Influence of Two Important Leguminous Trees on Their Soil Microbiomes and Nitrogen Cycle Activities in a Primary and Recovering Secondary Forest in the Northern Zone of Costa Rica
Abstract
:1. Introduction
- Are there differences in composition of the communities of total bacterial genera and bacterial genera associated with potential N-Fixing or AMO activities between soils of P. macroloba and I. edulis that were driven by Tree Species or by Land Management (Primary vs. Secondary Forest)?
- Are there differences in total N (TN), NO3−, NH4+, NO3−/NH4+, NO3−/TN, and/or NH4+/TN by soil comparisons, and can any of these metrics best predict/explain the differences in the bacterial communities?
2. Methods
2.1. Site Description, Tree Identification, and Soil Sample Collection
2.2. Soil Nitrogen Properties
2.3. DNA Extraction, Sequencing, and Bioinformatics
2.4. Data Analysis
3. Results
3.1. Differences in Bacterial Community MPS, Richness, Evenness, and Specific Genera
3.2. Multivariate Analyses of the Bacterial Community Compositions
3.3. Differences in N-Metrics
3.4. Distance Based Linear Modeling
4. Discussion
4.1. Differences between Tree Species
4.2. Differences in Land Use Legacy Effects
4.3. Evidence of Functional Redundancy and Taxonomic Switching
5. Conclusions
Nucleotide Sequence Accession Numbers
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leopold, A.C.; Andrus, R.; Finkeldey, A.; Knowles, D. Attempting restoration of wet tropical forests in Costa Rica. For. Ecol. Manag. 2001, 142, 243–249. [Google Scholar]
- Chassot, O.; Monge, G. Connectivity conservation of the Great Green Macaw’s landscape in Costa Rica and Nicaragua (1994–2012). Parks 2012, 18, 61–70. [Google Scholar]
- Carpenter, F.L.; Nichols, J.D.; Pratt, R.T.; Young, K.C. Methods of facilitating reforestation of tropical degraded land with the native timber tree, Terminalia amazonia. For. Ecol. Manag. 2004, 202, 281–291. [Google Scholar]
- Gehring, C.; Vlek, P.L.G.; De Souza, L.A.G.; Denich, M. Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. Agric. Ecosyst. Environ. 2005, 111, 237–252. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar]
- Chazdon, R.L.; Broadbent, E.N.; Rozendaal, D.M.A.; Bongers, F.; Zambrano, A.M.A.; Aide, T.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2016, 2, e1501639. [Google Scholar]
- Davidson, E.A.; De Carvalho, C.J.R.; Figueira, A.M.; Ishida, F.Y.; Ometto, J.P.H.B.; Nardoto, G.B.; Sabá, R.T.; Hayashi, S.N.; Leal, E.C.; Vieira, I.C.G.; et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 2007, 447, 995–998. [Google Scholar]
- Amazonas, N.T.; Martinelli, L.A.; Piccolo, M.d.C.; Rodrigues, R.R. Nitrogen dynamics during ecosystem development in tropical forest restoration. For. Ecol. Manag. 2011, 262, 1551–1557. [Google Scholar]
- Groppo, J.D.; Lins, S.R.M.; Camargo, P.B.; Assad, E.D.; Pinto, H.S.; Martins, S.C.; Salgado, P.R.; Evangelista, B.; Vasconcellos, E.; Sano, E.E.; et al. Changes in soil carbon, nitrogen, and phosphorus due to land- use changes in Brazil. Biogeosciences 2015, 12, 4765–4780. [Google Scholar]
- Powers, J.S.; Marín-Spiotta, E. Ecosystem Processes and Biogeochemical Cycles in Secondary Tropical Forest Succession. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 497–519. [Google Scholar]
- Batterman, S.A.; Hedin, L.O.; Van Breugel, M.; Ransijn, J.; Craven, D.J.; Hall, J.S. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 2013, 502, 224–227. [Google Scholar]
- Schelhas, J.; Sánchez-Azofeifa, G.A. Post-Frontier Forest Change Adjacent to Braulio Carrillo National Park, Costa Rica. Hum. Ecol. 2006, 34, 407–431. [Google Scholar]
- Chazdon, R.L. Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science 2008, 320, 1458–1460. [Google Scholar] [PubMed] [Green Version]
- Aide, T.M.; Clark, M.L.; Ricardo Grau, H.; Lopez-Carr, D.; Levy, M.A.; Redo, D.; Bonilla-Moheno, M.; Riner, G.; Andrade-Nunez, M.J.; Muniz, M. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 2013, 45, 262–271. [Google Scholar]
- Guariguata, M.R.; Ostertag, R. Neotropical secondary forest succession: Changes in structural and functional characteristics. For. Ecol. Manag. 2001, 148, 185–206. [Google Scholar]
- Piotto, D.; Montagnini, F.; Ugalde, L.; Kanninen, M. Performance of forest plantations in small and medium-sized farms in the Atlantic lowlands of Costa Rica. For. Ecol. Manag. 2003, 175, 195–204. [Google Scholar]
- Nichols, J.D.; Carpenter, F.L. Interplanting Inga edulis yields nitrogen benefits to Terminalia amazonia. For. Ecol. Manag. 2006, 233, 344–351. [Google Scholar]
- Macedo, M.O.; Resende, A.S.; Garcia, P.C.; Boddey, R.M.; Jantalia, C.P.; Urquiaga, S.; Campello, E.F.C.; Franco, A.A. Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. For. Ecol. Manag. 2008, 255, 1516–1524. [Google Scholar]
- Lojka, B.; Dumas, L.; Preininger, D.; Polesny, Z.; Banout, J. The use and integration of Inga edulis in agroforestry systems in the amazon—Review article. Agric. Trop. Subtrop. 2010, 43, 352–359. [Google Scholar]
- Poorter, L.; Bongers, F.; Aide, T.M.; Zambrano, A.M.A.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; Broadbent, E.N.; Chazdon, R.L.; et al. Biomass resilience of Neotropical secondary forests. Nature 2016, 530, 211–214. [Google Scholar]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Anthony, S. Agroforestry Tree Database: A Tree Reference and Selection Guide Version 4.0; World Agroforestry Centre: Nairobi, Kenya, 2009. [Google Scholar]
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere: Plant species, soil type and rhizosphere communities. FEMS Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar]
- Kardol, P.; Wardle, D.A. How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol. Evol. 2010, 25, 670–679. [Google Scholar]
- Wagg, C.; Jansa, J.; Schmid, B.; Van der Heijden, M.G.A. Belowground biodiversity effects of plant symbionts support aboveground productivity: Biodiversity effects of soil symbionts. Ecol. Lett. 2011, 14, 1001–1009. [Google Scholar]
- Mendes, M.S.; Latawiec, A.E.; Sansevero, J.B.B.; Crouzeilles, R.; Moraes, L.F.D.; Castro, A.; Alves-Pinto, H.N.; Brancalion, P.H.S.; Rodrigues, R.R.; Chazdon, R.L.; et al. Look down-there is a gap-the need to include soil data in Atlantic Forest restoration. Restor. Ecol. 2018, 27, 361–370. [Google Scholar]
- McGee, K.M.; Eaton, W.D.; Porter, T.M.; Shokralla, S.; Hajibabaei, M. Soil microbiomes associated with two dominant Costa Rican tree species, and implications for remediation: A case study from a Costa Rican conservation area. Appl. Soil Ecol. 2019, 137, 139–153. [Google Scholar]
- Eaton, W.D.; McGee, K.M.; Donnelly, R.; Lemenze, A.; Karas, O.; Hajibabaei, M. Differences in the soil microbial community and carbon-use efficiency following development of Vochysia guatemalensis tree plantations in unproductive pastures in Costa Rica. Restor. Ecol. 2019, 27, 1263–1273. [Google Scholar]
- Nasto, M.K.; Alvarez-Clare, S.; Lekberg, Y.; Sullivan, B.W.; Townsend, A.R.; Cleveland, C.C. Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecol. Lett. 2014, 17, 1282–1289. [Google Scholar] [PubMed]
- Menge, D.N.L.; Chazdon, R.L. Higher survival drives the success of nitrogen-fixing trees through succession in Costa Rican rainforests. New Phytol. 2016, 209, 965–977. [Google Scholar]
- Taylor, B.N.; Chazdon, R.L.; Bachelot, B.; Menge, D.N.L. Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests. Proc. Natl. Acad. Sci. USA 2017, 114, 8817–8822. [Google Scholar] [PubMed] [Green Version]
- Bürgi, M.; Östlund, L.; Mladenoff, D.J. Legacy Effects of Human Land Use: Ecosystems as Time-Lagged Systems. Ecosystems 2016, 20, 94–103. [Google Scholar]
- Arroyo-Rodríguez, V.; Melo, F.P.L.; Martínez-Ramos, M.; Bongers, F.; Chazdon, R.L.; Meave, J.A.; Norden, N.; Santos, B.A.; Leal, I.R.; Tabarelli, M. Multiple successional pathways in human-modified tropical landscapes: New insights from forest succession, forest fragmentation and landscape ecology research: Multiple successional pathways. Biol. Rev. 2017, 92, 326–340. [Google Scholar]
- Chaparro, J.M.; Badri, D.V.; Vivanco, J.M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014, 8, 790–803. [Google Scholar]
- Norden, N.; Angarita, H.A.; Bongers, F.; Martínez-Ramos, M.; Granzow-de la Cerda, I.; van Breugel, M.; Lebrija-Trejos, E.; Meave, J.A.; Vandermeer, J.; Williamson, G.B.; et al. Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proc. Natl. Acad. Sci. USA 2015, 112, 8013–8018. [Google Scholar]
- Hogan, J.A.; Zimmerman, J.K.; Thompson, J.; Nytch, C.J.; Uriarte, M. The interaction of land-use legacies and hurricane disturbance in subtropical wet forest: Twenty-one years of change. Ecosphere 2016, 7, e01405. [Google Scholar] [CrossRef] [Green Version]
- Ziter, C.; Graves, R.A.; Turner, M.G. How do land-use legacies affect ecosystem services in United States cultural landscapes? Landsc. Ecol. 2017, 32, 1–14. [Google Scholar]
- Potthast, K.; Hamer, U.; Makeschin, F. Land-use change in a tropical mountain rainforest region of southern Ecuador affects soil microorganisms and nutrient cycling. Biogeochemistry 2012, 111, 151–167. [Google Scholar]
- Tischer, A.; Potthast, K.; Hamer, U. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia 2014, 175, 375–393. [Google Scholar]
- Barron, A.R.; Purves, D.W.; Hedin, L.O. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 2011, 165, 511–520. [Google Scholar]
- Gei, M.; Rozendaal, D.M.A.; Poorter, L.; Bongers, F.; Sprent, J.I.; Garner, M.D.; Aide, T.M.; Andrade, J.L.; Balvanera, P.; Becknell, J.M.; et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2018, 2, 1104–1111. [Google Scholar]
- Hartshorn, G.S.; Hammel, B.; McDade, L.A.; Bawa, K.S.; Hespenheide, H.A.; Hartshorn, G.S. Vegetation Types and Floristic Patterns. La Selva: Ecology and Natural History of a Neotropical Rain Forest; The University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- Lojka, B.; Preininger, D.; Lojkova, J.; Banout, J.; Polesny, Z. Biomass growth and farmer knowledge of Inga edulis in Peruvian Amazon. Agric. Trop. Subtrop. 2005, 38, 44–51. [Google Scholar]
- Ghazoul, J.; Sheil, D. Tropical Rain Forest Ecology, Diversity, and Conservation; Oxford University Press: New York, NY, USA, 2010; ISBN 0-19-928588-8. [Google Scholar]
- Allen, O.; Allen, E. The Leguminosae; The University of Wisconsin Press: Madison, WI, USA, 1981. [Google Scholar]
- Flores, E.; Vozzo, J. Pentaclethra macroloba. In Tropical Tree Seed Manual; Agricultural Handbook 721; USDA Forest Service: Washington, DC, USA, 2002; pp. 601–604. [Google Scholar]
- Lorenzi, H. A Guide to the Identification and Cultivation of Brazilian Native Trees. In Brazilian Trees, 4th ed.; Instituto Plantarum de Estudos da Flora LTDA: Sao Paulo, Brazil, 2002; Volume I. [Google Scholar]
- Baarsma, A. An assessment of afforestation success at REGUA Brazil. Report: REGUA Reserva Ecológica Guapiaçu Atl. For. Mata Atlântica, January 2016. [Google Scholar]
- Fichtler, E.; Clark, D.A.; Worbes, M. Age and Long-term Growth of Trees in an Old-growth Tropical Rain Forest, Based on Analyses of Tree Rings and 14C1. Biotropica 2003, 35, 306–313. [Google Scholar]
- Kurokawa, H.; Yoshida, T.; Nakamura, T.; Lai, J.; Nakashizuka, T. The age of tropical rain-forest canopy species, Borneo ironwood (Eusideroxylon zwageri), determined by 14C dating. J. Trop. Ecol. 2003, 19, 1–7. [Google Scholar]
- Buchmann, N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol. Biochem. 2000, 32, 1625–1635. [Google Scholar]
- Whiting, D. Colorado Master Gardener Garden Notes; Colorado State University Extension: Fort Collins, CO, USA, 2013. [Google Scholar]
- Kuzyakov, Y. Priming effects: Interactions between living and dead organic matter. Soil Biol. Biochem. 2010, 42, 1363–1371. [Google Scholar]
- Plante, A.F.; Conant, R.T.; Carlson, J.; Greenwood, R.; Shulman, J.M.; Haddix, M.L.; Paul, E.A. Decomposition temperature sensitivity of isolated soil organic matter fractions. Soil Biol. Biochem. 2010, 42, 1991–1996. [Google Scholar]
- Alef, K.; Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry; Elsevier, Academic Press: London, UK, 1995. [Google Scholar]
- McGee, K.M.; Eaton, W.D.; Shokralla, S.; Hajibabaei, M. Determinants of Soil Bacterial and Fungal Community Composition Toward Carbon-Use Efficiency Across Primary and Secondary Forests in a Costa Rican Conservation Area. Microb. Ecol. 2018, 77, 148–167. [Google Scholar]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar]
- Weiss, S.; Xu, Z.Z.; Peddada, S.; Amir, A.; Bittinger, K.; Gonzalez, A.; Lozupone, C.; Zaneveld, J.R.; Vázquez-Baeza, Y.; Birmingham, A.; et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 2017, 5, 1–18. [Google Scholar]
- Shin, J.; Lee, I. Co-Inheritance Analysis within the Domains of Life Substantially Improves Network Inference by Phylogenetic Profiling. PLoS ONE 2015, 10, e0139006. [Google Scholar] [CrossRef]
- Shim, J.E.; Lee, T.; Lee, I. From sequencing data to gene functions: Co-functional network approaches. Anim. Cells Syst. 2017, 21, 77–83. [Google Scholar]
- Eaton, W.D.; McGee, K.M.; Alderfer, K.; Jimenez, A.R.; Hajibabaei, M. Increase in abundance and decrease in richness of soil microbes following Hurricane Otto in three primary forest types in the Northern Zone of Costa Rica. PLoS ONE 2020, 15, e0231187. [Google Scholar] [CrossRef]
- Anderson, M.J.; Gorley, R.N.; Clarke, R.K. PERMANOVA+ for Primer: Guide to Software and Statistical Methods; PRIMER-E Ltd.: Devon, UK, 2008; ISBN 841889821. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar]
- Anderson, M.J.; Willis, T.J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 2003, 84, 511–525. [Google Scholar]
- Tilki, F.; Fisher, R.F. Tropical leguminous species for acid soils: Studies on plant form and growth in Costa Rica. For. Ecol. Manag. 1998, 108, 175–192. [Google Scholar]
- Leblanc, H.A.; McGraw, R.L.; Nygren, P.; Roux, C.L. Neotropical Legume Tree Inga edulis Forms N2-fixing Symbiosis with Fast-growing Bradyrhizobium Strains. Plant Soil 2005, 275, 123–133. [Google Scholar]
- Fisher, R.F. Amelioration of Degraded Rain Forest Soils by Plantations of Native Trees. Soil Sci. Soc. Am. J. 1995, 59, 544. [Google Scholar] [CrossRef] [Green Version]
- Omena-Garcia, R.; Justino, G.; Araujo, V.; Souza, L.; De Camargos, L.; Goncalves, J. Mineral nitrogen associated changes in growth and xylem-N compounds in Amazonian legume tree. J. Plant Nutr. 2015, 4, 584–595. [Google Scholar]
- Justino, G.; Omena-Garcia, R.; dos Santos, A.; de Camargos, L.; Sodek, L.; Gonçalves, J. Nitrogen used strategies of nodulated amazonian legume: Inga edulis. J. Trop. For. Sci. 2017, 29, 1–9. [Google Scholar]
- Eaton, W.D.; Anderson, C.; Saunders, E.F.; Hauge, J.B.; Barry, D. The impact of Pentaclethra macroloba on soil microbial nitrogen fixing communities and nutrients within developing secondary forests in the Northern Zone of Costa Rica. Trop. Ecol. 2012, 53, 207–214. [Google Scholar]
- Louca, S.; Doebeli, M. Transient dynamics of competitive exclusion in microbial communities: Transient dynamics in microbial communities. Environ. Microbiol. 2016, 18, 1863–1874. [Google Scholar] [PubMed]
- Eldridge, D.J.; Delgado-Baquerizo, M.; Travers, S.K.; Val, J.; Oliver, I.; Hamonts, K.; Singh, B.K. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores. Ecology 2017, 98, 1922–1931. [Google Scholar] [PubMed] [Green Version]
- Hardin, G. The Competitive Exclusion Principle. Science 1960, 131, 1292–1297. [Google Scholar]
- Derhé, M.A.; Murphy, H.; Monteith, G.; Menéndez, R. Measuring the success of reforestation for restoring biodiversity and ecosystem functioning. J. Appl. Ecol. 2016, 53, 1714–1724. [Google Scholar]
- Louca, S.; Polz, M.F.; Mazel, F.; Albright, M.B.N.; Huber, J.A.; O’Connor, M.I.; Ackermann, M.; Hahn, A.S.; Srivastava, D.S.; Crowe, S.A.; et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2018, 2, 936–943. [Google Scholar] [PubMed]
- Wohl, D.; Arora, S.; Gladstone, J. Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology 2004, 85, 1534–1540. [Google Scholar]
- Allison, S.D.; Martiny, J.B.H. Colloquium paper: Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 2008, 105, 11512–11519. [Google Scholar]
- Nemergut, D.R.; Schmidt, S.K.; Fukami, T.; O’Neill, S.P.; Bilinski, T.M.; Stanish, L.F.; Knelman, J.E.; Darcy, J.L.; Lynch, R.C.; Wickey, P.; et al. Patterns and Processes of Microbial Community Assembly. Microbiol. Mol. Biol. Rev. 2013, 77, 342–356. [Google Scholar]
- Evans, S.E.; Wallenstein, M.D. Climate change alters ecological strategies of soil bacteria. Ecol. Lett. 2014, 17, 155–164. [Google Scholar]
- Morrissey, E.M.; Mau, R.L.; Schwartz, E.; Caporaso, J.G.; Dijkstra, P.; van Gestel, N.; Koch, B.J.; Liu, C.M.; Hayer, M.; McHugh, T.A.; et al. Phylogenetic organization of bacterial activity. ISME J. 2016, 10, 2336–2340. [Google Scholar]
- Placella, S.A.; Brodie, E.L.; Firestone, M.K. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc. Natl. Acad. Sci. USA 2012, 109, 10931–10936. [Google Scholar]
Comparisons | Bacterial Richness | Bacterial Evenness | N-Fixation Richness | N-Fixation Evenness | AMO Richness | AMO Evenness |
---|---|---|---|---|---|---|
P. macroloba | 25.32 (±3.47) | 0.33 (±0.02) | 5.72 (±0.88) | 0.31 (±0.02) | 2.94 (±0.44) | 0.53 (±0.05) |
I. edulis | 14.55 (±6.4) | 0.44 (±0.04) | 4.19 (±1.21) | 0.44 (±0.04) | 2.48 (±0.63) | 0.52 (±0.08) |
Sig. Differences | Pm > Ie | Pm < Ie | Pm > Ie | Pm < Ie | Pm > Ie | N.D |
(3.62, <0.01) | (6.03, <0.01) | (2.51, <0.01) | (7.12, 0.05) | (2.18, 0.03) | (0.26, 0.80) | |
PP | 26.21 (±3.10) | 0.34 (±0.02) | 7.96 (±0.93) | 0.79 (±0.01) | 2.87 (±0.35) | 0.51 (±0.05) |
SP | 24.43 (±3.86) | 0.32 (±0.02) | 7.13 (±0.92) | 0.76 (±0.01) | 3.01 (±0.54) | 0.56 (±0.04) |
PI | 15.24 (±7.06) | 0.44 (±0.02) | 5.71 (±1.22) | 0.90 (±0.01) | 2.35 (±0.77) | 0.55 (±0.07) |
SI | 13.86 (±6.25) | 0.46 (±0.04) | 5.94 (±1.49) | 0.92 (±0.02) | 2.41 (±0.42) | 0.49 (±0.08) |
Sig. Differences | PP > PI (p <0.01) | PP < PI, (p = 0.05) | PP > PI, (p = 0.01) | PP < PI (p = 0.05) | N.D. | N.D. |
SP > SI (p = 0.01) | SP < SI, (p = 0.04) | SP > SI (p = 0.05) | SP < SI (p < 0.01) | (p = 0.26–0.99) | (p = 0.19–0.46) |
Significant Differences in MPS of Nitrogen-Fixation Bacterial Genera | ||
Genus | Pattern Observed | p Values |
Rhodoplanes | SP > SI | 0.04 |
Burkholderia | Pmacro > Inga; PP > PI; SP > SI | All < 0.01 |
Bacillus | Pmacro > Inga; SP > PP; SP > SI; | 0.05; 0.01; 0.05 |
Clostridium | SP > PP | <0.01 |
Geobacter | SP > PP | 0.05 |
Rhizobium | PP > SP | 0.02 |
Beijerinckia | PP > SP | 0.05 |
Significant Differences in MPS of Ammonium Oxidizing Bacterial Genera | ||
Genus | Pattern Observed | p Values |
Nitrospira | Inga > Pmacro; PP > SP | 0.03; <0.01 |
Burkholderia | Pmacro > Inga; PP > PI | <0.01;0.05 |
Bacillus | Pmacro > Inga; SP > PP | 0.05; 0.05 |
Sphingomonas | PP > SP | 0.01 |
Comamonas | PP > SP | 0.01 |
PERMANOVA and CAP Results of Total Bacterial Community | ||||
Main PERMANOVA Test Results | Main CAP Test Results | |||
Pseudo-F | p value | CAP R2 | p value | |
By Tree Spp | 4.415 | <0.01 | 0.809 | <0.001 |
By Land Management | 2.692 | <0.01 | 0.955 | 0.015 |
Pairwise PERMANOVA Test Results | Pairwise CAP Test Results | |||
Land Management | Pseudo-F | p value | CAP R2 | p Value |
Pairwise Test: PP to SP | 5.295 | <0.01 | 0.917 | 0.015 |
Pairwise Test: PI to SI | 0.743 | 0.71 | not done | not done |
Pairwise Test: PP to PI | 1.847 | 0.04 | 0.312 | <0.001 |
Pairwise Test: SP to SI | 4.335 | 0.02 | 0.867 | 0.038 |
PERMANOVA and CAP Results of Potential Nitrogen-Fixing Community | ||||
Main PERMANOVA Test Results | Main CAP Test Results | |||
Pseudo-F | p value | CAP R2 | p value | |
By Tree Spp | 3.716 | <0.01 | 0.591 | <0.001 |
By Land Management | 2.579 | <0.01 | 0.505 | 0.052 |
Pairwise PERMANOVA Test Results | Pairwise CAP Test Results | |||
Land Management | Pseudo-F | p value | CAP R2 | p value |
Pairwise Test: PP to SP | 2.205 | <0.01 | 0.529 | 0.002 |
Pairwise Test: PI to SI | 0.399 | 0.89 | not done | not done |
Pairwise Test: PP to PI | 2.347 | 0.01 | 0.349 | 0.002 |
Pairwise Test: SP to SI | 2.108 | 0.03 | 0.505 | 0.052 |
PERMANOVA and CAP Results of AMO Community | ||||
Main PERMANOVA Test Results | Main CAP Test Results | |||
Pseudo-F | p value | CAP R2 | p value | |
By Tree Spp | 10.853 | <0.01 | 0.514 | 0.004 |
By Land Management | 6.982 | <0.01 | 0.779 | 0.001 |
Pairwise PERMANOVA Test Results | Pairwise CAP Test Results | |||
Land Management | Pseudo-F | p value | CAP R2 | p value |
Pairwise Test: PP to SP | 4.533 | <0.01 | 0.85 | <0.001 |
Pairwise Test: PI to SI | 0.321 | 0.84 | not done | not done |
Pairwise Test: PP to PI | 2.211 | 0.05 | 0.468 | <0.001 |
Pairwise Test: SP to SI | 4.111 | <0.01 | 0.779 | 0.001 |
(a) | |||||
P. macroloba | I. edulis | Comparison | |||
TN(µg/g) | 48.08 ± 5.79 | 46.83 ± 5.04 | no difference | ||
NO3− (µg/g) ** | 46.99 ± 11.43 | 31.61 ± 6.54 | P. macro > I. edulis: F = 4.04, p < 0.01 | ||
NH4+ (µg/g) ** | 4.97 ± 2.47 | 7.75 ± 2.71 | I. edulis > P. macro: F = 2.11, p = 0.05 | ||
NO3−/NH4+ ** | 8.87 ± 3.15 | 5.89 ± 3.96 | P. macro > I. edulis: F = 2.05, p = 0.05 | ||
NO3−/TN ** | 0.97 ± 0.19 | 0.68 ± 0.18 | P. macro > I. edulis: F = 3.83, p < 0.01 | ||
NH4+/TN ** | 0.11 ± 0.02 | 0.17 ± 0.04 | I. edulis > P. macro: F = 2.94, p = 0.015 | ||
(b) | |||||
PP | PI | SP | SI | Comparisons | |
TN(µg/g) | 48.33 ± 7.84 | 46.17 ± 4.92 | 47.83 ± 3.49 | 47.5 ± 5.54 | No differences (p values > 0.91) |
NO3− (µg/g) ** | 41.53 ± 6.93 | 33.04 ± 4.96 | 52.45 ± 8.58 | 29.19 ± 7.45 | PP > PI, p = 0.035; SP > SI, p < 0.01 |
NH4+ (µg/g) | 4.57 ± 1.68 | 5.38 ± 2.46 | 7.28 ± 2.49 | 8.22 ± 2.29 | No differences (p values > 0.16) |
NO3−/NH4+ ** | 9.95 ± 2.23 | 7.31 ± 2.11 | 7.85 ± 2.36 | 3.84 ± 1.39 | PP > PI, p = 0.06; SP > SI, p = 0.04 |
NO3−/TN ** | 0.85 ± 0.17 | 0.75 ± 0.16 | 1.09 ± 0.13 | 0.62 ± 0.18 | SP > PP, p = 0.06; SP > SI, p = 0.04 |
NH4+/TN | 0.10 ± 0.04 | 0.13 ± 0.05 | 0.14 ± 0.05 | 0.18 ± 0.17 | No differences (p values > 0.205) |
Tree Soil Comparisons | Best Predictors | AICc | Pseudo-F | p Value | Cuml. Prop. |
---|---|---|---|---|---|
Tree Species | |||||
Total Bacterial Genera | NO3− | 167.6 | 5.794 | 0.014 | 20.85 |
N-Fixpot Genera | NO3− | 186.3 | 3.11 | 0.035 | 18.09 |
AMOpotential Genera | NO3−, NO3−/NH4+ | 104.4 | 2.541 | 0.018 | 14.72 |
Land Management | |||||
Total Bacterial Genera | NO3−, NO3−/TN | 167.1 | 6.477 | 0.011 | 22.75 |
N-Fixpotnetial Genera | NO3−, NO3−/TN | 119.2 | 2.443 | 0.025 | 18.43 |
AMOpotnetial Genera | NO3−, NO3−/NH4+ | 136.3 | 5.971 | 0.006 | 21.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eaton, W.D.; McGee, K.M.; Hoke, E.; Lemenze, A.; Hajibabaei, M. Influence of Two Important Leguminous Trees on Their Soil Microbiomes and Nitrogen Cycle Activities in a Primary and Recovering Secondary Forest in the Northern Zone of Costa Rica. Soil Syst. 2020, 4, 65. https://doi.org/10.3390/soilsystems4040065
Eaton WD, McGee KM, Hoke E, Lemenze A, Hajibabaei M. Influence of Two Important Leguminous Trees on Their Soil Microbiomes and Nitrogen Cycle Activities in a Primary and Recovering Secondary Forest in the Northern Zone of Costa Rica. Soil Systems. 2020; 4(4):65. https://doi.org/10.3390/soilsystems4040065
Chicago/Turabian StyleEaton, William D., Katie M. McGee, Elizabeth Hoke, Alex Lemenze, and Mehrdad Hajibabaei. 2020. "Influence of Two Important Leguminous Trees on Their Soil Microbiomes and Nitrogen Cycle Activities in a Primary and Recovering Secondary Forest in the Northern Zone of Costa Rica" Soil Systems 4, no. 4: 65. https://doi.org/10.3390/soilsystems4040065
APA StyleEaton, W. D., McGee, K. M., Hoke, E., Lemenze, A., & Hajibabaei, M. (2020). Influence of Two Important Leguminous Trees on Their Soil Microbiomes and Nitrogen Cycle Activities in a Primary and Recovering Secondary Forest in the Northern Zone of Costa Rica. Soil Systems, 4(4), 65. https://doi.org/10.3390/soilsystems4040065