Heavy Metals Contamination of Urban Soils—A Decade Study in the City of Lisbon, Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling Procedure
2.3. Sample Preparation
2.4. Soil Characterization
2.5. Metals Determination
2.6. Evaluation of Environmental Risks—Pollution and Ecological Index Models
2.6.1. Geo-Accumulation Index (Igeo)
2.6.2. Contamination Factor (Cf)
2.6.3. Degree of Contamination (Cd)
2.6.4. Pollution Load Index (PLI)
2.6.5. Ecological Risk Factor (Er) and Global Potential Ecological Risk (RI)
2.7. Quality Control and Quality Assurance
2.8. Statistical Analysis
3. Results and Discussion
3.1. Soil Characterization
3.2. Soil Metals Contents
3.3. Pollution and Ecological Indexes
3.4. Data Correlation and Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Trammell, T.L.E. Chapter 10—Climate change and urban forest soils. Dev. Soil Sci. 2019, 36, 189–211. [Google Scholar] [CrossRef]
- UN. 2018. Available online: https://population.un.org/wup/Publications/Files/WUP2018-PopFacts_2018-1.pdf (accessed on 21 November 2020).
- Grigoratos, T.; Samara, C.; Voutsa, D.; Manoli, E.; Kouras, A. Chemical composition and mass closure of ambient coarse particles at traffic and urban-background sites in Thessaloniki, Greece. Environ. Sci. Pollut. Res. 2014, 21, 7708–7722. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, R.; Chen, W.; Peng, C.; Markert, B. Effects of urbanization on heavy metal accumulation in surface soils. J. Environ. Sci. 2018, 64, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Gulan, L.; Milenkovic, B.; Zeremski, T.; Milic, G.; Vuckovic, B. Persistent organic pollutants, heavy metals and radioactivity in the urban soil of Priština city, Kosovo and Metohija. Chemosphere 2017, 171, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M.; Amini, N.; Sadeghian, B.; Wang, D.; Fang, L. Heavy metals and their source identification in par-ticulate matter (PM2.5) in Isfahan city, Iran. J. Environ. Sci. 2018, 72, 166–175. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Yadav, I.C.; Devi, N.L.; Singh, V.K.; Li, J.; Zhang, G. Spatial distribution, source analysis and health risk assess-ment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere 2019, 218, 1100–1113. [Google Scholar] [CrossRef]
- Yuan, X.; Xue, N.; Han, Z. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J. Environ. Sci. 2021, 101, 217–226. [Google Scholar] [CrossRef]
- Guagliardi, I.; Cicchella, D.; de Rosa, R.; Buttafuoco, G. Assessment of lead pollution in topsoils of a southern Italy area: Analysis of urban and peri-urban environment. J. Environ. Sci. 2015, 33, 179–187. [Google Scholar] [CrossRef]
- Wilkins, D.A. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. 1978, 80, 623–633. [Google Scholar] [CrossRef]
- European Commission DG Environment. Soil Contamination: Impacts on Human Health, Science for Environment Policy, 2013, Issue 5. Available online: http://ec.europa.eu/science-environment-policy (accessed on 22 January 2021).
- Directive 98/70/EC, European Parliament and of the Council. Relating to the quality of petrol and diesel fuels and amending Council Directive 93/12/EEC. Off. J. L 1998, 350, 58–68.
- Migon, C.; Jourdan, E.; Nicolas, E.; Gentili, B. Effects of reduced leaded fuel consumption on atmospheric lead behavior. Chemosphere 1994, 28, 139–144. [Google Scholar] [CrossRef]
- Tomtom. 2019. Available online: https://www.tomtom.com/en_gb/traffic-index/ (accessed on 15 December 2020).
- Werkenthin, M.; Kluge, B.; Wessolek, G. Metals in European roadside soils and soil solution-A review. Environ. Pollut. 2014, 189, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.J.; Liu, Y.; Liu, Z.; Zhang, A.N. Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China. Ecotoxicol. Environ. Saf. 2018, 164, 261–269. [Google Scholar] [CrossRef]
- Barbieri, M. The importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J.; Li, L.; Min, X.; Luo, Y. Pollution, ecological-health risks and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere 2018, 201, 234242. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Varol, M.; Sunbul, M.R.; Aytop, H.; Yılmaz, C.H. Environmental, ecological and health risks of trace elements and their sources in soils of Harran Plain, Turkey. Chemosphere 2020, 245, 125592. [Google Scholar] [CrossRef] [PubMed]
- Directive 2008/50/EC, European Parliament and of the Council. On ambient air quality and cleaner air for Europe. Off. J. L 2008, 152, 1–44.
- Directive 2010/75/EU, European Parliament and of the Council. On industrial emissions (integrated pollution prevention and control). Off. J. L 2010, 334, 17–119.
- Gallaert, G.; Cools, N.; Delanote, V.; De Vos, B.; Groenemans, R.; Langouche, D.; Roskams, P.; Scheldeman, X.; Mechelen, L.V.; Ranst, E.V. Sampling and Analysis of Soil–Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests, 4th ed.; UNECE: Hamburg, Germany, 2003. [Google Scholar]
- ISO 10390. Soil Quality—Determination of pH; ISO: Genebra, Switzerland, 2015. [Google Scholar]
- ISO 11465. Soil quality—Determination of Dry Matter and Water Content on a Mass Basis–Gravimetric Method; ISO: Genebra, Switzerland, 1993. [Google Scholar]
- CEN/TC. Chemical Analyses—Determination of Dry Matter and Water Content on a Mass Basis in Sediment, Sludge, Soil, and Waste—Gravimetric Method; CEN: Brussels, Belgium, 2003. [Google Scholar]
- ISO 11466. Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia; ISO: Genebra, Switzerland, 2010. [Google Scholar]
- Förstner, U.; Müller, G. Concentrations of heavy metals and polycyclic aromatic hydrocarbons in river sediments: Geochemical background, man’s influence and environmental impact. GeoJournal 1981, 5, 417. [Google Scholar] [CrossRef]
- Baltas, H.; Sirin, M.; Gökbayrak, E.; Ozcelik, A.E. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere 2020, 241, 125015. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, R.; Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Jozefowska, A.; Zaleski, T.; Kepka, W.; Tymczuk, M.; Orłowska, K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Po-land) by indices of pollution. Chemosphere 2016, 168, 839–850. [Google Scholar] [CrossRef]
- Liu, K.; Li, C.; Tang, S.; Shang, G.; Yu, F.; Li, Y. Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China. Chemosphere 2020, 251, 126415. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kaur, P.; Singh Sidhu, G.P.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 2019, 216, 449–462. [Google Scholar] [CrossRef]
- Massart, D.L.; Vandeginste, B.G.M.; Deming, S.N.; Michotte, Y.; Kaufman, L. Chemometrics: A Textbook (Data Handling in Science and Technology); Fifth Impression 2003; Elsevier Science: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Leitão, T.E.; Cameira, M.R.; Costa, H.D.; Pacheco, J.M.; Henriques, M.J.; Martins, L.L.; Mourato, M.P. Environmental quality in urban allotment gardens: Atmospheric deposition, soil, water and vegetable assessment at Lisbon city. Water Air Soil Pollut. 2018, 229, 31. [Google Scholar] [CrossRef]
- Argyraki, A.; Kelepertzis, E. Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements. Sci. Total Environ. 2014, 482, 366–377. [Google Scholar] [CrossRef]
- Ajmone-Marsan, F.; Biasioli, M.; Kralj, T.; Grčman, H.; Davidson, C.M.; Hursthouse, A.S.; Madrid, L.; Rodrigues, S. Metals in particle-size fractions of the soils of five European cities. Environ. Pollut. 2008, 152, 73–81. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, T.; He, J. Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China. J. Soils Sediments 2008, 8, 51–58. [Google Scholar] [CrossRef]
- Birke, M.; Rauch, U. Urban Geochemistry: Investigations in the Berlin Metropolitan area. Environ. Geochem. Health 2000, 22, 233–248. [Google Scholar] [CrossRef]
- Guillén, M.T.; Delgado, J.; Albanese, S.; Nieto, J.M.; Lima, A.; de Vivo, B. Heavy metals fractionation and multi-variate statistical techniques to evaluate the environmental risk in soils of Huelva township (SW Iberian Peninsula). J. Geochem. Explor. 2012, 119–120, 32–43. [Google Scholar] [CrossRef]
- Christoforidis, A.; Stamatis, N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 2009, 151, 257–263. [Google Scholar] [CrossRef]
- Mitchell, R.; Spliethoff, H.M.; Ribaudo, L.N.; Lopp, D.M.; Shayler, H.A.; Marquez-Bravo, L.G.; Lambert, V.T.; Ferenz, G.S.; Russell-Anelli, J.M.; Stone, E.B.; et al. Lead (Pb) and other metals in New York City community garden soils: Factors influencing contaminant distributions. Environ. Pollut. 2014, 187, 162–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tijhuis, L.; Brattli, B.; Sæther, O. A geochemical survey of topsoil in the city of Oslo, Norway. Environ. Geochem. Health 2002, 24, 67–94. [Google Scholar] [CrossRef]
- Manta, D.S.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Nogueira, T.A.R.; Abreu-Junior, C.H.; Alleoni, L.R.F.; He, Z.; Soares, M.R.; Vieira, C.S.; Lessa, L.G.F.; Capra, G.F. Background concentrations and quality reference values for some potentially toxic elements in soils of São Paulo state, Brazil. J. Environ. Manag. 2018, 221, 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, G.; Chen, Z.; Xu, S.; Zhang, J.; Wang, L.; Bi, C.; Teng, J. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 2008, 156, 251–260. [Google Scholar] [CrossRef]
- Linde, M.; Bengtsson, H.; Öborn, I. Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden. Water Air Soil Pollut. 2001, 1, 83–101. [Google Scholar] [CrossRef]
- Cachada, A.; Dias, A.C.; Pato, P.; Mieiro, C.; Rocha-Santos, T.; Pereira, M.E.; Ferreira da Silva, E.; Duarte, A.C. Major inputs and mobility of potentially toxic elements contamination in urban areas. Environ. Monit. Assess. 2013, 185, 279–294. [Google Scholar] [CrossRef]
- Costa, C.; Reis, A.P.; Silva, E.F.; Rocha, F.; Patinha, C.; Dias, A.C.; Sequeira, C.; Terroso, D. Assessing the control exerted by soil mineralogy in the fixation of potentially harmful elements in the urban soils of Lisbon, Portugal. Environ. Earth Sci. 2012, 65, 1133–1145. [Google Scholar] [CrossRef]
- Fleischer, M. Recent Estimates of the Abundances of the Elements in the Earth’s Crust; U.S. Geological Survey: Washington, DC, USA, 1953; Volume 285.
- Vinogradov, A.P. The Geochemistry of Rare and Dispersed Chemical Elements in Soils, 2nd ed.; Consultants Bureau: New York, NY, USA, 1959. [Google Scholar]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Mason, B.; Moore, C.B. Principles of Geochemistry, 4th ed.; John Wiley Sons: New York, NY, USA, 1966. [Google Scholar]
- Parker, R.L. Data of Geochemistry. Chapter D. Composition of the Earth’s Crust, 6th ed.; United States Government Printing Office: Washington, DC, USA, 1967.
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Adriano, D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Reimann, C.; Siewers, U.; Tarvainen, T.; Bityukova, L.; Eriksson, J.; Giucis, A.; Gregorauskiene, V.; Lukashev, V.K.; Matinian, N.N.; Pasieczna, A. Agricultural Soils in Northern Europe: A Geochemical Atlas; Schweizerbart Science Publishers: Stuttgart, Germany, 2003. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2011. [Google Scholar]
- Moitinho de Almeida, F. Carta Geológica do Concelho de Lisboa, Folha 1, 2, 3 e 4, Escala 1:10 000; Serviços Geológicos de Portugal: Lisbon, Portugal, 1986. [Google Scholar]
- Matschullat, J.; Ottenstein, R.; Reimann, C. Geochemical background—Can we calculate it? Environ. Geol. 2000, 39, 990–1000. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P. Normal and lognormal data distribution in geochemistry:death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ. Geol. 2000, 39, 1001–1014. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P.; Garrett, R.G. Background and threshold: Critical comparison of methods of determination. Sci. Total Environ. 2005, 346, 1–16. [Google Scholar] [CrossRef]
- Reimann, C.; Garrett, R.G. Geochemical background—Concept and reality. Sci. Total Environ. 2005, 350, 12–27. [Google Scholar] [CrossRef]
- Korzeniowska, J.; Krąż, P. Heavy Metals Content in the Soils of the Tatra National Park Near Lake Morskie Oko and Kasprowy Wierch—A Case Study (Tatra Mts, Central Europe). Minerals 2020, 10, 1120. [Google Scholar] [CrossRef]
- Directive 86/278/EEC of the Council. On the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off. J. L 1986, 181, 0006–0012.
- Imperato, M.; Adamo, P.; Arienzo, M.; Naimo, D.; Stanzione, D.; Violante, P. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 2003, 124, 247–256. [Google Scholar] [CrossRef]
- Andersson, M.; Ottesen, R.T.; Langedal, M. Geochemistry of urban surface soils—Monitoring in Trondheim, Norway. Geoderma 2010, 156, 112–118. [Google Scholar] [CrossRef]
- Meza-Montenegro, M.; Gandolfi, A.J.; Santana-Alcántar, M.E.; Klimecki, W.T.; Aguilar-Apodaca, M.G.; Río-Salas, R.D.; De la O-Villanueva, M.; Gómez-Alvarez, A.; Mendivil-Quijada, H.; Valencia, M.; et al. Metals in residential soils and cumulative risk assessment in Yaqui and Mayo agricultural valleys, northern Mexico. Sci. Total Environ. 2012, 433, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentra-tions from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Moaref, S.; Sekhavatjou, M.S.; Alhashemi, A.H. Determination of trace elements concentration in wet and dry atmospheric deposition and surface soil in the largest industrial city, southwest of Iran. Int. J. Environ. Res. 2014, 8, 335–346. [Google Scholar] [CrossRef]
Year | Rainfall (mm) | Humidity (%) | Organic Mat. (%) | Conductivity (μS/cm) | pH |
---|---|---|---|---|---|
2004 | 553 | 0.79 ± 0.05 | 7.11 ± 1.74 | 316 ± 46 | 7.41 ± 0.16 |
2011 | 1045 | 4.28 ± 0.16 | 9.58 ± 2.44 | 328 ± 43 | 7.34 ± 0.17 |
Metal | Site | Year | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | Min | Max | Mean | RSD (%) | U | ||
Cd | CE 1 | 0.38 | 0.35 | 0.36 | 0.39 | 0.48 | 0.66 | 0.63 | 0.83 | 0.59 | 0.35 | 0.83 | 0.52 | 32 | ±0.05 |
CE 2 | 0.19 | 0.28 | 0.30 | 0.47 | 0.58 | 0.64 | 0.68 | 0.72 | 0.46 | 0.19 | 0.72 | 0.48 | 40 | ±0.07 | |
UH | 0.35 | 0.42 | 0.40 | 0.43 | 0.27 | 0.38 | 0.43 | 0.46 | 0.38 | 0.27 | 0.46 | 0.39 | 14 | ±0.04 | |
CC | 0.45 | 0.47 | 0.66 | 1.04 | 0.68 | 0.70 | 0.71 | 1.04 | 0.71 | 0.45 | 1.04 | 0.72 | 29 | ±0.07 | |
RA | 0.55 | 0.50 | 0.47 | 0.55 | 0.52 | 0.55 | 0.31 | 0.37 | 0.25 | 0.25 | 0.55 | 0.45 | 25 | ±0.06 | |
CP | 0.20 | 0.27 | 0.25 | 0.27 | 0.23 | 0.24 | 0.17 | 0.24 | 0.11 | 0.11 | 0.27 | 0.22 | 24 | ±0.04 | |
Year average | 0.35 | 0.38 | 0.41 | 0.53 | 0.46 | 0.53 | 0.49 | 0.61 | 0.42 | 0.35 | 0.61 | 0.46 | 18 | ±0.14 | |
Cr | CE 1 | 29.8 | 45.3 | 50.7 | 50.1 | 64.7 | 74.3 | 85.9 | 88.5 | 61.3 | 29.8 | 88.5 | 61.2 | 32 | ±1.6 |
CE 2 | 13.3 | 23.8 | 28.6 | 30.4 | 35.7 | 40.4 | 41.5 | 43.1 | 37.7 | 13.3 | 43.1 | 32.7 | 30 | ±0.9 | |
UH | 12.8 | 35.8 | 42.5 | 42.1 | 42.4 | 68.6 | 70.7 | 73.1 | 58.6 | 12.8 | 73.1 | 49.6 | 40 | ±1.6 | |
CC | 26.3 | 31.0 | 34.4 | 35.6 | 47.8 | 47.0 | 46.6 | 48.6 | 36.9 | 26.3 | 48.6 | 39.4 | 21 | ±0.9 | |
RA | 9.6 | 23.6 | 25.9 | 29.7 | 27.6 | 36.4 | 38.5 | 43.5 | 36.7 | 9.6 | 43.5 | 30.2 | 34 | ±0.9 | |
CP | 33.3 | 34.4 | 38.2 | 35.8 | 48.4 | 45.4 | 65.2 | 79.9 | 77.9 | 33.3 | 79.9 | 50.9 | 37 | ±1.8 | |
Year average | 20.9 | 32.3 | 36.7 | 37.3 | 44.4 | 52.0 | 58.1 | 62.8 | 51.5 | 20.9 | 62.8 | 44.0 | 31 | ±3.3 | |
Ni | CE 1 | 17.8 | 28.7 | 37.0 | 67.5 | 82.4 | 85.3 | 82.7 | 86.0 | 104.6 | 17.8 | 104.6 | 65.8 | 46 | ±2.5 |
CE 2 | 11.4 | 19.6 | 20.2 | 23.7 | 47.8 | 45.9 | 87.7 | 114.9 | 78.5 | 11.4 | 114.9 | 50.0 | 72 | ±2.3 | |
UH | 16.0 | 16.8 | 19.1 | 29.6 | 29.0 | 53.9 | 49.6 | 55.3 | 72.1 | 16.0 | 72.1 | 37.9 | 54 | ±2.1 | |
CC | 18.2 | 28.2 | 43.7 | 46.7 | 102.0 | 114.3 | 115.4 | 120.4 | 70.0 | 18.2 | 120.4 | 73.2 | 55 | ±2.3 | |
RA | 14.7 | 10.1 | 11.6 | 14.9 | 9.8 | 16.9 | 13.6 | 10.6 | 13.7 | 9.8 | 16.9 | 12.9 | 19 | ±1.3 | |
CP | 42.8 | 43.2 | 36.3 | 44.9 | 35.4 | 35.4 | 41.5 | 42.8 | 35.5 | 35.4 | 44.9 | 39.8 | 10 | ±1.2 | |
Year average | 20.2 | 24.4 | 28.0 | 37.9 | 51.1 | 58.6 | 65.1 | 71.7 | 62.4 | 20.2 | 71.7 | 46.6 | 42 | ±4.9 | |
Pb | CE 1 | 3.2 | 5.0 | 4.7 | 6.5 | 6.5 | 6.1 | 6.3 | 6.0 | 9.4 | 3.2 | 9.4 | 6.0 | 28 | ±0.2 |
CE 2 | 2.3 | 5.2 | 5.9 | 6.2 | 5.9 | 7.1 | 7.2 | 7.1 | 12.2 | 2.3 | 12.2 | 6.6 | 39 | ±0.2 | |
UH | 1.7 | 5.1 | 5.5 | 5.5 | 5.2 | 7.0 | 7.1 | 8.4 | 12.0 | 1.7 | 12.0 | 6.4 | 44 | ±0.2 | |
CC | 4.8 | 5.6 | 5.5 | 6.5 | 6.3 | 7.8 | 8.3 | 8.4 | 9.1 | 4.8 | 9.1 | 6.9 | 22 | ±0.2 | |
RA | 1.9 | 6.9 | 7.0 | 7.0 | 7.1 | 6.9 | 7.4 | 7.3 | 7.1 | 1.9 | 7.4 | 6.5 | 27 | ±0.2 | |
CP | 0.6 | 1.9 | 1.7 | 2.6 | 2.3 | 2.5 | 2.6 | 3.4 | 1.3 | 0.6 | 3.4 | 2.1 | 40 | ±0.1 | |
Year average | 2.4 | 4.9 | 5.1 | 5.7 | 5.5 | 6.2 | 6.5 | 6.8 | 8.5 | 2.4 | 8.5 | 5.7 | 29 | ±0.4 |
City, Country | Cd | Cr | Ni | Pb | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | (Min–Max) | Mean | (Min–Max) | Mean | (Min–Max) | Mean | (Min–Max) | ||
Athens, Greece | 0.4 | (0.1–3.5) | 163 | (43–1586) | 111 | (27–727) | 77 | (3–2764) | [39] |
Aveiro, Portugal | - | 59 | (15–83) | 39 | (13–57) | 44 | (17–64) | [40] | |
Beijing, China | 0.148 | (0.01–0.971) | 35.6 | (7.00–228.2) | 27.8 | (2.80–168.9) | 28.6 | (5.00–116.6) | [41] |
Berlin, Germany | 0.68 | (nd-20.3) | 30 | (nd-168) | 10.1 | (nd-44.5) | 133 | (nd-1490) | [42] |
Glasgow, U.K. | - | 17 | (6–37) | 16 | (6–33) | 24 | (8–42) | [40] | |
Huelva, Spain | 0.81 | (0.02–20.3) | 31.7 | (3–112.1) | 16.1 | (0.9–48.7) | 135.2 | (7.22–5469) | [43] |
Kavala, Greece | 0.2 | (nd-1.2) | 232.4 | (50–692) | 67.9 | (25–267) | 387 | (75–2500) | [44] |
Ljubljana, Slovenia | - | 41 | (24–66) | 39 | (30–56) | 40 | (30–57) | [40] | |
New York, EUA | <0.4 | (<0.4–3.1) | 12.8 | (3.2–366.1) | 10 | (<2.8–38) | 102 | (11–2455) | [45] |
Oslo, Norway | 0.41 | (0.06–3.10) | 32.5 | (2.85–224) | 28.4 | (2.23–232) | 55.6 | (<5–1000) | [46] |
Palermo, Italy | 0.68 | (0.27–1.86) | 34 | (12–100) | 17.8 | (7.0–38.6) | 202 | (57–682) | [47] |
São Paulo, Brazil | 0.1 | (0.04–0.22) | 37 | (15–90) | 36 | (11–67) | 10 | (4–23) | [48] |
Shanghai, China | 0.52 | (0.19–3.66) | 107.9 | (25.5–233) | 31.14 | (4.95–65-70) | 70.69 | (13.7–192) | [49] |
Stockholm, Sweden | 0.16 | (0.02–0.25) | 35 | (6–25) | 16 | (2.1–27.8) | 19 | (2.4–32) | [50] |
Torino, Italy | - | - | 14 | (2–25) | 20 | (4–35) | 25 | (8–44) | [40] |
Lisbon, Portugal | - | - | 38 | (1.0–172) | 43 | (2.0–209) | 89 | (4.8–561) | [51] |
Lisbon, Portugal | 0.23 | (0.01–1.28) | 48 | (6.8–201) | 42 | (4.3–194) | 114 | (4.7–305) | [52] |
Lisbon, Portugal | - | - | 35.3 | (12.2–121) | 23.9 | (8.0–95) | 33.9 | (1.0–110) | [38] |
Lisbon, Portugal | 0.41 | (0.11–1.04) | 51.5 | (9.61–88.5) | 62.4 | (9.77–120.4) | 8.5 | (0.55–12.2) | This study |
Average | 0.396 | (nd–20.3) | 55.6 | (nd–1586) | 34.6 | (nd–727) | 84.1 | (nd–5469) |
Medium | Reference | Metal | |||
---|---|---|---|---|---|
Cd | Cr | Ni | Pb | ||
Crust | [53] | 0.1–5 | 200–380 | 20–8 | 16–30 |
Crust | [54] | 0.13 | 83.0 | 58.0 | 16.0 |
Soils | 0.50 | 200.0 | 40.0 | 10.0 | |
Urban Soils | 0.90 | 80.0 | 33.0 | 54.5 | |
Crust | [55] | 0.2 | 100 | 75 | 12.5 |
Crust | [56] | 0.2 | 100 | 75 | 13 |
Crust | [57] | 0.13–0.5 | 83–370 | 58–200 | 12.5–20 |
Crust | [58] | 0.102 | 35 | 18.6 | 17 |
Crust | [59] | 0.02–6 | 125 | 2–500 | 10–50 |
Soils | 0.01–2 | 40 | 17–50 | 2–30 | |
Agriculture Soils | [60] | - | 32 | 10 | 17 |
Crust | [61] | - | 126–185 | 20 | 14–15 |
Soils | 0.02–14 | 60 | 29 | 27 | |
Earth’s Crust Range | 0.01–6 | 35–380 | 8–500 | 2–50 |
Cd | Cr | Ni | Pb | |
---|---|---|---|---|
CE1 | 0.260 | 20.3 | 11.1 | 21.3 |
CE2 | 0.127 | 9.21 | 7.69 | 15.3 |
UH | 0.240 | 8.94 | 10.9 | 11.4 |
CC | 0.317 | 18.0 | 12.4 | 32.9 |
RA | 0.360 | 6.57 | 10.1 | 12.6 |
CP | 0.133 | 22.9 | 31.8 | 3.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, H.F.; Silva, N.F.; Oliveira, C.M.; Matos, M.J. Heavy Metals Contamination of Urban Soils—A Decade Study in the City of Lisbon, Portugal. Soil Syst. 2021, 5, 27. https://doi.org/10.3390/soilsystems5020027
Silva HF, Silva NF, Oliveira CM, Matos MJ. Heavy Metals Contamination of Urban Soils—A Decade Study in the City of Lisbon, Portugal. Soil Systems. 2021; 5(2):27. https://doi.org/10.3390/soilsystems5020027
Chicago/Turabian StyleSilva, Hugo Félix, Nelson Frade Silva, Cristina Maria Oliveira, and Manuel José Matos. 2021. "Heavy Metals Contamination of Urban Soils—A Decade Study in the City of Lisbon, Portugal" Soil Systems 5, no. 2: 27. https://doi.org/10.3390/soilsystems5020027
APA StyleSilva, H. F., Silva, N. F., Oliveira, C. M., & Matos, M. J. (2021). Heavy Metals Contamination of Urban Soils—A Decade Study in the City of Lisbon, Portugal. Soil Systems, 5(2), 27. https://doi.org/10.3390/soilsystems5020027