Short-Term Changes in Erosion Dynamics and Quality of Soils Affected by a Wildfire and Mulched with Straw in a Mediterranean Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Data Collection
2.3.1. Hydrological Observations
2.3.2. Soil Characterization
2.4. Statistical Analysis
3. Results
- •
- Mulching increased the sand fraction (+7.8%), while the volume of clay particles significantly decreased (−25%);
- •
- The pH practically did not vary (+0.5%), while, in contrast, EC significantly increased in the mulched soils (+11.6%);
- •
- OM and nutrients significantly increased in mulched soils (OM +28.2%, N 26%, P 73%, and K +38.9%), and these variations determined an increase in C/N (+6.6%);
- •
- The cation contents slightly varied in mulched soils compared to the unburned and untreated areas (maximum variation of −11.7% detected for Na);
- •
- Nitrates noticeably depleted in mulched soils (−80.9%), while a high increase (+144%) in sulphate content was detected;
- •
- CEC of the mulched soils showed an increase (+15.6%).
- •
- Stable silt and sand contents, and a significant decrease in clay content in the eroded fraction (−17.3%);
- •
- A slight and non-significant variation (−0.5%) in soil pH;
- •
- A significant increase (+51.7%) in EC of the deposited sediments;
- •
- Noticeable increases in OM and nutrients (OM +141%, N +61.4%, P 149%, and K +22.7%) in the deposited sediments, which furthermore let C/N rise (+50.9%);
- •
- An enrichment in Ca (+28.4%) and Mg (+84.6%) in the deposited fraction, and a slight variation (−3.3%) in the Na content;
- •
- A depletion of nitrates (−91.8%) in the deposited sediments;
- •
- Stability in CEC (−2.6%).
4. Discussion
5. Conclusions
- -
- A reduction in runoff (−20%) and in soil erosion (−60%) thanks to mulch cover;
- -
- Significant changes in several properties of burned and untreated surface soils (increase in salinity; and reductions in OM, nutrients, nitrates and micro-elements);
- -
- Effectiveness of mulching on the overall soil quality of eroded areas (large increases in OM, nutrients, and micro-elements);
- -
- Transport of some compounds downstream of the fire-affected areas (mulched or not), although the mobilized amounts were quite low.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
Soil Properties | Soil Condition/Erosion Dynamics | |||||||
---|---|---|---|---|---|---|---|---|
Mulched/Erosion | Mulched/Deposition | Non-Mulched/Erosion | Non-Mulched/Deposition | |||||
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | |
Sand (%) | 60.23 | 2.31 | 59.08 | 1.24 | 52.70 | 2.07 | 58.01 | 2.07 |
Silt (%) | 32.29 | 2.31 | 32.38 | 2.10 | 33.52 | 0.78 | 33.44 | 2.96 |
Clay (%) | 8.93 | 0.29 | 9.99 | 0.95 | 15.23 | 1.43 | 10.00 | 0.95 |
pH (-) | 8.62 | 0.08 | 8.58 | 0.09 | 8.58 | 0.09 | 8.54 | 0.09 |
EC (mS/cm) | 0.28 | 0.05 | 0.35 | 0.01 | 0.19 | 0.00 | 0.37 | 0.02 |
OM (%) | 11.01 | 1.78 | 19.53 | 3.69 | 4.92 | 0.19 | 18.91 | 1.98 |
N (%) | 0.45 | 0.06 | 0.61 | 0.06 | 0.27 | 0.05 | 0.57 | 0.10 |
P (%) | 35.62 | 12.27 | 67.10 | 2.60 | 10.86 | 0.95 | 48.51 | 12.74 |
K (%) | 2.38 | 0.21 | 2.32 | 0.16 | 1.25 | 0.09 | 2.13 | 0.29 |
Na (%) | 0.30 | 0.07 | 0.29 | 0.06 | 0.34 | 0.04 | 0.33 | 0.06 |
Ca (%) | 43.73 | 4.05 | 55.33 | 1.93 | 39.85 | 0.48 | 52.01 | 6.14 |
Mg (%) | 6.39 | 1.98 | 8.89 | 0.25 | 3.97 | 0.32 | 10.24 | 2.78 |
N-NO3− (%) | 3.11 | 2.52 | 0.02 | 0.02 | 14.94 | 3.39 | 1.46 | 1.18 |
SO42− (%) | 35.20 | 6.85 | 37.15 | 0.87 | 13.20 | 3.74 | 16.40 | 0.21 |
C/N (-) | 14.41 | 1.57 | 18.81 | 2.61 | 11.25 | 1.15 | 19.91 | 1.62 |
CEC (meq/100 g) | 22.51 | 1.87 | 20.84 | 0.60 | 18.46 | 0.35 | 19.05 | 1.31 |
References
- Marzaioli, R.; d’Ascoli, R.; De Pascale, R.A.; Rutigliano, F.A. Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Appl. Soil Ecol. 2010, 44, 205–212. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Ortega, R.; Miralles, I.; Plaza-Álvarez, P.A.; González-Romero, J.; Peña-Molina, E.; Moya, D.; Zema, D.A.; Wagenbrenner, J.W.; de las Heras, J. Effects of wildfire and logging on soil functionality in the short-term in Pinus halepensis M. forests. Eur. J. For. Res. 2020, 139, 935–945. [Google Scholar] [CrossRef]
- Fernández-García, V.; Marcos, E.; Huerta, S.; Calvo, L. Soil-vegetation relationships in Mediterranean forests after fire. For. Ecosyst. 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, M.; Liu, S.; Sun, P.; Yin, L.; Yang, T.; Yide, L.; Qiang, L.; Wei, X. The hydrological impact of extreme weather-induced forest disturbances in a tropical experimental watershed in south China. Forests 2018, 9, 734. [Google Scholar] [CrossRef] [Green Version]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Lexer, M.J. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Pereira, P.; Francos, M.; Brevik, E.C.; Ubeda, X.; Bogunovic, I. Post-fire soil management. Curr. Opin. Environ. Sci. Health 2018, 5, 26–32. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H. Fire effects on soils: The human dimension. Philos. Trans. R Soc. B Biol. Sci. 2016, 371, 20150171. [Google Scholar] [CrossRef] [Green Version]
- Wittenberg, L.; van der Wal, H.; Keesstra, S.; Tessler, N. Post-fire management treatment effects on soil properties and burned area restoration in a wildland-urban interface, Haifa Fire case study. Sci. Total. Environ. 2020, 716, 135190. [Google Scholar] [CrossRef]
- DeBano, L.F. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231, 195–206. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Zavala, L.M.M.; de Celis Silvia, R.; López, A.J. How wildfires affect soil properties. A brief review. Cuad. Investig. Geogr. Geogr. Res. Lett. 2014, 40, 311–331. [Google Scholar] [CrossRef] [Green Version]
- Lucas-Borja, M.E.; Bombino, G.; Carrà, B.G.; D′Agostino, D.; Denisi, P.; Labate, A.; Zema, D.A. Modeling the soil response to rainstorms after wildfire and prescribed fire in mediterranean forests. Climate 2020, 8, 150. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current research issues related to post-wildfire runoff and erosion processes. Earth-Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. Surface runoff and erosion after prescribed burning and the effect of different fire regimes in forests and shrublands: A review. Int. J. Wildland Fire 2012, 21, 857–872. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 2008, 74, 256–263. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. Catena 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Zema, D.A.; Nunes, J.P.; Lucas-Borja, M.E. Improvement of seasonal runoff and soil loss predictions by the MMF (Morgan-Morgan-Finney) model after wildfire and soil treatment in Mediterranean forest ecosystems. Catena 2020, 188, 104415. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Carrà, B.G.; Cerdà, A.; Plaza-Alvarez, P.A.; Cózar, J.S.; Gonzalez-Romero, J.; Moya, D.; de las Heras, J. Short-term changes in infiltration between straw mulched and non-mulched soils after wildfire in Mediterranean forest ecosystems. Ecol. Eng. 2018, 122, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Zema, D.A.; Lucas-Borja, M.E.; Fotia, L.; Rosaci, D.; Sarnè, G.M.; Zimbone, S.M. Predicting the hydrological response of a forest after wildfire and soil treatments using an Artificial Neural Network. Comput. Electron. Agric. 2020, 170, 105280. [Google Scholar] [CrossRef]
- IPCC. IPCC’s 5th Assessment Report for Europe. 2013. Available online: http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap23_FINAL.pdf (accessed on 30 May 2020).
- Bedia, J.; Herrera, S.; Camia, A.; Moreno, J.M.; Gutiérrez, J.M. Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios. Clim. Chang. 2014, 122, 185. [Google Scholar] [CrossRef] [Green Version]
- Avance Informativo Ministerio de Agricultura, Pesca y Alimentación. Gobierno de España. MAPA Spain Los Incendios Forestales en España 1 Enero–31 Diciembre 2018. 2019. Available online: https://www.miteco.gob.es/eu/biodiversidad/estadisticas/iiff_2018_tcm35-521614.pdf (accessed on 30 May 2020).
- Martinez, J.L.; Lucas-Borja, M.E.; Plaza-Alvarez, P.A.; Denisi, P.; Moreno, M.A.; Hernandez, D.; Gonzalez-Romero, J.; Zema, D.A. Comparison of satellite and drone-based images at two spatial scales to evaluate vegetation regeneration after post-fire treatments in a mediterranean forest. Appl. Sci. 2021, 11, 5423. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E. Efficiency of post-fire hillslope management strategies: Gaps of knowledge. Curr. Opin. Environ. Sci. Health 2021, 21, 100247. [Google Scholar]
- Zema, D.A. Post-fire management impacts on soil hydrology. Curr. Opin. Environ. Sci. Health 2021, 21, 100252. [Google Scholar]
- Francos, M.; Pereira, P.; Alcañiz, M.; Úbeda, X. Post-wildfire management effects on short-term evolution of soil properties (Catalonia, Spain, SW-Europe). Sci. Total. Environ. 2018, 633, 285–292. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Plaza-Álvarez, P.A.; Gonzalez-Romero, J.; Sagra, J.; Alfaro-Sánchez, R.; Zema, D.A.; Moya, D.; de Las Heras, J. Short-term effects of prescribed burning in Mediterranean pine plantations on surface runoff, soil erosion and water quality of runoff. Sci. Total. Environ. 2019, 674, 615–622. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; González-Romero, J.; Plaza-Álvarez, P.A.; Sagra, J.; Gómez, M.E.; Moya, D.; Cerdà, A.; de las Heras, J. The impact of straw mulching and salvage logging on post-fire runoff and soil erosion generation under Mediterranean climate conditions. Sci. Total Environ. 2019, 654, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Bautista, S.; Bellot, J.; Vallejo, V.R. Mulching treatment for post-fire soil conservation in a semiarid ecosystem. Arid. Soil Res. Rehabil. 1996, 10, 235–242. [Google Scholar] [CrossRef]
- Zituni, R.; Wittenberg, L.; Malkinson, D. The effects of post-fire forest management on soil erosion rates 3 and 4 years after a wildfire, demonstrated on the 2010 Mount Carmel fire. Int. J. Wildland Fire 2019, 28, 377–385. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Lewis, S.A.; Brown, R.E.; Bone, E.D.; Brooks, E.S. Evaluating post-wildfire logging-slash cover treatment to reduce hillslope erosion after salvage logging using ground measurements and remote sensing. Hydrol. Process. 2020, 34, 4431–4445. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Lewis, S.A.; Wagenbrenner, J.W.; Brown, R.E.; Pierson, F.B. Quantifying long-term post-fire sediment delivery and erosion mitigation effectiveness. Earth Surf. Process. Landf. 2020, 45, 771–782. [Google Scholar] [CrossRef]
- Keizer, J.J.; Silva, F.C.; Vieira, D.C.S.; González-Pelayo, O.; Campos, I.; Vieira, A.M.D.; Valente, S.; Prats, S.A. The effectiveness of two contrasting mulch application rates to reduce post-fire erosion in a Portuguese eucalypt plantation. Catena 2018, 169, 21–30. [Google Scholar] [CrossRef]
- Keesstra, S.; Wittenberg, L.; Maroulis, J.; Sambalino, F.; Malkinson, D.; Cerdà, A.; Pereira, P. The influence of fire history, plant species and post-fire management on soil water repellency in a Mediterranean catchment: The Mount Carmel range, Israel. Catena 2017, 149, 857–866. [Google Scholar] [CrossRef]
- Prats, S.A.; Malvar, M.C.; Coelho, C.O.A.; Wagenbrenner, J.W. Hydrologic and erosion responses to compaction and added surface cover in post-fire logged areas: Isolating splash, interrill and rill erosion. J. Hydrol. 2019, 575, 408–419. [Google Scholar] [CrossRef]
- Gabbasova, I.M.; Garipov, T.T.; Suleimanov, R.R.; Komissarov, M.A.; Khabirov, I.K.; Sidorova, L.V.; Nazyrova, F.I.; Prostyakova, Z.G.; Kotlugalyamova, E.Y. The influence of ground fires on the properties and erosion of forest soils in the Southern Urals (Bashkir State Nature Reserve). Eurasian Soil Sci. 2019, 52, 370–379. [Google Scholar] [CrossRef]
- Salesa, D.; Amodio, A.M.; Rosskopf, C.M.; Garfì, V.; Terol, E.; Cerdà, A. Three topographical approaches to survey soil erosion on a mountain trail affected by a forest fire. Barranc de la Manesa, Llutxent, Eastern Iberian Peninsula. J. Environ. Manag. 2020, 264, 110491. [Google Scholar] [CrossRef]
- Cole, R.P.; Bladon, K.D.; Wagenbrenner, J.W.; Coe, D.B. Hillslope sediment production after wildfire and post-fire forest management in northern California. Hydrol. Process. 2020, 34, 5242–5259. [Google Scholar] [CrossRef]
- Prats, S.A.; dos Santos Martins, M.A.; Malvar, M.C.; Ben-Hur, M.; Keizer, J.J. Polyacrylamide application versus forest residue mulching for reducing post-fire runoff and soil erosion. Sci. Total Environ. 2014, 468, 464–474. [Google Scholar] [CrossRef]
- Prosser, I.P.; Williams, L. The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrol. Process. 1998, 12, 251–265. [Google Scholar] [CrossRef]
- Prats, S.A.; Wagenbrenner, J.W.; Martins, M.A.S.; Malvar, M.C.; Keizer, J.J. Mid-term and scaling effects of forest residue mulching on post-fire runoff and soil erosion. Sci. Total Environ. 2016, 573, 1242–1254. [Google Scholar] [CrossRef]
- Lopes, A.R.; Prats, S.A.; Silva, F.C.; Keizer, J.J. Effects of ploughing and mulching on soil and organic matter losses after a wildfire in Central Portugal. Cuad. Investig. Geogr. 2020, 46, 303–318. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Agricultural Handbook 436; Natural Resources Conservation Service, USDA: Washington, DC, USA, 1999; p. 869. [Google Scholar]
- Guitián, F.; Carballas, T. Técnicas de Análisis de Suelos Pico Sacro, Santiago de Compostela, Spain 1976. Available online: https://digital.csic.es/handle/10261/59235 (accessed on 30 May 2020).
- Keeney, D.R.; Nelson, D.W. Nitrogen-inorganic forms. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Chemical and Microbial Properties Soil Science Society of America: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 3 Chem. Methods 1996, 5, 961–1010. [Google Scholar]
- Lucas-Borja, M.E.; Candel, D.; López-Serrano, F.R.; Andrés, M.; Bastida, F. Altitude-related factors but not Pinus community exert a dominant role over chemical and microbiological properties of a Mediterranean humid soil. Eur. J. Soil. Sci. 2012, 63, 541–549. [Google Scholar] [CrossRef]
- Barker, D.J.; Culman, S.; Dorrance, A.; Fulton, J.; Haden, R.; Lentz, E.; Lindsey, A.; Lindsey, L.; Loux, M.; McCoy, E.; et al. Ohio Agronomy Guide, 15th ed.; Ohio State University Extension Bulletin: Washington, WA, USA, 2017; Volume 472. [Google Scholar]
- Zema, D.A.; Nicotra, A.; Tamburino, V.; Zimbone, S.M. Performance assessment of collective irrigation in water users′ Associations of Calabria (Southern Italy). Irrig. Drain. 2015, 64, 314–325. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses. In Handbook No. 537; USDA: Washington, DC, USA, 1978. [Google Scholar]
- Inbar, A.; Lado, M.; Sternberg, M.; Tenau, H.; Ben-Hur, M. Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma 2014, 221, 131–138. [Google Scholar] [CrossRef]
- Smets, T.; Poesen, J.; Knapen, A. Spatial scale effects on the effectiveness of organic mulches in reducing soil erosion by water. Earth Sci. Rev. 2008, 89, 1–12. [Google Scholar] [CrossRef]
- Badia, D.; Marti, C. Seeding and mulching treatments as conservation measures of two burned soils in the central Ebro valley, NE Spain. Arid. Soil Res. Rehabil. 2000, 13, 219–232. [Google Scholar] [CrossRef]
- Jourgholami, M.; Abari, M.E. Effectiveness of sawdust and straw mulching on postharvest runoff and soil erosion of a skid trail in a mixed forest. Ecol. Eng. 2017, 109, 15–24. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Wagenbrenner, J.W.; Lewis, S.L.; Ashmun, L.E.; Brown, R.E.; Wohlgemuth, P.M. Post-fire mulching for runoff and erosion mitigation part II: Effectiveness in reducing runoff and sediment yields from small catchments. Catena 2013, 105, 93–111. [Google Scholar] [CrossRef]
- Prats, S.A.; MacDonald, L.H.; Monteiro, M.; Ferreira, A.J.D.; Coelho, C.O.A.; Keizer, J.J. Effectiveness of forest residue mulching in reducing post-fire runoff and erosion in a pine and a eucalypt plantation in north-central Portugal. Geoderma 2012, 191, 115–124. [Google Scholar] [CrossRef]
- Foltz, R.B. A comparison of three erosion control mulches on decommissioned forest road corridors in the northern Rocky Mountains, United States. J. Soil Water Conserv. 2012, 67, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Abraham, J.; Dowling, K.; Florentine, S. Risk of post-fire metal mobilization into surface water resources: A review. Sci. Total Environ. 2017, 599–600, 1740–1755. [Google Scholar] [CrossRef] [PubMed]
- Shakesby, R.A.; Boakes, J.D.; Coelho, C.O.A.; Bento-Gonçalves, J.A.; Walsh, R.P.D. Limiting the soil degradational impacts of wildfire in pine and eucalyptus forests in Portugal. Appl. Geogr. 1996, 16, 337–355. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef]
- García-Orenes, F.; Arcenegui, V.; Chrenkova, K. Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: A two-year monitoring research. Sci. Total Environ. 2017, 586, 1057–1065. [Google Scholar] [CrossRef]
- Badía, D.; López-García, S.; Martí, C.; Ortíz-Perpiñá, O.; Girona-García, A.; Casanova-Gascón, J. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total Environ. 2017, 601–602, 1119–1128. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Guerrero, C. Efectos de los incendios forestales en las propiedades edáficas. In Incendios Forestales, Suelos y Erosión Hídrica; Mataix-Solera, J., Ed.; Caja Mediterráneo, CEMACAM Font Roja-Alcoi: Alicante, Spain, 2007; pp. 5–40. [Google Scholar]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Fisher, R.F.; Binkley, D. Ecology and Management of Forest Soils, 3rd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Bodí, M.; Martin, D.; Santin, C.; Balfour, V.; Doerr, S.H.; Pereira, P.; Cerdà, A.; Mataix-Solera, J. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 2014, 130, 103–127. [Google Scholar] [CrossRef]
- Pereira, P.; Úbeda, X.; Martin, D. Fire severity effects on ash chemical composition and water-extractable elements. Geoderma 2012, 191, 105–114. [Google Scholar] [CrossRef]
- Khanna, P.K.; Raison, R.J.; Falkiner, R.A. Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils. For. Ecol. Manag. 1994, 66, 107–125. [Google Scholar] [CrossRef]
- Caon, L.; Vallejo, R.; Ritsema, J.C.; Geissen, V. Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth Sci. Rev. 2014, 139, 47–58. [Google Scholar] [CrossRef]
- Polyakov, V.O.; Lal, R. Soil organic matter and CO2 emission as affected by water erosion on field runoff plots. Geoderma 2008, 143, 216–222. [Google Scholar] [CrossRef]
- Neto, M.S.; Scopel, E.; Corbeels, M.; Cardoso, A.N.; Douzet, J.-M.; Feller, C.; Piccolo, M.C.; Cerri, C.C.; Bernoux, M. Soil carbon stocks under no-tillage mulch-based cropping systems in the Brazilian Cerrado: An on-farm synchronic assessment. Soil Tillage Res. 2010, 110, 187–195. [Google Scholar] [CrossRef]
- Santos, R.M.B.; Fernandes, L.S.; Pereira, M.G.; Cortes, R.M.V.; Pacheco, F.A.L. Water resources planning for a river basin with recurrent wildfires. Sci. Total. Environ. 2015, 526, 1–13. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas-Borja, M.E.; Parhizkar, M.; Zema, D.A. Short-Term Changes in Erosion Dynamics and Quality of Soils Affected by a Wildfire and Mulched with Straw in a Mediterranean Forest. Soil Syst. 2021, 5, 40. https://doi.org/10.3390/soilsystems5030040
Lucas-Borja ME, Parhizkar M, Zema DA. Short-Term Changes in Erosion Dynamics and Quality of Soils Affected by a Wildfire and Mulched with Straw in a Mediterranean Forest. Soil Systems. 2021; 5(3):40. https://doi.org/10.3390/soilsystems5030040
Chicago/Turabian StyleLucas-Borja, Manuel Esteban, Misagh Parhizkar, and Demetrio Antonio Zema. 2021. "Short-Term Changes in Erosion Dynamics and Quality of Soils Affected by a Wildfire and Mulched with Straw in a Mediterranean Forest" Soil Systems 5, no. 3: 40. https://doi.org/10.3390/soilsystems5030040
APA StyleLucas-Borja, M. E., Parhizkar, M., & Zema, D. A. (2021). Short-Term Changes in Erosion Dynamics and Quality of Soils Affected by a Wildfire and Mulched with Straw in a Mediterranean Forest. Soil Systems, 5(3), 40. https://doi.org/10.3390/soilsystems5030040