Effect of Grape Pomace Varieties and Soil Characteristics on the Leaching Potential of Total Carbon, Nitrogen and Polyphenols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Pomace Selection and Characterization
2.2. Soil Samples and Analysis
R01A | R02A | Vineyard | |
---|---|---|---|
Texture | Sandy loam * | Silt loam * | Sandy clay loam ** |
Sand/Loam/Clay (DIN) | 69.8/24.4/5.9 * | 1.7/82.6/15.6 * | 61.9/13.4/24.8 ** |
Sand/Loam/Clay (USDA) | 70.5/26.1/3.4 * | 5.7/78.24/16.0 * | 62.5/12.7/24.8 ** |
Total C (%) | 0.95 * | 1.06 * | 1.5 ± 0.4 ** |
Total N (g kg−1) | 0.08 * | 0.11 * | 0.12 ± 0.01 ** |
WHCmax (g% dry weight) | 29.3 * | 47.1 * | 46.8 ± 1.3 ** |
pH (CaCl2) | 5.6 * | 6.5 * | 7.3 ± 0.1 ** |
Basal respiration (µg CO2-C g−1 soil h−1) | n.d.** | 0.05 ± 0.01 ** | 0.10 ± 0.06 ** |
Glucose respiration (µg CO2-C g−1 soil h−1) | 0.02 ± 0.02 ** | 0.26 ± 0.06 ** | 1.0 ± 0.12 ** |
Cmic (mg kg−1) | 174 * | 794 * | 449 ± 20 ** |
2.3. Rainwater Extraction: Water Soluble Fraction of C, N and TPC
2.4. Soil Leaching Experiment
2.5. pH, Carbon (C) and Nitrogen (N) in Aqueous Samples and in Soil
2.6. Analysis of Total Polyphenolic Content (TPC) in Aqueous Phases and Soil Samples
2.7. Data Analysis
3. Results
3.1. C, N and TPC Composition in GP and Rainwater Extract Related to Grape Varieties
3.2. Nutrient and Polyphenol Leaching Potential in the Soil Column
4. Discussion
4.1. C, N and Total Polyphenol Content according to the GP Varieties
4.2. The Role of the Soil in the Leaching Potential of GP: Consequences for C, N and Soil pH
4.3. Leaching Potential of Polyphenol Compounds in Soils
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eleonora, N.; Dobrei, A.; Dobrei, A.; Kiss, E.; Ciolac, V. Grape pomace as fertilizer. J. Hortic. For. Biotechnol. 2014, 18, 141–145. [Google Scholar]
- Dwyer, K.; Hosseinian, F.; Rod, M.R. The market potential of grape waste alternatives. J. Food Res. 2014, 3, 91–106. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Diaz, M.; Madejon, E.; Lopez, F.; Lopez, R.; Cabrera, F. Optimization of the rate vinasse/grape marc for co-composting process. Process Biochem. 2002, 37, 1143–1150. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.; Cruz, A.P.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.; Barral, M.; Cruz, J.; Moldes, A. Valorization of winery waste vs. the costs of not recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Flavel, T.; Murphy, D.; Lalor, B.; Fillery, I. Gross N mineralization rates after application of composted grape marc to soil. Soil Biol. Biochem. 2005, 37, 1397–1400. [Google Scholar] [CrossRef]
- Moldes, A.B.; Vázquez, M.; Domínguez, J.M.; Díaz-Fierros, F.; Barral, M.T. Evaluation of mesophilic biodegraded grape marc as soil fertilizer. Appl. Biochem. Biotechnol. 2007, 141, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Paradelo, R.; Moldes, A.B.; Barral, M.T. Carbon and nitrogen mineralization in a vineyard soil amended with grape marc vermicompost. Waste Manag. Res. 2011, 29, 1177–1184. [Google Scholar] [CrossRef]
- Aber, J.D.; Nadelhoffer, K.J.; Steudler, P.; Melillo, J.M. Nitrogen saturation in northern forest ecosystems. BioScience 1989, 39, 286–378. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Lorrain, B.; Chira, K.; Teissedre, P.-L. Phenolic composition of Merlot and Cabernet-Sauvignon grapes from Bordeaux vineyard for the 2009-vintage: Comparison to 2006, 2007 and 2008 vintages. Food Chem. 2011, 126, 1991–1999. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Ruberto, G.; Renda, A.; Daquino, C.; Amico, V.; Spatafora, C.; Tringali, C.; De Tommasi, N. Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chem. 2007, 100, 203–210. [Google Scholar] [CrossRef]
- Hättenschwiler, S.; Vitousek, P.M. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol. 2000, 15, 238–243. [Google Scholar] [CrossRef]
- Šoln, K.; Horvat, M.; Iskra, J.; Dolenc Koce, J. Inhibitory effects of methanol extracts from Fallopia japonica and F.× bohemica rhizomes and selected phenolic compounds on radish germination and root growth. Chemoecology 2022, 32, 159–170. [Google Scholar] [CrossRef]
- Girardi, J.P.; Korz, S.; Muñoz, K.; Jamin, J.; Schmitz, D.; Rösch, V.; Riess, K.; Schützenmeister, K.; Jungkunst, H.F.; Brunn, M. Nitrification inhibition by polyphenols from invasive Fallopia japonica under copper stress. J. Plant Nutr. Soil Sci. 2022, 185, 923–934. [Google Scholar] [CrossRef]
- Tang, S.; Ma, Q.; Luo, J.; Xie, Y.; Pan, W.; Zheng, N.; Liu, M.; Wu, L. The inhibition effect of tea polyphenols on soil nitrification is greater than denitrification in tea garden soil. Sci. Total Environ. 2021, 778, 146328. [Google Scholar] [CrossRef]
- McCarty, G.; Bremner, J. Effects of phenolic compounds on nitrification in soil. Soil Sci. Soc. Am. J. 1986, 50, 920–923. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; Igrejas, G.; Aires, A.; Falco, V.; Valentão, P.; Poeta, P. Phenolic compounds classification and their distribution in winemaking by-products. Eur. Food Res. Technol. 2022, 249, 207–239. [Google Scholar] [CrossRef]
- Bustamante, M.; Pérez-Murcia, M.; Paredes, C.; Moral, R.; Pérez-Espinosa, A.; Moreno-Caselles, J. Short-term carbon and nitrogen mineralisation in soil amended with winery and distillery organic wastes. Bioresour. Technol. 2007, 98, 3269–3277. [Google Scholar] [CrossRef] [PubMed]
- Gaines, T.; Gaines, S. Soil texture effect on nitrate leaching in soil percolates. Commun. Soil Sci. Plant Anal. 1994, 25, 2561–2570. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Halvorson, J.J.; Gonzalez, J.M.; Hagerman, A.E. Kinetics and binding capacity of six soils for structurally defined hydrolyzable and condensed tannins and related phenols. J. Soils Sediments 2012, 12, 366–375. [Google Scholar] [CrossRef]
- OECD. Test No. 106: Adsorption—Desorption Using a Batch Equilibrium Method, OECD Guidelines for the Testing of Chemicals, Section 1. 2001. Available online: https://www.oecd-ilibrary.org/environment/test-no-106-adsorption-desorption-using-a-batch-equilibrium-method_9789264069602-en (accessed on 27 March 2023).
- OECD. Test No. 312: Leaching in Soil Columns, OECD Guidelines for the Testing of Chemicals, Section 3. 2004. Available online: https://www.oecd-ilibrary.org/docserver/9789264070561-en.pdf?expires=1683861245&id=id&accname=guest&checksum=D184AF9B705D71ECB45846F10E30A5F2 (accessed on 27 March 2023).
- Muñoz, K.; Schmidt-Heydt, M.; Stoll, D.; Diehl, D.; Ziegler, J.; Geisen, R.; Schaumann, G. Effect of plastic mulching on mycotoxin occurrence and mycobiome abundance in soil samples from asparagus crops. Mycotoxin Res. 2015, 31, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.; Bakuradze, T.; Steinke, R.; Grewal, R.; Eckert, G.P.; Richling, E. Polyphenolic composition of extracts from winery by-products and effects on cellular cytotoxicity and mitochondrial functions in HepG2 cells. J. Funct. Foods 2020, 70, 103988. [Google Scholar] [CrossRef]
- Attard, E. A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Open Life Sci. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- ASTM (American Society for Testing and Materials), D6913 Standard Test Method for Particle-Size Analysis of Soils. 2009. Available online: https://www.astm.org/d6913-04r09e01.html (accessed on 27 March 2023).
- Steinmetz, Z.A.J.; Kenngott, K. Envalysis: Miscellaneous Functions for Environmental Analyses; R Package Version 0.5.4. 2022. Available online: https://cran.rstudio.com/web/packages/envalysis/index.html (accessed on 27 March 2023).
- Bernard, J.M. Forest floor moisture capacity of the New Jersey pine barrens. Ecology 1963, 44, 574–576. [Google Scholar] [CrossRef]
- Campbell, C.D.; Chapman, S.J.; Cameron, C.M.; Davidson, M.S.; Potts, J.M. A Rapid Microtiter Plate Method To Measure Carbon Dioxide Evolved from Carbon Substrate Amendments so as To Determine the Physiological Profiles of Soil Microbial Communities by Using Whole Soil. Appl. Environ. Microbiol. 2003, 69, 3593–3599. [Google Scholar] [CrossRef] [PubMed]
- Albert, J.; More, C.; Korz, S.; Muñoz, K. Soil Microbial Responses to Aflatoxin Exposure: Consequences for Biomass, Activity and Catabolic Functionality. Soil Syst. 2023, 7, 23. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. Microbial biomass measurements in forest soils: The use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol. Biochem. 1987, 19, 697–702. [Google Scholar] [CrossRef]
- Nishimura, H. Effect of the anthraquinones emodin and physcion on availability of selected soil inorganic ions. Ann. Appl. Biol. 1999, 135, 425–429. [Google Scholar]
- Arafat, H.A.; Franz, M.; Pinto, N.G. Effect of salt on the mechanism of adsorption of aromatics on activated carbon. Langmuir 1999, 15, 5997–6003. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R Package Version 0.7. 0. 2021. Available online: https://CRAN.R-project.org/package=rstatix (accessed on 27 March 2023).
- Signorell, A.; Aho, K.; Alfons, A.; Anderegg, N.; Aragon, T.; Arppe, A.; Baddeley, A.; Barton, K.; Bolker, B.; Borchers, H.W. DescTools: Tools for descriptive statistics. R Package Version 0.99 2019, 28, 17. [Google Scholar]
- Sousa, E.C.; Uchôa-Thomaz, A.M.A.; Carioca, J.O.B.; Morais, S.M.d.; Lima, A.d.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Amendola, D.; De Faveri, D.M.; Spigno, G. Grape marc phenolics: Extraction kinetics, quality and stability of extracts. J. Food Eng. 2010, 97, 384–392. [Google Scholar] [CrossRef]
- Martins, I.M.; Roberto, B.S.; Blumberg, J.B.; Chen, C.-Y.O.; Macedo, G.A. Enzymatic biotransformation of polyphenolics increases antioxidant activity of red and white grape pomace. Food Res. Int. 2016, 89, 533–539. [Google Scholar] [CrossRef]
- Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004, 52, 4360–4367. [Google Scholar] [CrossRef]
- Guerra-Rivas, C.; Gallardo, B.; Mantecón, Á.R.; del Álamo-Sanza, M.; Manso, T. Evaluation of grape pomace from red wine by-product as feed for sheep. J. Sci. Food Agric. 2017, 97, 1885–1893. [Google Scholar] [CrossRef]
- Winkler, A.; Weber, F.; Ringseis, R.; Eder, K.; Dusel, G. Determination of polyphenol and crude nutrient content and nutrient digestibility of dried and ensiled white and red grape pomace cultivars. Arch. Anim. Nutr. 2015, 69, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Valiente, C.; Arrigoni, E.; Esteban, R.; Amado, R. Grape pomace as a potential food fiber. J. Food Sci. 1995, 60, 818–820. [Google Scholar] [CrossRef]
- Goñí, I.; Brenes, A.; Centeno, C.; Viveros, A.; Saura-Calixto, F.; Rebolé, A.; Arija, I.; Estevez, R. Effect of dietary grape pomace and vitamin E on growth performance, nutrient digestibility, and susceptibility to meat lipid oxidation in chickens. Poult. Sci. 2007, 86, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Chikwanha, O.C.; Raffrenato, E.; Muchenje, V.; Musarurwa, H.T.; Mapiye, C. Varietal differences in nutrient, amino acid and mineral composition and in vitro rumen digestibility of grape (Vitis vinifera) pomace from the Cape Winelands vineyards in South Africa and impact of preservation techniques. Ind. Crops Prod. 2018, 118, 30–37. [Google Scholar] [CrossRef]
- Barriga-Sánchez, M.; Hiparraguirre, H.C.; Rosales-Hartshorn, M. Chemical composition and mineral content of Black Borgoña (Vitis labrusca L.) grapes, pomace and seeds, and effects of conventional and non-conventional extraction methods on their antioxidant properties. Food Sci. Technol. 2022, 42, e120021. [Google Scholar] [CrossRef]
- Rodríguez-Morgado, B.; Candiracci, M.; Santa-María, C.; Revilla, E.; Gordillo, B.; Parrado, J.; Castaño, A. Obtaining from grape pomace an enzymatic extract with anti-inflammatory properties. Plant Foods Hum. Nutr. 2015, 70, 42–49. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R.n. Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Ferjani, A.I.; Jellali, S.; Akrout, H.; Limousy, L.; Hamdi, H.; Thevenin, N.; Jeguirim, M. Nutrient retention and release from raw exhausted grape marc biochars and an amended agricultural soil: Static and dynamic investigation. Environ. Technol. Innov. 2020, 19, 100885. [Google Scholar] [CrossRef]
- Northup, R.R.; Yu, Z.; Dahlgren, R.A.; Vogt, K.A. Polyphenol control of nitrogen release from pine litter. Nature 1995, 377, 227–229. [Google Scholar] [CrossRef]
- Matus, F.J.; Lusk, C.H.; Maire, C.R. Effects of soil texture, carbon input rates, and litter quality on free organic matter and nitrogen mineralization in Chilean rain forest and agricultural soils. Commun. Soil Sci. Plant Anal. 2007, 39, 187–201. [Google Scholar] [CrossRef]
- Murphy, D.; Macdonald, A.; Stockdale, E.a.; Goulding, K.; Fortune, S.; Gaunt, J.; Poulton, P.; Wakefield, J.; Webster, C.; Wilmer, W. Soluble organic nitrogen in agricultural soils. Biol. Fertil. Soils 2000, 30, 374–387. [Google Scholar] [CrossRef]
- Garcıa-Gil, J.; Ceppi, S.; Velasco, M.; Polo, A.; Senesi, N. Long-term effects of amendment with municipal solid waste compost on the elemental and acidic functional group composition and pH-buffer capacity of soil humic acids. Geoderma 2004, 121, 135–142. [Google Scholar] [CrossRef]
- Latifah, O.; Ahmed, O.H.; Majid, N.M.A. Soil pH buffering capacity and nitrogen availability following compost application in a tropical acid soil. Compos. Sci. Util. 2018, 26, 1–15. [Google Scholar] [CrossRef]
- Naramabuye, F.; Haynes, R.J. Effect of organic amendments on soil pH and Al solubility and use of laboratory indices to predict their liming effect. Soil Sci. 2006, 171, 754–763. [Google Scholar] [CrossRef]
- Brahim, M.; Gambier, F.; Brosse, N. Optimization of polyphenols extraction from grape residues in water medium. Ind. Crops Prod. 2014, 52, 18–22. [Google Scholar] [CrossRef]
- Hájek, M.; Jiménez-Alfaro, B.; Hájek, O.; Brancaleoni, L.; Cantonati, M.; Carbognani, M.; Dedić, A.; Dítě, D.; Gerdol, R.; Hájková, P. A European map of groundwater pH and calcium. Earth Syst. Sci. Data 2021, 13, 1089–1105. [Google Scholar] [CrossRef]
- Kurtz, M.P.; Dag, A.; Zipori, I.; Laor, Y.; Buchmann, C.; Saadi, I.; Medina, S.; Raviv, M.; Zchori-Fein, E.; Schaumann, G.E. Toward Balancing the Pros and Cons of Spreading Olive Mill Wastewater in Irrigated Olive Orchards. Processes 2021, 9, 780. [Google Scholar] [CrossRef]
- Sang, S.; Lee, M.-J.; Hou, Z.; Ho, C.-T.; Yang, C.S. Stability of tea polyphenol (−)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J. Agric. Food Chem. 2005, 53, 9478–9484. [Google Scholar] [CrossRef]
- Chethan, S.; Malleshi, N. Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chem. 2007, 105, 862–870. [Google Scholar] [CrossRef]
- Zeng, L.; Ma, M.; Li, C.; Luo, L. Stability of tea polyphenols solution with different pH at different temperatures. Int. J. Food Prop. 2017, 20, 1–18. [Google Scholar] [CrossRef]
- Vernhet, A.; Pellerin, P.; Prieur, C.; Osmianski, J.; Moutounet, M. Charge properties of some grape and wine polysaccharide and polyphenolic fractions. Am. J. Enol. Vitic. 1996, 47, 25–30. [Google Scholar] [CrossRef]
- Dong, X.; Feng, R.; Yang, X.; Jiang, Y.; Chen, L.; Chen, L.; Jiang, C.; Cai, T. Complexation and reduction of soil iron minerals by natural polyphenols enhance persulfate activation for the remediation of triphenyl phosphate (TPHP)-contaminated soil. Chem. Eng. J. 2022, 435, 134610. [Google Scholar] [CrossRef]
- Min, K.; Freeman, C.; Kang, H.; Choi, S.-U. The regulation by phenolic compounds of soil organic matter dynamics under a changing environment. BioMed Res. Int. 2015, 2015, 825098. [Google Scholar] [CrossRef] [PubMed]
- Avneri-Katz, S.; Young, R.B.; McKenna, A.M.; Chen, H.; Corilo, Y.E.; Polubesova, T.; Borch, T.; Chefetz, B. Adsorptive fractionation of dissolved organic matter (DOM) by mineral soil: Macroscale approach and molecular insight. Org. Geochem. 2017, 103, 113–124. [Google Scholar] [CrossRef]
- Mutabaruka, R.; Hairiah, K.; Cadisch, G. Microbial degradation of hydrolysable and condensed tannin polyphenol–protein complexes in soils from different land-use histories. Soil Biol. Biochem. 2007, 39, 1479–1492. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 2010, 42, 391–404. [Google Scholar] [CrossRef]
- Buchmann, C.; Felten, A.; Peikert, B.; Muñoz, K.; Bandow, N.; Dag, A.; Schaumann, G. Development of phytotoxicity and composition of a soil treated with olive mill wastewater (OMW): An incubation study. Plant Soil 2015, 386, 99–112. [Google Scholar] [CrossRef]
- Schroeder, J.; Kammann, L.; Helfrich, M.; Tebbe, C.C.; Poeplau, C. Impact of common sample pre-treatments on key soil microbial properties. Soil Biol. Biochem. 2021, 160, 108321. [Google Scholar] [CrossRef]
- Čerevková, A.; Bobuľská, L.; Miklisová, D.; Renčo, M. A case study of soil food web components affected by Fallopia japonica (Polygonaceae) in three natural habitats in Central Europe. J. Nematol. 2019, 51, e2019-42. [Google Scholar] [CrossRef]
- Qu, X.; Wang, J. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl. Soil Ecol. 2008, 39, 172–179. [Google Scholar] [CrossRef]
- Scholz; Williamson. Interactions affecting the bioavailability of dietary polyphenols in vivo. Int. J. Vitam. Nutr. Res. 2007, 77, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Halake, K.; Birajdar, M.; Lee, J. Structural implications of polyphenolic antioxidants. J. Ind. Eng. Chem. 2016, 35, 1–7. [Google Scholar] [CrossRef]
- Ma, X.; Jacoby, P.W.; Sanguinet, K.A. Improving net photosynthetic rate and rooting depth of grapevines through a novel irrigation strategy in a semi-arid climate. Front. Plant Sci. 2020, 11, 575303. [Google Scholar] [CrossRef]
- Tamimi, N.; Schaumann, G.E.; Diehl, D. The fate of organic matter brought into soil by olive mill wastewater application at different seasons. J. Soils Sediments 2017, 17, 901–916. [Google Scholar] [CrossRef]
- Hamilton, N.E.; Ferry, M. ggtern: Ternary diagrams using ggplot2. J. Stat. Softw. 2018, 87, 1–17. [Google Scholar] [CrossRef]
Dornfelder | Pinot Noir | Riesling | Pinot Blanc | |
---|---|---|---|---|
Total C (% dw) | 50.2 ± 0.1 | 48.4 ± 0.1 | 43.9 ± 0.2 | 43.3 ± 0.2 |
Total N (% dw) | 2.4 ± 0.0 | 2.4 ± 0.0 | 1.3 ± 0.0 | 1.2 ± 0.0 |
C/N | 21.1 | 20.2 | 34.4 | 36.0 |
TPC (% dw) | 4.5 ± 0.3 | 4.7 ± 0.2 | 1.7 ± 2.2 | 2.3 ± 3.1 |
WC (% fw) | 66 ± 0.2 | 59 ± 1.2 | 66 ± 1.3 | 67 ± 0.5 |
Dornfelder | Pinot Noir | Riesling | Pinot Blanc | Significance | |
---|---|---|---|---|---|
Total C (g L−1) | 9.3 ± 0.1 (27; 30) | 8.4 ± 0.3 (21; 24) | 11.2 ± 1.1 (31; 32) | 12.8 ± 7.6 (46; 48) | **** |
Total N (mg L−1) | 229 ± 23 (11) | 354 ± 52 (15) | 230 ± 105 (17) | 287 ± 66 (29) | n.s. |
C/N | 55 ± 8 | 29 ± 7 | 91 ± 66 | 59 ± 15 | n.s. |
TPC (µg L−1) | 311 ± 16 (10; 13) | 283 ± 97 (7; 11) | 129 ± 66 (9; 15) | 115 ± 36 (8; 13) | n.s. |
pH solution | 4.0 ± 0.0 | 3.9 ± 0.0 | 4.1 ± 0.0 | 4.3 ± 0.0 | **** |
GP Variety | R01A | R02A | Vineyard | |
---|---|---|---|---|
0–10 cm | Control | 5.69 ± 0.14 | 6.90 ± 0.13 | 7.05 ± 0.04 |
Dornfelder | 5.71 ± 0.04 | 6.96 ± 0.06 | 7.23 ± 0.02 * | |
Pinot Noir | 5.76 ± 0.10 | 6.97 ± 0.25 | 7.26 ± 0.13 | |
Riesling | 5.64 ± 0.07 | 6.61 ± 0.41 | 7.10 ± 0.06 | |
Pinot Blanc | 5.67 ± 0.03 | 6.73 ± 0.15 | 6.99 ± 0.05 | |
10–20 cm | Control | 5.60 ± 0.05 | 6.97 ± 0.09 | 7.13 ± 0.01 |
Dornfelder | 5.69 ± 0.07 | 7.03 ± 0.07 | 7.32 ± 0.04 * | |
Pinot Noir | 5.73 ± 0.11 | 7.09 ± 0.10 | 7.36 ± 0.07 | |
Riesling | 5.66 ± 0.06 | 6.98 ± 0.08 | 7.27 ± 0.14 | |
Pinot Blanc | 5.65 ± 0.03 | 6.95 ± 0.10 | 7.26 ± 0.10 | |
20–30 cm | Control | 5.69 ± 0.05 | 7.03 ± 0.08 | 7.19 ± 0.04 |
Dornfelder | 5.74 ± 0.09 | 7.09 ± 0.07 | 7.36 ± 0.04 * | |
Pinot Noir | 5.77 ± 0.08 | 7.12 ± 0.07 | 7.39 ± 0.07 | |
Riesling | 5.70 ± 0.05 | 7.07 ± 0.11 | 7.36 ± 0.06 | |
Pinot Blanc | 5.65 ± 0.12 | 7.04 ± 0.08 | 7.33 ± 0.07 | |
Leachate | Control | 7.18 ± 0.53 | 8.58 ± 0.13 | 8.98 ± 0.12 |
Dornfelder | 7.50 ± 0.89 | 8.30 ± 0.14 | 8.88 ± 0.11 | |
Pinot Noir | 7.09 ± 1.02 | 7.73 ± 0.40 | 8.86 ± 0.27 | |
Riesling | 6.47 ± 0.45 | 7.41 ± 0.07 ** | 8.24 ± 0.39 | |
Pinot Blanc | 6.42 ± 0.64 | 7.58 ± 0.66 | 6.48 ± 0.31 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korz, S.; Sadzik, S.; More, C.; Buchmann, C.; Richling, E.; Munoz, K. Effect of Grape Pomace Varieties and Soil Characteristics on the Leaching Potential of Total Carbon, Nitrogen and Polyphenols. Soil Syst. 2023, 7, 49. https://doi.org/10.3390/soilsystems7020049
Korz S, Sadzik S, More C, Buchmann C, Richling E, Munoz K. Effect of Grape Pomace Varieties and Soil Characteristics on the Leaching Potential of Total Carbon, Nitrogen and Polyphenols. Soil Systems. 2023; 7(2):49. https://doi.org/10.3390/soilsystems7020049
Chicago/Turabian StyleKorz, Sven, Sullivan Sadzik, Camilla More, Christian Buchmann, Elke Richling, and Katherine Munoz. 2023. "Effect of Grape Pomace Varieties and Soil Characteristics on the Leaching Potential of Total Carbon, Nitrogen and Polyphenols" Soil Systems 7, no. 2: 49. https://doi.org/10.3390/soilsystems7020049
APA StyleKorz, S., Sadzik, S., More, C., Buchmann, C., Richling, E., & Munoz, K. (2023). Effect of Grape Pomace Varieties and Soil Characteristics on the Leaching Potential of Total Carbon, Nitrogen and Polyphenols. Soil Systems, 7(2), 49. https://doi.org/10.3390/soilsystems7020049