A Comparison among Synthetic Layered Double Hydroxides (LDHs) as Effective Adsorbents of Inorganic Arsenic from Contaminated Soil–Water Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Four Different Layered Double Hydroxides
2.2. LDHs Characterization
2.3. Arsenate Adsorption Isotherms
2.4. Arsenate Adsorption in the Presence of Competing Anions
2.5. Kinetics of Desorption of As(V) by H2PO4−
2.6. Arsenate Determination
2.7. Statistical Analysis
3. Results and Discussion
3.1. Arsenate Adsorption Isotherms
3.2. Arsenate Adsorption in the Presence of Competing Inorganic Anions
3.3. Kinetics of Desorption of As(V) by H2PO4−
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bagherifam, S.; Komarneni, S.; Lazkian, A.; Fotovat, A.; Khorasani, R.; Huang, W.; Ma, J.; Wang, Y. Evaluation of Zn-Al-SO4 layered double hydroxide for the removal of arsenite and arsenate from a simulated soil solution: Isotherms and kinetics. Appl. Clay Sci. 2014, 95, 119–125. [Google Scholar] [CrossRef]
- Wang, S.L.; Liu, C.H.; Wang, M.K.; Chuang, Y.H.; Chiang, P.N. Arsenate adsorption by Mg/Al-NO3 layered double hydroxides with varying the Mg/Al ratio. Appl. Clay Sci. 2009, 43, 79–85. [Google Scholar] [CrossRef]
- Bakhat, H.F.; Zia, Z.; Abbas, S.; Hammad, H.M.; Shah, G.M.; Khalid, S.; Shahid, N.; Sajjad, M.; Fahad, S. Factors controlling arsenic contamination and potential remediation measures in soil-plant systems. Groundw. Sustain. Dev. 2019, 9, 100263. [Google Scholar] [CrossRef]
- Grover, K.; Komarneni, S.; Katsukic, H. Uptake of arsenite by synthetic layered double hydroxides. Water Res. 2009, 43, 3884–3890. [Google Scholar] [CrossRef]
- Hafeznezami, S.; Zimmer-Faust, A.G.; Dunne, A.; Tran, T.; Yang, C.; Lam, J.R.; Reynolds, M.D.; Davis, J.A.; Jay, J.A. Adsorption and desorption of arsenate on sandy sediments from contaminated and uncontaminated saturated zones: Kinetic and equilibrium modeling. Environ. Pollut. 2016, 215, 290–301. [Google Scholar] [CrossRef] [Green Version]
- Kapaj, S.; Peterson, H.; Liber, K.; Bhattacharya, P. Human health effects from chronic arsenic poisoning—A review. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2006, 41, 2399–2428. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Arsenic in Drinking Water. Factsheet N 210, 2001. Available online: https://www.who.int/water_sanitation_health/dwq/chemicals/arsenic.pdf?ua=1 (accessed on 11 March 2020).
- Smedley, P.L.; Kinniburgh, D.G.A. Review of the source, behaviour and distribution of arsenic in nature waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Akter, K.F.; Owens, G.; Davey, D.E.; Naidu, R. Arsenic speciation and toxicity in biological systems. Rev. Environ. Contamin. Toxicol. 2006, 184, 97–149. [Google Scholar]
- Chen, W.Q.; Shi, Y.L.; Wu, S.L.; Zhu, Y.G. Anthropogenic arsenic cycles: A research framework and features. J. Clean. Prod. 2016, 139, 328–336. [Google Scholar] [CrossRef]
- Asere, T.G.; Stevens, C.V.; Du Lainga, G. Use of (modified) natural adsorbents for arsenic remediation: A review. Sci. Total Environ. 2019, 676, 706–720. [Google Scholar] [CrossRef]
- Banerjia, T.; Kalawapudia, K.; Salanaa, S.; Vijay, R. Review of processes controlling arsenic retention and release in soils and sediments of Bengal basin and suitable iron based technologies for its removal. Groundw. Sustain. Dev. 2019, 8, 358–367. [Google Scholar] [CrossRef]
- Pigna, M.; Caporale, A.G.; Cavalca, L.; Sommella, A.; Violante, A. Arsenic in the soil environments: Mobility and phytoavailability. Environ. Eng. Sci. 2015, 32, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Sommella, A.; Caporale, A.G.; Denecke, M.A.; Mangold, S.; Pigna, M.; Santoro, A.; Terzano, R.; Violante, A. Nature and reactivity of layered double hydroxides formed by coprecipitating Mg, Al and As(V): Effect of arsenic concentration, pH, and aging. J. Hazard. Mater. 2015, 300, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Tichit, D.; Layrac, G.; Gerardin, C. Synthesis of layered double hydroxides through continuous flow process: A review. Chem. Eng. J. 2019, 369, 302–332. [Google Scholar] [CrossRef]
- Caporale, A.G.; Pigna, M.; Azam, S.M.G.G.; Sommella, A.; Rao, M.A.; Violante, A. Effect of competing ligands on the sorption/desorption of arsenite on/from Mg-Fe layered double hydroxides (Mg-Fe-LDH). Chem. Eng. J. 2013, 225, 704–709. [Google Scholar] [CrossRef]
- Dias, A.C.; Fontes, M.P.F. Arsenic (V) removal from water using hydrotalcites as adsorbents: A criticalreview. Appl. Clay Sci. 2020, 191, 105615. [Google Scholar] [CrossRef]
- Usman, M.; Hanna, K.; Abdelmoula, M.; Zegeye, A.; Faure, P.; Ruby, C. Formation of green rust via mineralogical transformation of ferric oxides (ferrihydrite, goethite and hematite). Appl. Clay Sci. 2012, 64, 38–43. [Google Scholar] [CrossRef]
- Violante, A.; de La Luz Mora, M.; Caporale, A.G. Formation, properties and reactivity of coprecipitates and organomineral complexes in soil environments. J. Soil Sci. Plant Nutr. 2017, 17, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Cavani, F.; Trifirb, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Costantino, V.R.L.; Pinnavaia, T.J. Basic properties of Mg2+1-X Al3+X layered double hydroxides intercalated by carbonate, hydroxide chloride and sulphate anions. Inorg. Chem. 1995, 34, 883–892. [Google Scholar] [CrossRef]
- Goh, K.H.; Lim, T.T.; Dong, Z. Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2008, 42, 1343–1368. [Google Scholar] [CrossRef] [PubMed]
- Caporale, A.G.; Pigna, M.; Dynes, J.J.; Cozzolino, V.; Zhu, J.; Violante, A. Effect of inorganic and organic ligands on the sorption/desorption of arsenate on/from Al-Mg and Fe-Mg layered double hydroxides. J. Hazard. Mater. 2011, 198, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Pigna, M.; Dynes, J.J.; Violante, A.; Sommella, A.; Caporale, A.G. Sorption of arsenite on Cu-Al, Mg-Al, Mg-Fe, and Zn-Al layered double hydroxides in the presence of inorganic anions commonly found in aquatic environments. Environ. Eng. Sci. 2016, 33, 98–104. [Google Scholar] [CrossRef]
- Quirk, J.P. Significance of surface area calculated from water vapors sorption isotherms by use of the B.E.T. equation. Soil Sci. 1955, 80, 423–430. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huiston, A. A general treatment and classification of the solute adsorption isotherm. Theor. J. Colloid Interface Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Pigna, M.; Krishnamurti, G.S.R.; Violante, A. Kinetics of arsenate sorption-desorption from metal oxides: Effect of residence time. Soil Sci. Soc. Am. J. 2006, 70, 2017–2027. [Google Scholar] [CrossRef]
- Caporale, A.G.; Violante, A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr. Pollut. Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Yu, X.; Tong, S.; Ge, M.-F.; Zuo, J.; Cao, C.-Y.; Song, W. Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution. Chem. Eng. J. 2013, 228, 731–740. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, Z.; Qiu, Y.; Zhao, J. Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions. J. Hazard. Mater. 2012, 239–240, 279–288. [Google Scholar] [CrossRef]
- Kasiuliene, A.; Carabante, I.; Bhattacharya, P.; Caporale, A.G.; Adamo, P.; Kumpiene, J. Removal of metal(oid)s from contaminated water using iron-coated peat sorbent. Chemosphere 2018, 198, 290–296. [Google Scholar] [CrossRef]
- An, B.; Steinwinder, T.R.; Zhao, D. Selective removal of arsenate from drinking water using a polymeric ligand exchange. Water Res. 2005, 39, 4993–5004. [Google Scholar] [CrossRef]
- Lu, H.; Zhu, Z.; Zhang, H.; Zhu, J.; Qiu, Y. Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide. Chem. Eng. J. 2015, 276, 365–375. [Google Scholar] [CrossRef]
- Yang, L.; Shahrivari, Z.; Liu, P.K.T.; Muhammad, S.; Tsotsis, T.T. Removal of trace levels of arsenic and selenium from aqueous solutions by calcined and uncalcined layered double hydroxides (LDH). Ind. Eng. Chem. Res. 2005, 44, 6804–6815. [Google Scholar] [CrossRef]
- Wang, P.; Sun, G.; Jia, Y.; Meharg, A.A.; Zhu, Y. A review on completing of arsenic biogeochemical cycle: Microbial volatilization of arsines in environments. J. Environ. Sci. 2014, 26, 371–381. [Google Scholar] [CrossRef]
- Bontchev, R.P.; Liu, S.; Krumhans, J.L.; Voigt, J.; Nenoff, T.M. Synthesis, characterization, and ion exchange properties of hydrotalcite Mg6Al2(OH)16(A)x(A‘)2-x·4H2O (A, A‘ = Cl-, Br-, I-, and NO3-, 2 ≥ x ≥ 0) derivatives. Chem. Mater. 2003, 15, 3669–3675. [Google Scholar] [CrossRef]
- Goswamee, R.L.; Sengupta, P.; Bhattacharyya, K.G.; Dutta, D.K. Adsorption of Cr(VI) in layered double hydroxides. Appl. Clay Sci. 1998, 13, 21–34. [Google Scholar] [CrossRef]
- Ardau, C.; Frau, F.; Lattanzi, P. New data on arsenic sorption properties of Zn–Al sulphate layered double hydroxides: Influence of competition with other anions. Appl. Clay Sci. 2013, 80–81, 1–9. [Google Scholar] [CrossRef]
- Fendorf, S.; Herbel, M.J.; Tufano, K.J.; Kocar, B.D. Biogeochemical processes controlling the cycling of arsenic in soils and sediments. In Book Chapter. Biophysico-Chemical-Processes of Heavy Metals and Metalloids in Soil Environments; Violante, A., Huang, P.M., Gadd, G.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 313–338. [Google Scholar]
- Gamble, A.V.; Givens, A.K.; Sparks, D.L. Arsenic speciation and availability in orchard soils historically contaminated with lead arsenate. J. Environ. Qual. 2018, 47, 121–128. [Google Scholar] [CrossRef]
- Pecini, E.M.; Springer, V.; Brigante, M.; Avena, M. Arsenate interaction with the surface of nanomagnetic particles. High adsorption or full release. J. Environ. Chem. Eng. 2017, 5, 4917–4922. [Google Scholar] [CrossRef]
- Goldberg, S.; Johnston, C.T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Colloid Interface Sci. 2001, 234, 204–216. [Google Scholar] [CrossRef]
LDH Sample | Surface Area | Sm | K | R2 |
---|---|---|---|---|
m2 g−1 | mmol kg−1 | |||
Zn-Al-LDH | 200 ± 10 | 1384 (569) * | 10.4 (2.3) * | 0.85 |
Mg-Al-LDH | 210 ± 10 | 1431 (562) | 13.4 (2.7) | 0.86 |
Cu-Al-LDH | 305 ± 14 | 1723 (760) | 18.8 (9.8) | 0.88 |
Mg-Fe-LDH | 280 ± 12 | 1916 (1312) | 15.0 (4.0) | 0.90 |
Sample | As(V) Added | As(V) Adsorbed Alone | As(V) + Cl− | As(V) + F− | As(V) + SO42− | As(V) + HCO3− | As(V) + H2PO4− |
---|---|---|---|---|---|---|---|
mmol kg−1 | |||||||
Zn-Al-LDH | 700 | 680 a ° | 635 ab (6.6) * | 610 bc (10.3) * | 605 bc (11.0) * | 580 c (17.2) * | 510 d (25.0) * |
Mg-Al-LDH | 700 | 690 a | 650 ab (5.8) | 645 ab (6.5) | 630 bc (8.7) | 590 c (14.5) | 520 d (24.6) |
Cu-Al-LDH | 800 | 780 a | 760 a (2.5) | 745 a (4.5) | 730 a (6.4) | 720 ab (7.7) | 660 b (15.4) |
Mg-Fe-LDH | 900 | 850 a | 830 a (2.3) | 820 a (3.5) | 805 a (5.3) | 785 a (7.6) | 700 b (17.6) |
Sample | As(V) Added | As(V) Adsorbed Alone | As(V) + Cl− | As(V) + F− | As(V) + SO42− | As(V) + HCO3− | As(V) + H2PO4− |
---|---|---|---|---|---|---|---|
mmol kg−1 | |||||||
Zn-Al-LDH | 700 | 680 a ° | 615 b (9.6) * | 580 bc (14.7) * | 575 bc (15.4) * | 545 c (19.8) * | 400 d (41.2) * |
Mg-Al-LDH | 700 | 690 a | 635 b (8.0) | 600 bc (13.2) | 610 bc (11.2) | 565 c (18.1) | 415 d (39.9) |
Cu-Al-LDH | 800 | 780 a | 750 ab (4.0) | 730 ab (6.4) | 725 ab (7.0) | 700 b (10.2) | 560 c (28.2) |
Mg-Fe-LDH | 900 | 850 a | 810 ab (4.7) | 805 ab (5.3) | 790 ab (7.6) | 750 b (11.8) | 590 c (30.6) |
Sample | As(V) Added | As(V) Adsorbed Alone | As(V) + Cl− | As(V) + F− | As(V) + SO42− | As(V) + HCO3− | As(V) + H2PO4− |
---|---|---|---|---|---|---|---|
mmol kg−1 | |||||||
Zn-Al-LDH | 700 | 680 a ° | 580 b (14.7) * | 550 b (19.1) * | 550 b (19.1) * | 500 c (26.5) * | 280 d (58.3) * |
Mg-Al-LDH | 700 | 690 a | 610 b (11.6) | 575 b (16.7) | 580 b (15.9) | 515 c (25.4) | 310 d (55.1) |
Cu-Al-LDH | 800 | 780 a | 730 ab (6.4) | 700 bc (10.3) | 690 bc (11.5) | 670 c (16.2) | 480 d (38.5) |
Mg-Fe-LDH | 900 | 850 a | 790 ab (7.1) | 780 bc (8.2) | 760 bc (10.6) | 720 c (15.3) | 500 d (41.2) |
Sample | Time with H2PO4− | As(V) Added | As(V) Desorbed | As(V) Desorption Rate | As(V) Adsorbed | As(V) Adsorption Rate |
---|---|---|---|---|---|---|
h | mmol kg−1 | % | mmol kg−1 | % | ||
Zn-Al-LDH | 0.16 | 800 | 249 e | 31.1 e | 551 a | 68.9 a |
1.0 | 800 | 269 de | 33.6 de | 531 ab | 66.4 ab | |
2.5 | 800 | 285 cd | 35.6 cd | 515 abc | 64.4 abc | |
5.0 | 800 | 302 bc | 37.8 bc | 498 bcd | 62.3 bcd | |
10 | 800 | 311 ab | 38.9 abc | 489 bcd | 61.1 bcd | |
24 | 800 | 325 ab | 40.6 ab | 475 cd | 59.4 cd | |
48 | 800 | 332 a | 41.5 a | 468 d | 58.5 d | |
Cu-Al-LDH | 0.16 | 800 | 205 d | 25.6 d | 595 a | 74.4 a |
1.0 | 800 | 226 c | 28.3 cd | 574 a | 71.8 a | |
2.5 | 800 | 238 bc | 29.8 bc | 562 ab | 70.3 ab | |
5.0 | 800 | 243 bc | 30.4 bc | 557 ab | 69.6 ab | |
10 | 800 | 251 b | 31.4 b | 549 ab | 68.6 ab | |
24 | 800 | 274 a | 34.3 a | 526 b | 65.8 b | |
48 | 800 | 281 a | 35.1 a | 519 b | 64.9 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pigna, M.; Violante, A.; Caporale, A.G. A Comparison among Synthetic Layered Double Hydroxides (LDHs) as Effective Adsorbents of Inorganic Arsenic from Contaminated Soil–Water Systems. Soil Syst. 2020, 4, 37. https://doi.org/10.3390/soilsystems4020037
Pigna M, Violante A, Caporale AG. A Comparison among Synthetic Layered Double Hydroxides (LDHs) as Effective Adsorbents of Inorganic Arsenic from Contaminated Soil–Water Systems. Soil Systems. 2020; 4(2):37. https://doi.org/10.3390/soilsystems4020037
Chicago/Turabian StylePigna, Massimo, Antonio Violante, and Antonio Giandonato Caporale. 2020. "A Comparison among Synthetic Layered Double Hydroxides (LDHs) as Effective Adsorbents of Inorganic Arsenic from Contaminated Soil–Water Systems" Soil Systems 4, no. 2: 37. https://doi.org/10.3390/soilsystems4020037
APA StylePigna, M., Violante, A., & Caporale, A. G. (2020). A Comparison among Synthetic Layered Double Hydroxides (LDHs) as Effective Adsorbents of Inorganic Arsenic from Contaminated Soil–Water Systems. Soil Systems, 4(2), 37. https://doi.org/10.3390/soilsystems4020037