Have Sustained Acidic Deposition Decreases Led to Increased Calcium Availability in Recovering Watersheds of the Adirondack Region of New York, USA?
Abstract
:1. Introduction
- Are concentrations of Ca in Adirondack streams continuing to decrease in the most recent data?
- What is the recovery status of Ca-depleted Adirondack soils?
- What does experimental addition of Ca tell us about the soil processes involved in soil Ca recovery?
2. Materials and Methods
2.1. Study Region
2.2. Soil Sampling and Analysis
2.3. Stream Sampling and Analysis
2.4. Statistical and Spatial Analysis Methods
3. Results
3.1. Atmospheric Deposition Trends and Changes in Adirondack Soil Chemistry
3.2. Trends in Headwater Stream Chemistry
3.3. Effects of Watershed Liming on Ca Availability in Soil and Stream Water
4. Discussion
4.1. Possible Recovery Responses
4.2. Accelerating Recovery
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLaughlin, S.B.; Wimmer, R. Tansley Review No. 104. Calcium physiology and terrestrial ecosystem processes. New Phytol. 1999, 142, 373–417. [Google Scholar] [CrossRef]
- Beier, C.M.; Woods, A.M.; Hotopp, K.P.; Gibbs, J.P.; Mitchell, M.J.; Dovčiak, M.; Leopold, D.J.; Lawrence, G.B.; Page, B.D. Changes in faunal and vegetation communities along a soil calcium gradient in northern hardwood forests. Can. J. For. Res. 2012, 42, 1141–1152. [Google Scholar] [CrossRef]
- Jeziorski, A.; Smol, J.P. The ecological impacts of lakewater calcium decline on softwater boreal ecosystems. Environ. Rev. 2017, 25, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, G.B.; David, M.B.; Lovett, G.M.; Murdoch, P.S.; Burns, D.A.; Stoddard, J.L.; Baldigo, B.P.; Porter, J.H.; Thompson, A.H. Soil calcium status and the response of stream chemistry to changing acidic deposition rates. Ecol. Appl. 1999, 9, 1059–1072. [Google Scholar] [CrossRef]
- Warby, R.A.F.; Johnson, C.E.; Driscoll, C.T. Chemical recovery of surface waters across the northeastern United States from reduced inputs of acidic deposition: 1984−2001. Environ. Sci. Technol. 2005, 39, 6548–6554. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.; Larssen, T.; Camarero, L.; Cosby, B.J.; Ferrier, R.C.; Helliwell, R.; Forsius, M.; Jenkins, A.; Kopáček, J.; Majer, V.; et al. Recovery of acidified European surface waters. Environ. Sci. Technol. 2005, 39, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, S.; Driscoll, C.T.; Sullivan, T.J.; Burns, D.A.; Baldigo, B.; Lawrence, G.B.; McDonnell, T.C. The response of stream ecosystems in the Adirondack region of New York to historical and future changes in atmospheric deposition of sulfur and nitrogen. Sci. Total Environ. 2020, 716, 137113. [Google Scholar] [CrossRef] [PubMed]
- Markewitz, D.; Richter, D.D.; Allen, H.L.; Urrego, J.B. Three decades of observed soil acidification in the Calhoun experimental forest: Has acid rain made a difference? Soil Sci. Soc. Am. J. 1998, 62, 1428–1439. [Google Scholar] [CrossRef]
- Fernandez, I.J.; Rustad, L.; Norton, S.A.; Kahl, J.S.; Jackson Cosby, B., Jr. Experimental acidification causes soil base cation depletion in a New England forested watershed. Soil Sci. Soc. Am. J. 2003, 67, 1909–1919. [Google Scholar] [CrossRef] [Green Version]
- Gilliam, F.S.; Adams, M.B.; Peterjohn, W.T. Response of soil fertility to 25 years of experimental acidification in a temperate hardwood forest. J. Environ. Qual. 2020, 49, 961–972. [Google Scholar] [CrossRef]
- Long, R.P.; Horsley, S.B.; Hallett, R.A.; Bailey, S.W. Sugar maple growth in relation to nutrition and stress in the northeastern United States. Ecol. Appl. 2009, 19, 1454–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, B.D.; Mitchell, M.J. The influence of basswood (Tilia americana) and soil chemistry on soil nitrate concentrations in a northern hardwood forest. Can. J. For. Res. 2008, 38, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Zarfos, M.R.; Dovciak, M.; Lawrence, G.B.; McDonnell, T.C.; Sullivan, T.J. Plant richness and composition in hardwood forest understories vary along an acidic deposition and soil-chemical gradient in the northeastern United States. Plant Soil 2019, 438, 461–477. [Google Scholar] [CrossRef] [Green Version]
- Horsley, S.B.; Bailey, S.W.; Risteau, T.E.; Long, R.P.; Hallett, R.A. Linking environmental gradients, species composition, and vegetation indicators of sugar maple health in the northeastern United States. Can. J. For. Res. 2008, 38, 1761–1774. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, G.B.; McDonnell, T.C.; Sullivan, T.J.; Dovciak, M.; Bailey, S.W.; Antidormi, M.R.; Zarfos, M.R. Soil base saturation combines with beech bark disease to influence composition and structure of sugar maple-beech forests in an acid-rain impacted region. Ecosystems 2018, 21, 795–810. [Google Scholar] [CrossRef]
- Pabian, S.E.; Brittingham, M.C. Terrestrial liming benefits birds in an acidified forest in the northeast. Ecol. Appl. 2007, 17, 2184–2194. [Google Scholar] [CrossRef]
- Leach, T.H.; Winslow, L.A.; Hayes, N.M.; Rose, K.C. Decoupled trophic responses to long-term recovery from acidification and associated browning in lakes. Glob. Chang. Biol. 2019, 25, 1779–1792. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.H.; Moyer, A.; Bedison, J.E.; Richter, S.L.; Willig, S.A. Seven decades of calcium depletion in organic horizons of adirondack forest soils. Soil Sci. Soc. Am. J. 2008, 72, 1824–1830. [Google Scholar] [CrossRef]
- Watmough, S.A.; Dillon, P.J. Major element fluxes from a coniferous catchment in central Ontario, 1983–1999. Biogeochemistry 2004, 67, 369–399. [Google Scholar] [CrossRef]
- Warby, R.A.F.; Johnson, C.E.; Driscoll, C.T. Continuing acidification of organic soils across the northeastern USA: 1984–2001. Soil Sci. Soc. Am. J. 2009, 73, 274–284. [Google Scholar] [CrossRef]
- Lawrence, G.B.; Lapenis, A.G.; Berggren, D.; Aparin, B.F.; Smith, K.T.; Shortle, W.C.; Bailey, S.W.; Varlyguin, D.L.; Babikov, B. Climate dependency of tree growth suppressed by acid deposition effects on soils in Northwest Russia. Environ. Sci. Technol. 2005, 39, 2004–2010. [Google Scholar] [CrossRef]
- Billett, M.F.; Parker-Jervis, F.; Fitzpatrick, E.A.; Cresser, M.S. Forest soil chemical changes between 1949/50 and 1987. Eur. J. Soil Sci. 1990, 41, 133–145. [Google Scholar] [CrossRef]
- Falkengren-Grerup, U.; Linnermark, N.; Tyler, G. Changes in acidity and cation pools of south Swedish soils between 1949 and 1985. Chemosphere 1987, 16, 2239–2248. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, H.Y.H.; Searle, E.B.; Sardans, J.; Ciais, P.; Peñuelas, J.; Huang, Z. Whole soil acidification and base cation reduction across subtropical China. Geoderma 2020, 361, 114107. [Google Scholar] [CrossRef]
- Cools, N.; De Vos, B. Availability and evaluation of European forest soil monitoring data in the study on the effects of air pollution on forests. iForest Biogeosciences For. 2011, 4, 205–211. [Google Scholar] [CrossRef]
- Berger, T.W.; Türtscher, S.; Berger, P.; Lindebner, L. A slight recovery of soils from Acid Rain over the last three decades is not reflected in the macro nutrition of beech (Fagus sylvatica) at 97 forest stands of the Vienna Woods. Environ. Pollut. 2016, 216, 624–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prietzel, J.; Falk, W.; Reger, B.; Uhl, E.; Pretzsch, H.; Zimmermann, L. Half a century of Scots pine forest ecosystem monitoring reveals long-term effects of atmospheric deposition and climate change. Glob. Chang. Biol. 2020. [Google Scholar] [CrossRef]
- Lawrence, G.B.; Hazlett, P.W.; Fernandez, I.J.; Ouimet, R.; Bailey, S.W.; Shortle, W.C.; Smith, K.T.; Antidormi, M.R. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S. and eastern Canada. Environ. Sci. Technol. 2015, 49, 13103–13111. [Google Scholar] [CrossRef]
- Fraser, O.L.; Bailey, S.W.; Ducey, M.J. Decadal change in soil chemistry of northern hardwood forests on the White Mountain National Forest, New Hampshire, USA. Soil Sci. Soc. Am. J. 2019, 83. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A.; Hartmann, J.; Hessen, D.O.; Kopáček, J.; Hejzlar, J.; Jacquet, S.; Hamilton, S.K.; Verburg, P.; Leach, T.H.; Schmid, M.; et al. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 2019, 9, 10450. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, G.B.; Scanga, S.E.; Sabo, R.D. Recovery of soils from acidic deposition may exacerbate nitrogen export from forested watersheds. JGR Biogeosciences 2020, 125, e2019JG005036. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, C.T.; Driscoll, K.M.; Fakhraei, H.; Civerolo, K. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition. Atmos. Environ. 2016, 146, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, T.; Cosby, B.J.; Driscoll, C.T.; McDonnell, T.C.; Herlihy, A.T.; Burns, D.A. Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York. Water Resour. Res. 2012, 48, 01547. [Google Scholar] [CrossRef]
- Lawrence, G.B.; Burns, D.A.; Riva-Murray, K. A new look at liming as an approach to accelerate recovery from acidic deposition effects. Sci. Total Environ. 2016, 562, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Baldigo, B.P.; George, S.D.; Lawrence, G.B.; Paul, E.A. Declining aluminum toxicity and the role of exposure duration on brook trout mortality in acidified streams of the Adirondack Mountains, New York, USA. Environ. Toxicol. Chem. 2020, 39, 623–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNab, W.H.; Avers, P.E. Ecological subregions of the United States, Chapter 15—Adirondack Highlands, U.S. Department of Agriculture, Forest Service, W0-WSA-5. 1994. Available online: https://www.fs.fed.us/land/pubs/ecoregions/ (accessed on 1 December 2020).
- Influences of Wetlands and Lakes in the Adirondack Park of New York State: A Catalogue of Existing and New GIS Layers for the 400,000 Hectare Oswegatchie/Black River Watershed, Adirondack Park Agency; Final Report. Available online: https://apa.ny.gov/gis/gis_cd.html (accessed on 1 December 2020).
- Murdoch, P.S. Water budget comparison of two headwater lake basins subjected to low pH precipitation in the western Adirondack Mountains, New York. In Geology; SUNY: Binghamton, NY, USA, 1982; p. 98. [Google Scholar]
- Ito, M.; Mitchell, M.J.; Driscoll, C.T. Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York. Atmos. Environ. 2002, 36, 1051–1062. [Google Scholar] [CrossRef]
- Lawrence, G.; Momen, B.; Roy, K.M. Use of stream chemistry for monitoring acidic deposition effects in the Adirondack region of New York. J. Environ. Qual. 2004, 33, 1002–1009. [Google Scholar] [CrossRef]
- Sullivan, T.J.; Fernandez, I.J.; Herlihy, A.T.; Driscoll, C.T.; McDonnell, T.C.; Nowicki, N.A.; Snyder, K.U.; Sutherland, J.W. Acid-base characteristics of soils in the Adirondack Mountains, New York. Soil Sci. Soc. Am. J. 2006, 70, 141–152. [Google Scholar] [CrossRef]
- Lawrence, G.; Shortle, W.C.; David, M.B.; Smith, K.T.; Warby, R.A.F.; Lapenis, A.G. Early indications of soil recovery from acidic deposition in U.S. red spruce forests. Soil Sci. Soc. Am. J. 2012, 76, 1407–1417. [Google Scholar] [CrossRef] [Green Version]
- Minocha, R.; Shortle, W.C.; Lawrence, G.B.; David, M.B.; Minocha, S.C. Relationships among foliar chemistry, foliar polyamines, and soil chemistry in red spruce trees growing across the northeastern United States. Plant Soil 1997, 191, 109–122. [Google Scholar] [CrossRef]
- Results of the 2003–2005 Western Adirondack Stream Survey (WASS); NYSERDA Report 08-22; New York State Energy Research and Technology Authority: Albany, NY, USA, 2008. Available online: https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Environmental/EMEP/Western-Adirondack-Stream-Survey.pdf (accessed on 1 December 2020).
- Driscoll, C.T.; Cirmo, C.P.; Fahey, T.J.; Blette, V.L.; Bukaveckas, P.A.; Burns, D.A.; Gubala, C.P.; Leopold, D.J.; Newton, R.M.; Raynal, D.J.; et al. The experimental watershed liming study: Comparison of lake and watershed neutralization strategies. Biogeochemistry 1996, 32, 143–174. [Google Scholar] [CrossRef]
- Lawrence, G.B.; Antidormi, M.R.; McDonnel, T.C.; Sullivan, T.J.; Bailey, S.W. Adirondack New York Soil Chemistry Data, 1992–2017 (ver. 1.1, December 2020); U.S. Geological Survey: Reston, VA, USA, 2020.
- Lawrence, G.B. Honnedaga Liming Project Soil and Vegetation Data, 2012–2018, Adirondack Region, New York, USA; U.S. Geological Survey: Reston, VA, USA, 2020.
- Lawrence, G.B.; Fernandez, I.J.; Hazlett, P.W.; Bailey, S.W.; Ross, D.S.; Villars, T.R.; Quintana, A.; Ouimet, R.; McHale, M.R.; Johnson, C.E.; et al. Methods of soil resampling to monitor changes in the chemical concentrations of forest soils. J. Vis. Exp. 2016, e54815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, G.B.; George, S.D.; Burns, D.A.; Baldigo, B.P.; Roy, K.M.; Passy, S.I.; Pound, K.L. Results of the 2010–2011 East-Central Adirondack Stream Survey (ECASS); NYSERDA Report 18–26; New York State Energy Research and Development Authority: New York, NY, USA, 2018. Available online: https://www.nyserda.ny.gov/About/Publications/Research-and-Development-Technical-Reports/Environmental-Research-and-Development-Technical-Reports#eco (accessed on 1 December 2020).
- Lawrence, G.B.; Roy, K.M. Ongoing increases in dissolved organic carbon are sustained by decreases in ionic strength rather than decreased acidity in waters recovering from acidic deposition. Sci. Total Environ. 2020, 2020, 142529. [Google Scholar] [CrossRef] [PubMed]
- U.S. Geological Survey. USGS Water Data for the Nation: U.S.; Geological Survey National Water Information System Database. 2020. Available online: http://dx.doi.org/10.5066/F7P55KJN. (accessed on 1 March 2020).
- Sibson, R. A brief description of natural neighbor interpolation. In Interpolating Multivariate Data; John Wiley & Sons: New York, NY, USA, 1981; pp. 21–36. [Google Scholar]
- Cincotta, M.M.; Perdrial, J.N.; Shavitz, A.; Libenson, A.; Landsman-Gerjoi, M.; Perdrial, N.; Armfield, J.; Adler, T.; Shanley, J.B. Soil aggregates as a source of dissolved organic carbon to streams: An experimental study on the effect of solution chemistry on water extractable carbon. Front. Environ. Sci. 2019, 7, 172. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.; Pannatier, E.G.; Carnicelli, S.; Cecchini, G.; Clarke, N.; Cools, N.; Hansen, K.; Meesenburg, H.; Nieminen, T.; Pihl-Karlsson, G.; et al. The response of soil solution chemistry in European forests to decreasing acid deposition. Glob. Chang. Biol. 2018, 24, 3603–3619. [Google Scholar] [CrossRef]
- Palmer, S.M.; Driscoll, C.T. Decline in mobilization of toxic aluminum. Nature 2002, 417, 242–243. [Google Scholar] [CrossRef]
- Dijkstra, F.A. Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US. For. Ecol. Manag. 2003, 175, 185–194. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Fitzhugh, R.D. Aluminum solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the northeastern United States. Geoderma 2003, 114, 33–47. [Google Scholar] [CrossRef]
- Clarholm, M.; Skyllberg, U. Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils. Soil Biol. Biochem. 2013, 63, 142–153. [Google Scholar] [CrossRef]
- Shortle, W.C.; Smith, K.T.; Jellison, J.; Schilling, J.S. Potential of decaying wood to restore root-available base cations in depleted forest soils. Can. J. For. Res. 2012, 42, 1015–1024. [Google Scholar] [CrossRef]
- Hazlett, P.; Emilson, C.E.; Lawrence, G.; Fernandez, I.J.; Ouimet, R.; Bailey, S.W. Reversal of forest soil acidification in the northeastern United States and eastern Canada: Site and soil factors contributing to recovery. Soil Syst. 2020, 4, 54. [Google Scholar] [CrossRef]
- Johnson, C.E.; Driscoll, C.T.; Blum, J.D.; Fahey, T.J.; Battles, J.J. Soil chemical dynamics after calcium silicate addition to a northern hardwood forest. Soil Sci. Soc. Am. J. 2014, 78, 1458–1468. [Google Scholar] [CrossRef] [Green Version]
- Likens, G.; Driscoll, C.; Buso, D.; Siccama, T.; Johnson, C.; Lovett, G.; Fahey, T.; Reiners, W.; Ryan, D.; Martin, C.; et al. The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 1998, 41, 89–173. [Google Scholar] [CrossRef]
- Cho, Y.; Driscoll, C.T.; Johnson, C.E.; Siccama, T.G. Chemical changes in soil and soil solution after calcium silicate addition to a northern hardwood forest. Biogeochemistry 2009, 100, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Josephson, D.C.; Lawrence, G.B.; George, S.D.; Siemion, J.; Baldigo, B.P.; Kraft, C. Response of water chemistry and young-of-year brook trout to channel and watershed liming in streams showing lagging recovery from acidic deposition. Water Air Soil Pollut. 2019, 230, 144. [Google Scholar] [CrossRef]
- Juice, S.M.; Fahey, T.J.; Siccama, T.G.; Driscoll, C.T.; Denny, E.G.; Eagar, C.; Cleavitt, N.L.; Minocha, R.; Richardson, A.D. Response of sugar maple to calcium addition to northern hardwood forest. Ecology 2006, 87, 1267–1280. [Google Scholar] [CrossRef]
- Hallett, R.A.; Bailey, S.W.; Horsley, S.B.; Long, R.P. Influence of nutrition and stress on sugar maple at a regional scale. Can. J. For. Res. 2006, 36, 2235–2246. [Google Scholar] [CrossRef]
- Hawley, G.J.; Schaberg, P.G.; Eagar, C.; Borer, C.H. Calcium addition at the Hubbard Brook Experimental Forest reduced winter injury to red spruce in a high-injury year. Can. J. For. Res. 2006, 36, 2544–2549. [Google Scholar] [CrossRef]
Site | Year Sampled | n | Ca | Sig. | Al | Sig. | Base Sat. | Sig. | pH | Sig. | CEC | Sig. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
North Buck | 1997 | 28 | 11.6 | 2.38 | 60.5 | 3.02 | 25.8 | |||||
2009–2010 | 28 | 16.5 | a | 0.77 | a | 64.7 | ns | 3.16 | a | 31.4 | a | |
South Buck | 1998 | 28 | 9.57 | 6.52 | 50.2 | 3.34 | 24.6 | |||||
2014 | 28 | 14.8 | a | 0.95 | a | 83.1 | a | 3.36 | ns | 22.2 | ns | |
Big Moose | 2003 | 12 | 10.9 | 2.92 | 51.8 | 2.85 | 28.9 | |||||
2014 | 11 | 14.5 | b | 0.47 | a | 70.1 | a | 2.94 | ns | 27.9 | ns |
Site | Year Sampled | n | Ca | Sig. | Al | Sig. | Base Sat. | Sig. | pH | Sig. | CEC | Sig. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
North Buck | 1997 | 28 | 7.95 | 10.4 | 30.9 | 2.69 | 31.2 | |||||
2009–2010 | 28 | 8.12 | ns | 7.84 | b | 31.5 | ns | 2.74 | ns | 30.6 | ns | |
South Buck | 1998 | 28 | 8.56 | 6.13 | 42.4 | 3.15 | 20.8 | |||||
2014 | 28 | 6.04 | c | 3.21 | a | 49.4 | ns | 3.17 | ns | 15.3 | a | |
Big Moose | 2003 | 12 | 6.8 | 5.50 | 26.7 | 2.38 | 34.0 | |||||
2014 | 11 | 5.84 | ns | 5.57 | ns | 27.8 | ns | 2.52 | a | 26.6 | a | |
27020 | 2004 | 5 | 7.52 | 7.30 | 35.3 | 3.07 | 22.6 | |||||
2016 | 18 | 5.37 | ns | 6.8 | ns | 32.3 | ns | 3.59 | c | 17.1 | c | |
28014 | 2004 | 5 | 1.84 | 9.35 | 18.0 | 3.55 | 15.9 | |||||
2016 | 18 | 2.76 | ns | 7.01 | ns | 25.5 | ns | 3.46 | ns | 14.3 | ns | |
28030 | 2004 | 5 | 11.4 | 2.19 | 60.2 | 3.02 | 21.5 | |||||
2017 | 18 | 12 | ns | 1.7 | ns | 61.2 | ns | 3.31 | c | 20.6 | ns | |
29012 | 2004 | 5 | 5.75 | 2.83 | 45.6 | 3.06 | 15.1 | |||||
2017 | 18 | 4.34 | ns | 2.43 | ns | 32.6 | b | 2.93 | ns | 14.4 | ns |
Site | Year Sampled | n | Ca | Sig. | Al | Sig. | Base Sat. | Sig. | pH | Sig. | CEC | Sig. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
North Buck | 1997 | 28 | 0.38 | 3.26 | 11.7 | 3.35 | 5.2 | |||||
2009–2010 | 28 | 0.41 | ns | 8.55 | a | 6.1 | c | 3.53 | a | 10.6 | a | |
South Buck | 1998 | 28 | 0.35 | 2.38 | 15.2 | 3.79 | 3.4 | |||||
2014 | 28 | 0.26 | c | 3.91 | a | 9.6 | a | 3.74 | ns | 4.6 | a | |
Big Moose | 2003 | 12 | 0.18 | 3.92 | 4.7 | 3.44 | 7.7 | |||||
2014 | 11 | 0.35 | ns | 8.98 | a | 5.0 | ns | 3.45 | ns | 10.5 | b | |
27020 | 2004 | 5 | 0.37 | 3.30 | 12.5 | 3.75 | 4.7 | |||||
2016 | 18 | 0.49 | ns | 3.21 | ns | 15.9 | ns | 3.95 | c | 4.6 | ns | |
28014 | 2004 | 5 | 0.26 | 3.46 | 8.9 | 3.84 | 5.3 | |||||
2016 | 18 | 0.41 | ns | 3.05 | ns | 13.3 | b | 3.99 | ns | 4.5 | ns | |
28030 | 2004 | 5 | 0.67 | 3.07 | 19.2 | 3.78 | 4.5 | |||||
2017 | 18 | 1.45 | ns | 2.61 | ns | 32.4 | ns | 4.09 | b | 5.6 | ns | |
29012 | 2004 | 5 | 0.12 | 1.83 | 7.4 | 3.88 | 2.7 | |||||
2017 | 18 | 0.17 | ns | 2.73 | ns | 6.6 | ns | 3.92 | ns | 4.1 | c |
Watershed—Horizon | Ca | Al | Base Sat. | pH | CEC |
---|---|---|---|---|---|
T24—Oe | 11.5 | 0.88 | 69.9 | 3.05 | 22.5 |
T16—Oe | 14.8 | 0.63 | 75.0 | 3.14 | 24.3 |
T24—Oa | 3.30 | 6.09 | 24.1 | 2.83 | 18.1 |
T16—Oa | 3.68 | 8.51 | 21.4 | 2.88 | 23.4 |
T24—upper B | 0.21 | 4.63 | 5.6 | 3.71 | 6.0 |
T16—upper B | 0.19 | 4.78 | 4.7 | 3.81 | 8.1 |
T24—mid B | 0.09 | 1.97 | 4.0 | 4.08 | 3.0 |
T16—mid B | 0.19 | 3.42 | 4.8 | 3.90 | 7.2 |
T24—lower B | 0.06 | 1.34 | 5.9 | 4.26 | 1.8 |
T16—lower B | 0.06 | 1.57 | 4.2 | 4.11 | 2.6 |
T24 | T16 | |||||
---|---|---|---|---|---|---|
2013 | 2018 | Sig. | 2013 | 2018 | Sig. | |
-------------- Oe --------------- | ||||||
Ca | 14.2 | 12.4 | n | 11.4 | 87.6 | a |
Al | 2.5 | 2.0 | n | 2.1 | 0.14 | a |
Base sat. | 65.6 | 63.2 | n | 61.5 | 99.0 | a |
pH | 3.34 | 3.17 | b | 3.07 | 5.25 | a |
CEC | 31.6 | 25.7 | n | 23.3 | 94.0 | a |
-------------- Oa --------------- | ||||||
Ca | 3.8 | 3.9 | n | 3.9 | 15 | a |
Al | 11.5 | 11.3 | n | 7 | 6.4 | n |
Base sat. | 17.7 | 21.2 | n | 24.5 | 57.2 | a |
pH | 3.08 | 2.91 | n | 2.96 | 3.23 | b |
CEC | 34.3 | 25.0 | n | 19.5 | 28.8 | a |
-------------- Upper B --------------- | ||||||
Ca | 0.3 | 0.28 | n | 0.25 | 0.74 | a |
Al | 6.2 | 5.8 | n | 5.1 | 5.7 | n |
Base sat. | 5.8 | 6.8 | n | 5.4 | 11.6 | a |
pH | 3.54 | 3.47 | n | 3.51 | 3.57 | n |
CEC | 10.4 | 7.4 | n | 9.8 | 8.1 | n |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawrence, G.; Siemion, J.; Antidormi, M.; Bonville, D.; McHale, M. Have Sustained Acidic Deposition Decreases Led to Increased Calcium Availability in Recovering Watersheds of the Adirondack Region of New York, USA? Soil Syst. 2021, 5, 6. https://doi.org/10.3390/soilsystems5010006
Lawrence G, Siemion J, Antidormi M, Bonville D, McHale M. Have Sustained Acidic Deposition Decreases Led to Increased Calcium Availability in Recovering Watersheds of the Adirondack Region of New York, USA? Soil Systems. 2021; 5(1):6. https://doi.org/10.3390/soilsystems5010006
Chicago/Turabian StyleLawrence, Gregory, Jason Siemion, Michael Antidormi, Donald Bonville, and Michael McHale. 2021. "Have Sustained Acidic Deposition Decreases Led to Increased Calcium Availability in Recovering Watersheds of the Adirondack Region of New York, USA?" Soil Systems 5, no. 1: 6. https://doi.org/10.3390/soilsystems5010006