 3 | - |
Grassland | 5 | - | - | 5 | - | 5 | - |
Shrubland | 1 | - | - | 1 | - | 1 | - |
Tree cover | 1 | 1 | - | - | 1 | - | - |
Subtotal | 10 | 1 | 1 | 8 | 1 | 9 | 0 |
Cambisols 1 | |||||||
Cropland | 2 | 2 | - | - | 1 | - | 1 |
Leptosols 1 | |||||||
Cropland | 13 | 8 | 5 | - | - | 1 | 12 |
Tree cover | 3 | 3 | - | - | 1 | - | 2 |
Subtotal | 16 | 11 | 5 | 0 | 1 | 1 | 14 |
Regosols 1 | |||||||
Cropland | 1 | 1 | - | - | 1 | - | - |
Tree cover | 7 | 4 | 3 | 1 | - | 6 | |
Subtotal | 8 | 5 | 3 | 2 | 0 | 6 | |
Luvisols 2 | |||||||
Cropland | 23 | 18 | 4 | 1 | 3 | 2 | 18 |
Grassland | 4 | 1 | 1 | 2 | - | 1 | 3 |
Shrubland | 1 | 1 | - | - | - | - | 1 |
Tree cover | 6 | 5 | 1 | - | - | 1 | 5 |
Subtotal | 34 | 25 | 6 | 3 | 3 | 4 | 27 |
Phaeozems 2 | |||||||
Cropland | 2 | 2 | - | - | - | - | 2 |
Grassland | 2 | 1 | 1 | - | 1 | 1 | |
Subtotal | 4 | 2 | 1 | 1 | - | 1 | 3 |
Vertisols | |||||||
Cropland | 8 | 5 | 3 | - | - | - | 8 |
Shrubland | 1 | 1 | - | - | - | - | 1 |
Tree cover | 2 | 1 | 1 | - | - | - | 2 |
Subtotal | 11 | 7 | 4 | 0 | 0 | 0 | 11 |
Grand Total | 85 | 53 | 20 | 12 | 8 | 15 | 62 |
Soil Unit 1 | Profile | Depth (cm) | Acid Oxalate Extractable (%) | P Retention Capacity (%) | Alox + 1/2 Feox (%) | |
---|---|---|---|---|---|---|
Al | Fe | |||||
AN-sn | P-71 | 0–25 | 1.71 | 1.05 | 88 | 2.24 |
25–50 | 1.87 | 1.19 | 93 | 2.47 | ||
P-80 | 0–25 | 1.32 | 1.43 | 89 | 2.04 | |
25–50 | 1.43 | 1.51 | 91 | 2.19 | ||
AN-vi | P-59 | 0–25 | 0.37 | 1.01 | 46 | 0.88 |
25–50 | 0.34 | 0.89 | 47 | 0.79 | ||
P-73 | 0–25 | 0.66 | 1.65 | 65 | 1.49 | |
25–50 | 0.61 | 1.80 | 69 | 1.51 | ||
P-77 | 0–25 | 0.68 | 1.23 | 59 | 1.30 | |
25–50 | 0.67 | 1.30 | 60 | 1.32 | ||
P-81 | 0–25 | 1.25 | 1.17 | 79 | 1.84 | |
25–50 | 1.29 | 1.26 | 83 | 1.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sisay, M.G.; Tsegaye, E.A.; Tolossa, A.R.; Nyssen, J.; Frankl, A.; Van Ranst, E.; Dondeyne, S. Soil-Forming Factors of High-Elevation Mountains along the East African Rift Valley: The Case of the Mount Guna Volcano, Ethiopia. Soil Syst. 2024, 8, 38. https://doi.org/10.3390/soilsystems8020038
Sisay MG, Tsegaye EA, Tolossa AR, Nyssen J, Frankl A, Van Ranst E, Dondeyne S. Soil-Forming Factors of High-Elevation Mountains along the East African Rift Valley: The Case of the Mount Guna Volcano, Ethiopia. Soil Systems. 2024; 8(2):38. https://doi.org/10.3390/soilsystems8020038
Chicago/Turabian StyleSisay, Mekonnen Getahun, Enyew Adgo Tsegaye, Alemayehu Regassa Tolossa, Jan Nyssen, Amaury Frankl, Eric Van Ranst, and Stefaan Dondeyne. 2024. "Soil-Forming Factors of High-Elevation Mountains along the East African Rift Valley: The Case of the Mount Guna Volcano, Ethiopia" Soil Systems 8, no. 2: 38. https://doi.org/10.3390/soilsystems8020038
APA StyleSisay, M. G., Tsegaye, E. A., Tolossa, A. R., Nyssen, J., Frankl, A., Van Ranst, E., & Dondeyne, S. (2024). Soil-Forming Factors of High-Elevation Mountains along the East African Rift Valley: The Case of the Mount Guna Volcano, Ethiopia. Soil Systems, 8(2), 38. https://doi.org/10.3390/soilsystems8020038