Phosphorus Transport along the Cropland–Riparian–Stream Continuum in Cold Climate Agroecosystems: A Review
Abstract
:1. Introduction
2. Agricultural Nutrient Management
2.1. Agronomic Phosphorus Site Indices
2.2. Precision Agriculture and Phosphorus Management
3. Evaluating Cropland Phosphorus Transport Potential
3.1. Agricultural and Hydroclimatic Factors
3.2. Cropping System Impacts on Phosphorus Loss Potential
4. Critical Source Areas of Phosphorus
Source and Transport Factors
5. Importance of Soil Properties for Evaluating Phosphorus Transport Potential
Modeling and Mapping
6. Cropland–Riparian–Stream Hydrologic Continuum
7. Riparian Buffer Zone Impacts on Phosphorus Transport
7.1. Phosphorus Transport in Surface Runoff (Qof)
7.2. Streambank Erosion and P Loading to Streamflow
7.3. Riparian Zone Impacts on Subsurface Phosphorus Transport (Qif and Qgw)
7.4. Artificial Subsurface Tile Drainage and Phosphorus Loss Potential
8. Future Research Considerations
Phosphorus Transport Modeling and Site Indices
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wetzel, R.G. Limnology; WB Sounders and Company: Philadelphia, PA, USA, 1983. [Google Scholar]
- Pasek, M.A.; Sampson, J.M. Redox Chemistry in the Phosphorus Biogeochemical Cycle. Proc. Natl. Acad. Sci. USA 2014, 111, 15468. [Google Scholar] [CrossRef] [Green Version]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Sagawa, H.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; et al. Phosphine Gas in the Cloud Decks of Venus. Nat. Astron. 2020. [Google Scholar] [CrossRef]
- Sims, J.T.; Pierzynski, G.M. Chemistry of Phosphorus in Soils. In Chemical Processes in Soils; Tabatabai., M.A., Sparks, D.L., Eds.; SSSA: Madison, WI, USA, 2015; pp. 151–192. [Google Scholar]
- Pierzynski, G.M.; McDowell, R.W.; Sims, J.T. Chemistry, Cycling, and Potential Movement of Inorganic Phosphorus in Soils. In Phosphorus: Agriculture and the Environment; Sims, J.T., Sharpley, A.N., Eds.; ASA; CSSA; SSSA: Madison, WI, USA, 2005; pp. 53–86. [Google Scholar]
- Smith, L.; Watzin, M.C.; Druschel, G. Relating Sediment Phosphorus Mobility to Seasonal and Diel Redox Fluctuations at the Sediment-Water Interface in a Eutrophic Freshwater Lake. Limnol. Oceanogr. 2011, 56, 2251–2264. [Google Scholar] [CrossRef]
- Kruse, J.; Abraham, M.; Amelung, W.; Baum, C.; Bol, R.; Kühn, O.; Lewandowski, H.; Niederberger, J.; Oelmann, Y.; Rüger, C.; et al. Innovative Methods in Soil Phosphorus Research-A Review. J. Plant Nutr. Soil Sci. 2015, 1, 43–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Environmental Protection Agency (USEPA). National Water Quality Inventory Report; USEPA: Washington, DC, USA, 2000. Available online: http://www.epa.gov/305b/2000report/ (accessed on 8 October 2007).
- Carpenter, S.; Caraco, N.F.; Correll, D.L.; Horwath, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters With Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Fanelli, R.M.; Hirsch, R.M.; Buda, A.R.; Easton, Z.M.; Wainger, L.A.; Shenk, G.W. Phosphorus and the Chesapeake Bay: Lingering Issues and Emerging Concerns for Agriculture. J. Environ. Qual. 2019 48, 1191–1203. [CrossRef] [Green Version]
- Jarvie, H.P.; Sharpley, A.N.; Flaten, D.; Kleinman, P.J.A.; Jenkins, A.; Simmons, T. The Pivotal Role of Phosphorus in a Resilient Water–Energy–Food Security Nexus. J. Environ. Qual. 2015, 44, 1049–1062. [Google Scholar] [CrossRef]
- Sims, J.T.; Simard, R.R.; Joern, B.S. Phosphorus Loss in Agricultural Drainage: Historical Perspective and Current Research. J. Environ. Qual. 1998, 27, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Young, E.O.; Briggs, R.D. Phosphorus Concentrations in Soil and Subsurface Water: A Field Study among Cropland and Riparian Buffers. J. Environ. Qual. 2008, 37, 69–78. [Google Scholar] [CrossRef]
- Vidon, P.; Hubbard, H.; Cuadra, P.; Hennessy, M. Storm Phosphorus Concentrations and Fluxes in Artificially Drained Landscapes of the US Midwest. Agric. Sci. 2012, 3, 474–485. [Google Scholar] [CrossRef]
- Gburek, W.J.; Sharpley, A.N. Hydrologic Controls on Phosphorus Loss from Upland Agricultural Watersheds. J. Environ. Qual. 1998, 27, 267–277. [Google Scholar] [CrossRef]
- Simard, R.R.; Beauchemin, S.; Haygarth, P.M. Potential for Preferential Pathways of Phosphorus Transport. J. Environ. Qual. 2000, 29, 97–104. [Google Scholar] [CrossRef]
- Bryant, R.D.; Gburek, W.J.; Veith, T.L.; Hively, W.D. Perspectives on the Potential for Hydropedology to Improve Watershed Modeling of Phosphorus Loss. Geoderma 2006, 131, 299–307. [Google Scholar] [CrossRef]
- Buda, A.R.; Kleinman, P.J.A.; Srinivasan, M.S.; Bryant, R.B.; Feyereisen, G.W. Effects of Hydrology and Field Management on Phosphorus Transport in Surface Runoff. J. Environ. Qual. 2009, 38, 2273–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinman, P.J.A.; Sharpley, A.N.; Buda, A.R.; McDowell, R.W.; Allen, A.L. Soil Controls of Phosphorus in Runoff: Management Barriers and Opportunities. Can. J. Soil Sci. 2011, 91, 329–338. [Google Scholar] [CrossRef]
- Liu, J.; Baulch, H.M.; Macrae, M.L.; Wilson, H.F.; Elliott, J.A.; Bergström, L.; Glenn, A.J.; Vadas, P.A. Agricultural Water Quality in Cold Climates: Processes, Drivers, Management Options, and Research Needs. J. Environ. Qual. 2019, 48, 792–802. [Google Scholar] [CrossRef] [Green Version]
- Outram, F.N.; Cooper, R.J.; Suennenberg, G.; Hiscock, K.M.; Lovett, A.A. Antecedent Conditions, Hydrological Connectivity and Anthropogenic Inputs: Factors Affecting Nitrate and Phosphorus Transfers to Agricultural Headwater Streams. Sci. Total Environ. 2016, 545–546, 184–199. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Kleinman, P.J.A.; Flaten, D.N.; Buda, A.R. Critical Source Area Management of Agricultural Phosphorus: Experiences, Challenges, and Opportunities. Water Sci. Technol. 2011, 64, 945–952. [Google Scholar] [CrossRef]
- Bol, R.; Julich, D.; Brödlin, D.; Siemens, J.; Kaiser, K.; Dippold, M.A.; Spielvogel, S.; Zilla, T.; Mewes, D.; von Blanckenburg, F.; et al. Dissolved and Colloidal Phosphorus Fluxes in Forest Ecosystems—An Almost Blind Spot in Ecosystem Research. J. Plant Nutr. Soil Sci. 2016, 179, 425–438. [Google Scholar] [CrossRef] [Green Version]
- Lemunyon, J.L.; Gilbert, R.G. The Concept and Need for a Phosphorus Assessment Tool. J. Prod. Agric. 1993, 6, 483–486. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision Agriculture and Food Security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Cassman, K.G. Ecological Intensification of Cereal Production: Yield Potential, Soil Quality, and Precision Agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952. [Google Scholar] [CrossRef] [Green Version]
- Kleinman, P.J.A. Effect of Mineral and Manure Phosphorus Sources on Runoff Phosphorus. J. Environ. Qual. 2002, 31, 2026–2033. [Google Scholar] [CrossRef]
- Jokela, W.E.; Sherman, J.; Cavadini, J. Nutrient Runoff Losses from Liquid Dairy Manure Applied with Low-Disturbance Methods. J. Environ. Qual. 2016, 45, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Hanrahan, L.R.; Jokela, W.E.; Knapp, J.R. Dairy Diet Phosphorus and Rainfall Timing Effects on Runoff Phosphorus from Land-Applied Manure. J. Environ. Qual. 2009, 38, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.E.; Cade-Menun, B.J. Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy Transect Study of Poultry Operations on the Delmarva Peninsula. J. Environ. Qual. 2009, 37, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stout, L.M.; Nguyen, T.; Jaisi, D.P. Relationship of Phytate, Phytate Mineralizing Bacteria, and Beta-Propeller Genes along a Coastal Tributary to the Chesapeake Bay. Soil Sci. Soc. Am. J. 2016, 80, 84–96. [Google Scholar] [CrossRef]
- Collick, A.S.; Veith, T.L.; Fuka, D.R.; Kleinman, P.J.A.; Buda, A.R.; Weld, J.L.; Bryant, R.B.; Vadas, P.A.; White, M.J.; Harmel, R.D.; et al. Improved Simulation of Edaphic and Manure Phosphorus Loss in SWAT. J. Environ. Qual. 2014, 45, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Good, L.W.; Vadas, P.; Panuska, J.C.; Bonilla, C.A.; Jokela, W.E. Testing the Wisconsin P Index with Year-Round, Field-Scale Runoff Monitoring. J. Environ. Qual. 2012, 41, 1730–1740. [Google Scholar] [CrossRef] [Green Version]
- Good, L.W.; Carvin, R.; Lamba, J.; Fitzpatrick, F.A. Seasonal Variation in Sediment and Phosphorus Yields in Four Wisconsin Agricultural Watersheds. J. Environ. Qual. 2019, 48, 950–958. [Google Scholar] [CrossRef]
- Hoffman, A.R.; Polebitski, A.S.; Penn, M.R.; Busch, D.L. Long-Term Variation in Agricultural Edge-of-Field Phosphorus Transport During Snowmelt, Rain, and Mixed Runoff events. J. Environ. Qual. 2019, 48, 931–940. [Google Scholar] [CrossRef] [PubMed]
- King, K.W.; Williams, M.R.; Macrae, M.L.; Fausey, N.R.; Frankenberger, J.; Smith, D.R.; Kleinman, P.J.A.; Brown, L.C. Phosphorus Transport in Agricultural. Subsurface Drainage: A Review. J. Environ. Qual. 2015, 44, 467–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, E.J.; Reddy, K.R.; Clark, M.W. Biogeochemical Indices of Phosphorus Retention and Release by Wetland Soils and Adjacent Stream Sediments. Wetlands 2006, 26, 1026–1041. [Google Scholar] [CrossRef]
- Kronvang, B.; Bechman, M.; Lundekvam, H.; Behrendt, H.; Rubæk, G.H.; Schoumans, O.F.; Syversen, N.; Andersen, H.E.; Hoffmann, C.C. Phosphorus Losses From Agricultural Areas in River Basins: Effects and Uncertainties of Targeted Mitigation Measures. J. Environ. Qual. 2005, 34, 2129–2144. [Google Scholar] [CrossRef] [PubMed]
- Withers, P.J.A.; Haygarth, P.M. Agriculture, Phosphorus and Eutrophication: A European Perspective. Soil Use Manage 2007, 23, 1–4. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Sharpley, A.N.; Spears, B.; Buda, A.R.; May, L.; Kleinman, P.J.A. Water Quality Remediation Faces Unprecedented Challenges from Legacy Phosphorus. Environ. Sci. Technol. 2013, 47, 8997–8998. [Google Scholar] [CrossRef] [Green Version]
- Michaud, A.R.; Poirier, S.C.; Whalen, J.K. Tile Drainage as a Hydrologic Pathway for Phosphorus Export From an Agricultural Subwatershed. J. Environ. Qual. 2018, 48, 64–72. [Google Scholar] [CrossRef]
- Mingus, K.A.; Liang, X.; Massoudieh, A.; Jaisi, D.P. Stable Isotopes and Bayesian Modeling Methods of Tracking Sources and Differentiating Bioavailable and Recalcitrant Phosphorus Pools in Suspended Particulate Matter. Environ. Sci. Technol. 2018, 53, 69–76. [Google Scholar] [CrossRef]
- Li, Q.; Yuan, H.; Li, H.; Wang, D.; Jin, Y.; Jaisi, D.P. Loading and Bioavailability of Colloidal Phosphorus in the Estuarine Gradient of the Deer Creek-Susquehanna River Transect in the Chesapeake Bay. J. Geophys. Res. Biogeosci. 2019, 124, 3717–3726. [Google Scholar] [CrossRef]
- Stackpoole, S.M.; Stets, E.G.; & Sprague, L.A. Variable Impacts of Contemporary Versus Legacy Agricultural Phosphorus on US River Water Quality. Proc. Natl. Acad. Sci. USA 2019, 116, 20562–20567. [Google Scholar] [CrossRef] [Green Version]
- Klaiber, L.B.; Kramer, S.R.; Young, E.O. Impacts of Tile Drainage on Phosphorus Losses from Edge-of-Field Plots in the Lake Champlain Basin of New York. Water 2020, 12, 328. [Google Scholar] [CrossRef] [Green Version]
- Su, J.J.; van Bochove, E.; Thériault, G.; Novotna, B.; Khaldoune, J.; Denault, J.T.; Zhou, J.; Nolin, M.C.; Hu, C.X.; Bernier, M.; et al. Effects of Snowmelt on Phosphorus and Sediment Losses from Agricultural Watersheds in Eastern Canada. Agric. Water Manag. 2011, 98, 867–876. [Google Scholar] [CrossRef]
- Danz, M.E.; Corsi, S.R.; Brooks, W.R.; Bannerman, R.T. Characterizing Response of Total Suspended Solids and Total Phosphorus Loading to Weather and Watershed Characteristics for Rainfall and Snowmelt Events in Agricultural Watersheds. J. Hydrol. 2013, 507, 249–261. [Google Scholar] [CrossRef]
- Jaisi, D.P.; Mingus, K.A.; Joshi, S.R.; Upreti, K.; Sun, M.; McGrath, J. Massudieh Linking Sources, Transformation, and Loss of Phosphorus in the Soil-Water Continuum in a Coastal Environment. In Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes; Yang, Y., Keiluweit, M., Senesi, N., Xing, B., Eds.; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Upreti, K.; Joshi, S.R.; McGrath, J.; Jaisi, D.P. Factors Controlling Phosphorus Mobilization in a Coastal Plain Tributary to the Chesapeake Bay. Soil Sci. Soc. Am. J. 2015, 79, 815–825. [Google Scholar] [CrossRef] [Green Version]
- Grundtner, A.; Gupta, S.; Bloom, P. River Bank Materials as a Source and as Carriers of Phosphorus to Lake Pepin. J. Environ. Qual. 2014, 43, 1991–2001. [Google Scholar] [CrossRef]
- Ishee, E.R.; Ross, D.S.; Garvey, K.M.; Bourgault, R.R.; Ford, C.R. Phosphorus Characterization and Contribution From Eroding Streambank Soils of Vermont’s Lake Champlain Basin. J. Environ. Qual. 2015, 44, 1745–1753. [Google Scholar] [CrossRef] [Green Version]
- Inamdar, S.; Johnson, E.; Rowland, R.; Warner, D.; Walter, R.; Merritts, D. Freeze-Thaw Processes and Intense Rainfall: The One-Two Punch for High Sediment and Nutrient Loads from Mid-Atlantic Watersheds. Biogeochemistry 2018, 141, 333–349. [Google Scholar] [CrossRef] [Green Version]
- Ross, D.S.; Wemple, B.C.; Willson, L.J.; Balling, C.M.; Underwood, K.L.; Hamshaw, S.D. Impact of an Extreme Storm Event on River Corridor Bank Erosion and Phosphorus Mobilization in a Mountainous Watershed in the Northeastern United States. JGR Biogeosci. 2019, 124, 18–32. [Google Scholar]
- Vadas, P.A.; Good, L.W.; Jokela, W.E.; Karthikeyan, K.G.; Arriaga, F.J.; Stock, M. Quantifying the Impact of Seasonal and Short-Term Manure Application Decisions on Phosphorus Loss in Surface Runoff. J. Environ. Qual. 2017, 46, 1395–1402. [Google Scholar] [CrossRef] [Green Version]
- Bilotta, G.S.; Brazier, R.E.; Haygarth, P.M. The Impacts of Grazing Animals on the Quality of Soils, Vegetation, and Surface Waters in Intensively Managed Grasslands. Adv. Agron. 2007, 94, 237–280. [Google Scholar]
- Vadas, P.A.; Busch, D.L.; Powell, J.M.; Brink, G.E. Monitoring Runoff from Cattle-Grazed Pastures for a Phosphorus Loss Quantification Tool. Agric. Ecosyst. Environ. 2015, 199, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Hansen, N.C.; Gupta, S.C.; Moncrief, J.F. Snowmelt Runoff, Sediment, and Phosphorus Losses under Three Different Tillage Systems. Soil Tillage Res. 2000, 57, 93–100. [Google Scholar] [CrossRef]
- Stock, M.N.; Arriaga, F.J.; Vadas, P.A.; Good, L.W.; Casler, M.D.; Karthikeyan, K.G.; Zopp, Z. Fall Tillage Reduced Nutrient Loads from Liquid Manure Application During the Freezing Season. J. Environ. Qual. 2019, 48, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Vadas, P.A.; Stock, M.N.; Arriaga, F.J.; Good, L.W.; Karthikeyan, K.G.; Zopp, Z.P. Dynamics of Measured and Simulated Dissolved Phosphorus in Runoff from Winter-Applied Dairy Manure. J. Environ. Qual. 2019, 48, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zopp, Z.P.; Ruark, M.D.; Thompson, A.M.; Stuntebeck, T.D.; Cooley, E.; Radatz, A.; Radatz, T. Effects of Manure and Tillage on Edge-of-Field Phosphorus Loss in Seasonally Frozen Landscapes. J. Environ. Qual. 2019, 48, 966–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vadas, P.A.; Kleinman, P.J.A.; Sharpley, A.N.; Turner, B.L. Relating Soil Phosphorus to Dissolved Phosphorus in Runoff: A Single Extraction Coefficient for Water Quality Modeling. J. Environ. Qual. 2005, 34, 572–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, H.; Elliott, J.; Macrae, M.; Glenn, A. Near-Surface Soils as a Source of Phosphorus in Snowmelt Runoff from Cropland. J. Environ. Qual. 2019, 48, 921–930. [Google Scholar] [CrossRef] [Green Version]
- Osterholz, W.; King, K.; Williams, M.; Hanrahan, B.; Duncan, E. Stratified Soil Sampling Improves Predictions of P Concentration in Surface Runoff and Tile Discharge. Soil Syst. 2020, 4, 67. [Google Scholar] [CrossRef]
- Vidon, P.; Allan, C.; Burns, D.; Duval, T.P.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management. J. Am. Water Resour. Assoc. 2010, 46, 278–298. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A Physically-Based Variable Contributing Area Model of Basin Hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Gburek, W.J.; Drungil, C.C.; Srinivasan, M.S.; Needelman, B.A.; Woodward, D.E. Variable-Source-Area Controls on Phosphorus Transport: Bridging the Gap between Research and Design. J. Soil Water Conserv. 2020, 57, 534–543. [Google Scholar]
- Walter, M.T.; Steenhuis, T.S.; Mehta, V.K.; Thongs, D.; Zion, M.; Schneiderman, E. Refined Conceptualization of TOPMODEL for Shallow Subsurface Flows. Hydrol. Process. 2002, 16, 2014–2046. [Google Scholar] [CrossRef]
- Walter, M.T.; Walter, M.F.; Brooks, E.S.; Steenhuis, T.S.; Boll, J.; Weiler, K.R. Hydrologically Sensitive Areas: Variable Source Area Hydrology Implications for Water Quality Risk Assessment. J. Soil Water Conserv. 2000, 55, 277–284. [Google Scholar]
- Easton, Z.M.; Fuka, D.R.; Walter, M.T.; Cowan, D.M.; Schneiderman, E.M.; Steenhuis, T.S. Re-conceptualizing the Soil and Water Assessment Tool (SWAT) Model to Predict Runoff from Variable Source Areas. J. Hydrol. 2008, 348, 279–291. [Google Scholar] [CrossRef]
- Agnew, L.J.; Lyon, S.; Gérard-Marchant, P.; Collins, V.B.; Lembo, A.J.; Steenhuis, T.S.; Walter, M.T. Identifying Hydrologically Sensitive Areas: Bridging Science and Application. J. Environ. Mgt. 2006, 78, 64–76. [Google Scholar]
- Thomas, I.A.; Jordan, P.; Mellander, P.E.; Fenton, O.; Shine, O.; ÓhUallacháin, D.; Creamer, R.; McDonald, N.T.; Dunlop, P.; Murphy, P.N.C. Improving the Identification of Hydrologically Sensitive Areas Using LiDAR DEMs for the Delineation and Mitigation of Critical Source Areas of Diffuse Pollution. Sci. Total Environ. 2016, 556, 276–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Tomer, M.D.; Porter, S.A.; James, D.E.; Boomer, K.M.B.; Kostel, J.A.; McLellan, E. Combining Precision Conservation Technologies into a Flexible Framework to Facilitate Agricultural Watershed Planning. J. Soil Water Conserv. 2013, 68, 113A–120A. [Google Scholar] [CrossRef] [Green Version]
- Young, E.O. Soil Nutrient Management: Fueling Agroecosystem Sustainability. Int. J. Agr. Sustain. 2020, 18, 444–448. [Google Scholar] [CrossRef]
- Nelson, N.O.; Parsons, J.E. Basic Approaches to Modeling Phosphorus Leaching. In Modeling Phosphorus in the Environment; Radcliffe, D.E., Cabrera, M.L., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 81–103. [Google Scholar]
- Lowrance, R.; Altier, L.S.; Williams, R.G.; Inamdar, S.P.; Sheridan, J.M.; Bosch, D.D.; Hubbard, R.K.; Thomas, D.L. REMM: The Riparian Ecosystem Management Model. J. Soil Water Conserv. 2000, 55, 27–34. [Google Scholar]
- Wang, Z.; Zhang, T.Q.; Tan, C.S.; Wang, X.; Taylor, R.A.J.; Qi, Z.M.; Yang, J.W. Modeling the Impacts of Manure on Phosphorus Loss in Surface Runoff and Subsurface Drainage. J. Environ. Qual. 2019, 48, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Vidon, P.G.; Welsh, M.K.; Hassanzadeh, Y.T. Twenty Years of Riparian Zone Research (1997–2017): Where to Next? J. Environ. Qual. 2019, 48, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, Y.T.; Vidon, P.G.; Gold, A.J.; Pradhanang, S.M.; Addy Lowder, K. RZ-TRADEOFF: A New Model to Estimate Riparian Water and Air Quality Functions. Water 2019, 11, 769. [Google Scholar] [CrossRef] [Green Version]
- Zhu, A.X.; Hudson, B.; Burt, J.; Lubich, K.; Simonson, D. Soil Mapping Using GIS, Expert Knowledge, and Fuzzy Logic. Soil Sci. Soc. Amer. J. 2001, 65, 1463–1472. [Google Scholar] [CrossRef] [Green Version]
- McBratney, A.B.; Mendonca Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Kuglerová, L.; Agren, A.; Jansson, R.; Laudon, H. Towards Optimizing Riparian Buffer Zones: Ecological and Biogeochemical Implications for Forest Management. For. Ecol. Manag. 2014, 334, 74–84. [Google Scholar]
- Wallace, C.W.; McCarty, G.; Lee, S.; Brooks, R.P.; Veith, T.L.; Kleinman, P.J.A.; Sadeghi, A.M. Evaluating Concentrated Flowpaths in Riparian Forest Buffer Contributing Areas Using LiDAR Imagery and Topographic Metrics. Remote Sens. 2018, 10, 614. [Google Scholar] [CrossRef]
- Shrivastav, M.; Mickelson, S.K.; Webber, D. Using ArcGIS Hydrologic Modeling and LiDAR Digital Elevation Data to Evaluate Surface Runoff Interception Performance of Riparian Vegetative Filter Strip Buffers in Central Iowa. J. Soil Water Conserv. 2020, 75, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Webber, D.F.; Bansal, M.; Mickelson, S.K.; Helmers, M.J.; Arora, K.; Gelder, B.K.; Shrivastav, M.; Judge, C.J. Assessing Surface Flowpath Interception by Vegetative Buffers Using ArcGIS Hydrologic Modeling and Geospatial Analysis for Rock Creek Watershed, Central Iowa. Trans. Am. Soc. Agric. Biol. Eng. 2018, 61, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, C.C.; Kjaergaard, C.; Uusi-Kämppä, J.; Bruun Hansen, H.C.; Kronvang, B. Phosphorus Retention in Riparian Buffers: Review of Their Efficiency. J. Environ. Qual. 2009, 38, 1942–1955. [Google Scholar] [CrossRef]
- Lyons, J.B.; Görres, J.H.; Amador, J.A. Spatial and Temporal Variability of Phosphorus Retention in a Riparian Forest Soil. J. Environ. Qual. 1998, 27, 895–903. [Google Scholar] [CrossRef]
- Young, E.O.; Ross, D.S. Total and Labile Phosphorus Concentrations as Influenced by Riparian Buffer Soil Properties. J. Environ. Qual. 2016, 45, 294–304. [Google Scholar] [CrossRef]
- Perillo, V.; Ross, D.; Wemple, B.; Balling, C.; Lemieux, L. Stream Corridor Soil Phosphorus Availability in a Forested-Agricultural Mixed Land Use Watershed. J. Environ. Qual. 2019, 48, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Young, E.O.; Ross, D.S.; Alves, C.; Villars, T. Soil and Landscape Influences on Native Riparian Phosphorus Availability in Three Lake Champlain Basin Stream Corridors. J. Soil Water Conserv. 2012, 67, 1–7. [Google Scholar] [CrossRef]
- Rosenberg, B.D.; Schroth, A.W. Coupling of Reactive Riverine Phosphorus and Iron Species during Hot Transport Moments: Impacts of Land Cover and Seasonality. Biogeochemistry 2017, 132, 103–122. [Google Scholar] [CrossRef]
- Dosskey, M.G. Toward Quantifying Water Pollution Abatement in Response to Installing Buffers on Cropland. Environ. Manag. 2001, 28, 577–598. [Google Scholar] [CrossRef]
- Wang, L. Effects of Watershed Best Management Practices on Habitat and Fish in Wisconsin Streams. J. Am. Water Resour. Assoc. 2002, 38, 663–680. [Google Scholar] [CrossRef]
- Kieta, K.A.; Owens, P.N.; Lobb, D.A.; Vanrobaeys, J.A.; Flaten, D.N. Phosphorus Dynamics in Vegetated Buffer Strips in Cold Climates: A Review. Environ. Reviews 2018, 26, 255–272. [Google Scholar] [CrossRef]
- Carlyle, G.C.; Hill, A.R. Groundwater Phosphate Dynamics in a River Riparian Zone: Effects of Hydrologic Flowpaths, Lithology and Redox Chemistry. J. Hydrol. 2001, 247, 151–168. [Google Scholar] [CrossRef]
- Dupas, R.; Gruau, G.; Gu, S.; Humbert, G.; Jaffrézic, A.; Gascuel-Odoux, C. Groundwater Control of Biogeochemical Processes Causing Phosphorus Release from Riparian Wetlands. Water Res. 2015, 84, 307–314. [Google Scholar] [CrossRef]
- Stutter, M.I.; Langan, S.J.; Lumsdon, D.G. Vegetated Buffer Strips Can Lead to Increased Release of Phosphorus to Waters: A Biogeochemical Assessment of the Mechanisms. Environ. Sci. Technol. 2009, 43, 1858–1863. [Google Scholar] [CrossRef]
- Liu, J.; Macrae, M.L.; Elliott, J.A.; Baulch, H.M.; Wilson, H.F.; Kleinman, P.J.A. Impacts of Cover Crops and Crop Residues on Phosphorus Losses in Cold Climates: A Review. J. Environ. Qual. 2019, 48, 850–868. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.; Baulch, H.; Elliott, J.; Pomeroy, J.; Wheater, H. Modelling Nutrient Dynamics in Cold Agricultural Catchments: A Review. Environ. Modell. Softw. 2020, 124, 104586. [Google Scholar] [CrossRef]
- Young, E.O.; Ross, D.S.; Jaynes, D.B. Editorial: Riparian Buffer Nutrient Dynamics and Water Quality. Front. Environ. Sci. 2019, 7, 76. [Google Scholar] [CrossRef]
- Stutter, M.; Kronvang, B.; ÓhUallacháin, D.; Rozemeijer, J. Current Insights into the Effectiveness of Riparian Management, Attainment of Multiple Benefits, and Potential Technical Enhancements. J. Environ. Qual. 2019, 48, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Cole, L.J.; Stockan, J.; Helliwell, R. Managing Riparian Buffer Strips to Optimise Ecosystem Services: A Review. Agric. Ecosyst. Environ. 2020, 296, 106891. [Google Scholar] [CrossRef]
- Condron, L.M.; Turner, B.L.; Cade-Menun, B.J. Chemistry and Dynamics of Soil Organic Phosphorus. In Phosphorus: Agriculture and the Environment; Sims, J.T., Sharpley, A.N., Eds.; ASA; CSSA; SSSA: Madison, WI, USA, 2005; pp. 87–121. [Google Scholar]
- Young, E.O.; Ross, D.S.; Cade-Menun, B.J.; Lu, C.W. Phosphorus Speciation in Riparian Soils: A Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy and Enzyme Hydrolysis Study. Soil Sci. Soc. Am. J. 2013, 77, 1636–1647. [Google Scholar] [CrossRef]
- Griffith, K.E.; Young, E.O.; Klaiber, L.B.; Kramer, S.R. Winter Rye Cover Crop Impacts on Runoff Water Quality in a Northern New York (USA) Tile-Drained Maize Agroecosystem. Water Air Soil Pollut. 2020, 231, 1–16. [Google Scholar] [CrossRef]
- Smeck, N.E. Phosphorus Dynamics in Soils and Landscapes. Geoderma 1985, 36, 185–199. [Google Scholar] [CrossRef]
- Walker, T.W.; Syers, J.K. The Fate of Phosphorus during Pedogenesis. Geoderma 1976, 15, 1–19. [Google Scholar] [CrossRef]
- Yanai, R.D. Phosphorus Budget of a 70-Year-Old Northern Hardwood Forest. Biogeochemistry 1992, 17, 1–22. [Google Scholar] [CrossRef]
- Yanai, R.D. The Effect of Whole-Tree Harvest on Phosphorus Cycling in a Northern Hardwood Forest. For. Ecol. Manag. 1998, 104, 281–295. [Google Scholar] [CrossRef]
- Laboski, C.A.M.; Lamb, J.A. Changes in Soil Test Phosphorus Concentration after Application of Manure or Fertilizer. Soil Sci. Soc. Am. J. 2003, 67, 544–554. [Google Scholar] [CrossRef]
- Young, E.O.; Ross, D.S. Phosphorus Mobilization in Flooded Riparian Soils from the Lake Champlain Basin, VT, USA. Front. Environ. Sci. 2018, 6, 120. [Google Scholar] [CrossRef] [Green Version]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Streambank Soil and Phosphorus Losses under Different Riparian Land-Uses in Iowa. J. Am. Water Resour. Assoc. 2008, 44, 935–947. [Google Scholar] [CrossRef]
- Sekely, A.C.; Mulla, D.J.; Bauer, D.W. Streambank Slumping and Its Contribution to the Phosphorus and Suspended Sediment Loads to the Blue Earth River, Minnesota. J. Soil Water Cons. 2002, 57, 243–250. [Google Scholar]
- Gupta, S.C.; Kessler, A.C.; Brown, M.K.; Zvomuya, F. Climate and Agricultural Land Use Change Impacts on Streamflow in the Upper Midwestern United States. J. Am. Water Resour. Assoc. 2015, 51, 5301–5317. [Google Scholar] [CrossRef]
- Dosskey, M.G.; Vidon, P.; Gurwick, N.P.; Allan, C.J.; Duval, T.P.; Lowrance, R. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams. J. Am. Water Resour. Assoc. 2010, 46, 261–277. [Google Scholar] [CrossRef]
- Inamdar, S.; Sienkiewicz, N.; Lutgen, A.; Jiang, G.; Kan, J. Streambank Legacy Sediments in Surface Waters: Phosphorus Sources or Sinks? Soil Syst. 2020, 4, 30. [Google Scholar] [CrossRef]
- Chardon, W.J.; Schoumans, O.F. Solubilization of Phosphorus: Concepts and Process Description of Chemical Mechanisms. In Phosphorus Losses from Agricultural Soils: Processes at the Field-Scale; Chardon, W.J., Schoumans, O.F., Eds.; Cost Action 832: Quantifying the Agricultural Contribution to Eutrophication; ALTERRA: Wageningen, The Netherlands, 2002; pp. 44–52. [Google Scholar]
- McDowell, R.W.; Biggs, B.J.F.; Sharpley, A.N.; Nguyen, L. Connecting Phosphorus Loss from Agricultural Landscapes to Surface Water Quality. Chem. Ecol. 2004, 20, 1–40. [Google Scholar] [CrossRef]
- Jordan, T.E.; Correll, D.L.; Weller, D. Nutrient Interception by a Riparian Forest Receiving Inputs from Adjacent Cropland. J. Environ. Qual. 1993, 22, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Osborne, L.L.; Kovacic, D.A. Riparian Vegetated Buffer Strips in Water Quality Restoration and Stream Management. Freshwater Biol. 1993, 29, 243–258. [Google Scholar] [CrossRef]
- Clausen, J.C.; Guillard, K.; Sigmund, C.M.; Dors, K.M. Water Quality Changes from Riparian Buffer Restoration in Connecticut. J. Environ. Qual. 2000, 29, 1751–1761. [Google Scholar] [CrossRef] [Green Version]
- Uusi-Kamppa, J.; Turtola, E.; Hartikainen, H.; Ylaranta, T. The Interactions of Buffer Zones and Phosphorus Runoff. In Buffer Zones: Their Processes and Potential in Water Protection; Haycock, N.E., Ed.; Quest Environmental: Hertfordshire, UK, 2001; pp. 43–53. [Google Scholar]
- Roberts, W.M.; Stutter, M.I.; Haygarth, P.M. Phosphorus Retention and Remobilization in Vegetated Buffer Strips: A Review. J. Environ. Qual. 2012, 41, 389–399. [Google Scholar] [CrossRef]
- Spruill, T.B. Statistical Evaluation of Effects of Riparian Buffers on Nitrate and Ground Water Quality. J. Environ. Qual. 2000, 29, 1523–1538. [Google Scholar] [CrossRef]
- Young, E.O.; Briggs, R.D. Nitrogen Dynamics Among Cropland and Riparian Buffers: Soil-Landscape Influences. J. Environ. Qual. 2007, 36, 801–814. [Google Scholar] [CrossRef]
- Gu, S.; Gruau, G.; Dupas, R.; Rumpel, C.; Crème, A.; Fovet, O.; Gascuel-Odoux, C.; Jeanneau, L.; Humbert, G.; Petitjean, P. Release of Dissolved Phosphorus from Riparian Wetlands: Evidence for Complex Interactions among Hydroclimate Variability, Topography and Soil Properties. Sci. Total Environ. 2017, 598, 421–431. [Google Scholar] [CrossRef]
- Kumaragamage, D.; Amarawansha, E.A.G.S.; Indraratne, S.P.; Jayarathne, P.D.K.D.; Flaten, D.N.; Zvomuya, F.; Akinremi, O.O. Degree of Phosphorus Saturation as a Predictor of Redox-Induced Phosphorus Release from Flooded Soils to Floodwater. J. Environ. Qual. 2019, 48, 1817–1825. [Google Scholar] [CrossRef]
- Hens, M.; Merckx, R. Functional Characterization of Colloidal Phosphorus Species in the Soil Solution of Sandy Soils. Environ. Sci. Technol. 2001, 35, 493–500. [Google Scholar] [CrossRef]
- Weaver, M.M. History of Tile Drainage; Weaver: Waterloo, NY, USA; Valley Offset, Inc.: Deposit, NY, USA, 1964. [Google Scholar]
- Young, E.O.; Geibel, J.G.; Ross, D.S. Influence of Controlled Drainage and Liquid Dairy Manure Application on Phosphorus Leaching from Intact Soil Cores. J. Environ. Qual. 2017, 46, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Scalenghe, R.; Edwards, A.C.; Marsan, F.A.; Barberis, E. The Effect of Reducing Conditions on the Solubility of Phosphorus in a Diverse Range of European Agricultural Soils. Eur. J. Soil Sci. 2002, 53, 439–447. [Google Scholar] [CrossRef]
- Marjerison, R.D.; Dahlke, H.; Easton, Z.M.; Seifert, S.; Walter, M.T. A Phosphorus Index Transport Factor Based on Variable Source Area Hydrology for New York State. J. Soil Water Conserv. 2011, 66, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Sperotto, A.; Molina, J.L.; Torresan, S.; Critto, A.; Pulido-Velazquez, M.; Marcomini, A. A Bayesian Networks Approach for the Assessment of Climate Change Impacts on Nutrient Loading. Environ. Sci. Policy 2019, 100, 21–36. [Google Scholar] [CrossRef]
- Chen, S.H.; Jakeman, A.J.; Norton, J.P. Artificial Intelligence Techniques: An Introduction to Their Use for Modelling Environmental Systems. Math. Comput. Simul. 2008, 78, 379–400. [Google Scholar] [CrossRef]
- Ahmed, A.N.; Othman, F.B.; Afan, H.A.; Elsha, A. Machine Learning Methods for Better Water Quality Prediction. J. Hydrol. 2019, 578. [Google Scholar] [CrossRef]
- Choubin, B.; Darabi, H.; Rahmati, O.; Sajedi-Hosseini, F.; Kløve, B. River Suspended Sediment Modelling Using the CART Model: A Comparative Study of Machine Learning Techniques. Sci. Total Environ. 2018, 615, 272–281. [Google Scholar] [CrossRef]
- Chebud, Y.; Naja, G.M.; Rivero, R.G. Water Quality Monitoring Using Remote Sensing and an Artificial Neural Network. Water Air Soil Pollut. 2012, 223, 4875–4887. [Google Scholar] [CrossRef]
- Habibiandehkordi, R.; Lobb, D.A.; Owens, P.N.; Flaten, D.N. Effectiveness of Vegetated Buffer Strips in Controlling Legacy Phosphorus Exports from Agricultural Land. J. Environ. Qual. 2019, 48, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Hille, S.; Graeber, D.; Kronvang, B.; Rubæk, G.H.; Onnen, N.; Molina-Navarro, E.; Baattrup-Pedersen, A.; Heckrath, G.J.; Stutter, M.I. Management Options to Reduce Phosphorus Leaching from Vegetated Buffer Strips. J. Environ. Qual. 2018, 48, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Penn, C.; Camberato, J. A Critical Review on Soil Chemical Processes That Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Doydora, S.; Gatiboni, L.; Grieger, K.; Hesterberg, D.; Jones, J.L.; McLamore, E.S.; Peters, R.; Sozzani, R.; Van den Broeck, L.; Duckworth, O.W. Accessing Legacy Phosphorus in Soils. Soil Syst. 2020, 4, 74. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, E.O.; Ross, D.S.; Jaisi, D.P.; Vidon, P.G. Phosphorus Transport along the Cropland–Riparian–Stream Continuum in Cold Climate Agroecosystems: A Review. Soil Syst. 2021, 5, 15. https://doi.org/10.3390/soilsystems5010015
Young EO, Ross DS, Jaisi DP, Vidon PG. Phosphorus Transport along the Cropland–Riparian–Stream Continuum in Cold Climate Agroecosystems: A Review. Soil Systems. 2021; 5(1):15. https://doi.org/10.3390/soilsystems5010015
Chicago/Turabian StyleYoung, Eric O., Donald S. Ross, Deb P. Jaisi, and Philippe G. Vidon. 2021. "Phosphorus Transport along the Cropland–Riparian–Stream Continuum in Cold Climate Agroecosystems: A Review" Soil Systems 5, no. 1: 15. https://doi.org/10.3390/soilsystems5010015
APA StyleYoung, E. O., Ross, D. S., Jaisi, D. P., & Vidon, P. G. (2021). Phosphorus Transport along the Cropland–Riparian–Stream Continuum in Cold Climate Agroecosystems: A Review. Soil Systems, 5(1), 15. https://doi.org/10.3390/soilsystems5010015