Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effects of Irrigation on N2O Emissions
3.2. Effects of Irrigation on CO2 Emissions
3.3. Effects of Irrigation on CH4 Emissions
3.4. GHG Emissions and Global Warming Potential
4. Discussion
4.1. N2O Emissions and Irrigation Treatments
4.2. CO2 Emissions and Irrigation Treatments
4.3. CH4 Emissions and Irrigation Treatments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roberts, L. 9 Billion? Science 2011, 333, 540. [Google Scholar] [CrossRef]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [Green Version]
- FAO. AQUASTAT. Food and Agriculture Organization of the United Nations (FAO). 2014. Available online: http://www.fao.org/nr/water/aquastat/didyouknow/index3.stm (accessed on 27 May 2019).
- Institute of Medicine and National Research Council. Environmental Effects of the U.S. Food System. In A Framework for Assessing Effects of the Food System; Nesheim, M.C., Oria, M., Yih, P.T., Eds.; National Academies Press: Washington, DC, USA, 2015. Available online: https://www.ncbi.nlm.nih.gov/books/NBK305182/ (accessed on 17 June 2015).
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Agriculture. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Netz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623. [Google Scholar] [CrossRef] [Green Version]
- Trost, B.; Prochnow, A.; Drastig, K.; Meyer-Aurich, A.; Ellmer, F.; Baumecker, M. Irrigation, soil organic carbon and N2O emissions. A review. Agron. Sustain. Dev. 2013, 33, 733–749. [Google Scholar] [CrossRef] [Green Version]
- Bond-Lamberty, B.; Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 2010, 464, 579. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, M.; Singh, S.; Pathak, H. Emission of carbon dioxide from soil. Curr. Sci. 2002, 82, 510–517. [Google Scholar]
- Hanson, P.; Edwards, N.; Garten, C.T.; Andrews, J. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Orchard, V.A.; Cook, F.J. Relationship between soil respiration and soil moisture. Soil Biol. Biochem. 1983, 15, 447–453. [Google Scholar] [CrossRef]
- Skopp, J.; Jawson, M.D.; Doran, J.W. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 1990, 54, 1619–1625. [Google Scholar] [CrossRef] [Green Version]
- Tiedje, J.M.; Sexstone, A.J.; Parkin, T.B.; Revsbech, N.P. Anaerobic processes in soil. Plant Soil 1984, 76, 197–212. [Google Scholar] [CrossRef]
- Maier, C.A.; Kress, L.W. Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can. J. For. Res. 2000, 30, 347–359. [Google Scholar] [CrossRef]
- Bowden, R.D.; Nadelhoffer, K.J.; Boone, R.D.; Melillo, J.M.; Garrison, J.B. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Can. J. For. Res. 1993, 23, 1402–1407. [Google Scholar] [CrossRef]
- Sulkava, P.; Huhta, V.; Laakso, J. Impact of soil fauna structure on decomposition and N-mineralisation in relation to temperature and moisture in forest soil. Pedobiologia 1996, 40, 505–513. [Google Scholar]
- Clein, J.S.; Schimel, J.P. Reduction in microbial activity in Birch litter due to drying and rewetting event. Soil Biol. Biochem. 1994, 26, 403–406. [Google Scholar] [CrossRef]
- Birch, H.F. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 1958, 10, 9–31. [Google Scholar] [CrossRef]
- Bottner, P. Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C- and 15N-labelled plant material. Soil Biol. Biochem. 1985, 17, 329–337. [Google Scholar] [CrossRef]
- Halverson, L.J.; Jones, T.M.; Firestone, M.K. Release of Intracellular Solutes by Four Soil Bacteria Exposed to Dilution Stress. Soil Sci. Soc. Am. J. 2000, 64, 1630–1637. [Google Scholar] [CrossRef]
- Fierer, N.; Schimel, J.P. A Proposed Mechanism for the Pulse in Carbon Dioxide Production Commonly Observed Following the Rapid Rewetting of a Dry Soil. Soil Sci. Soc. Am. J. 2003, 67, 798–805. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.P.; Bond-Lamberty, B.; Benscoter, B.W.; Tfaily, M.M.; Hinkle, C.R.; Liu, C.; Bailey, V.L. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought. Nat. Commun. 2017, 8, 1335. [Google Scholar] [CrossRef]
- Borken, W.; Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Chang. Biol. 2009, 15, 808–824. [Google Scholar] [CrossRef]
- Maag, M.; Vinther, F.P. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl. Soil Ecol. 1996, 4, 5–14. [Google Scholar] [CrossRef]
- Schindlbacher, A.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, M.; Wang, Y.; Shen, R.; Gou, J.; Li, J.; Jin, J.; Li, L. Impacts of soil moisture on nitrous oxide emission from croplands: A case study on the rice-based agro-ecosystem in Southeast China. Chemosphere - Glob. Chang. Sci. 2000, 2, 207–224. [Google Scholar] [CrossRef]
- Masscheleyn, P.H.; DeLaune, R.D.; Patrick, W.H. Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension: Effect of soil oxidation-reduction status. Chemosphere 1993, 26, 251–260. [Google Scholar] [CrossRef]
- Hochstein, L.I.; Betlach, M.; Kritikos, G. The effect of oxygen on denitrification during steady-state growth of Paracoccus halodenitrificans. Arch. Microbiol. 1984, 137, 74–78. [Google Scholar] [CrossRef]
- Kampschreur, M.J.; Temmink, H.; Kleerebezem, R.; Jetten, M.S.M.; van Loosdrecht, M.C.M. Nitrous oxide emission during wastewater treatment. Water Res. 2009, 43, 4093–4103. [Google Scholar] [CrossRef]
- Wrage, N.; Velthof, G.L.; van Beusichem, M.L.; Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 2001, 33, 1723–1732. [Google Scholar] [CrossRef]
- Khalil, K.; Mary, B.; Renault, P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol. Biochem. 2004, 36, 687–699. [Google Scholar] [CrossRef]
- Ratering, S.; Schnell, S. Nitrate-dependent iron(II) oxidation in paddy soil. Environ. Microbiol. 2001, 3, 100–109. [Google Scholar] [CrossRef]
- Nealson, K.H.; Saffarini, D. Iron and Manganese in anaerobic respiration: Environmental Significance, Physiology, and Regulation. Annu. Rev. Microbiol. 1994, 48, 311–343. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K.; Minami, K. Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 1990, 36, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Mah, R.A.; Ward, D.M.; Baresi, L.; Glass, T.L. Biogenesis of Methane. Annu. Rev. Microbiol. 1977, 31, 309–341. [Google Scholar] [CrossRef] [PubMed]
- Angle, J.C.; Morin, T.H.; Solden, L.M.; Narrowe, A.B.; Smith, G.J.; Borton, M.A.; Rey-Sanchez, C.; Daly, R.A.; Mirfenderesgi, G.; Hoyt, D.W.; et al. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat. Commun. 2017, 8, 1567. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, M.W. Methyl-Coenzyme M Reductase Genes: Unique Functional Markers for Methanogenic and Anaerobic Methane-Oxidizing Archaea. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2005; Volume 397, pp. 428–442. [Google Scholar]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Stres, B.; Stopar, D.; Mahne, I.; Hacin, J.; Resman, L.; Pal, L.; Fuka, M.M.; Leskovec, S.; Danevčič, T.; Mandic-Mulec, I. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol. Ecol. 2008, 66, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Fares, A.; Bensley, A.; Bayabil, H.; Awal, R.; Fares, S.; Valenzuela, H.; Abbas, F. Carbon dioxide emission in relation with irrigation and organic amendments from a sweet corn field. J. Environ. Sci. Health Part B 2017, 52, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.F.U.; van Groenigen, J.W.; Jensen, L.S.; Sander, B.O.; de Neergaard, A. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Sci. Total Environ. 2018, 612, 1329–1339. [Google Scholar] [CrossRef]
- Pepper, I.L.; Gentry, T.J. Chapter 4—Earth Environments. In Environmental Microbiology, 3rd ed.; Pepper, I.L., Gerba, C.P., Gentry, T.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 59–88. [Google Scholar] [CrossRef]
- Wang, J.H.; Bogena, H.R.; Vereecken, H.; Bruggemann, N. Characterizing Redox Potential Effects on Greenhouse Gas Emissions Induced by Water-Level Changes. Vadose Zone J. 2018, 17. [Google Scholar] [CrossRef]
- Pfeifer-Meister, L.; Gayton, L.G.; Roy, B.A.; Johnson, B.R.; Bridgham, S.D. Greenhouse gas emissions limited by low nitrogen and carbon availability in natural, restored, and agricultural Oregon seasonal wetlands. PeerJ 2018, 6, e5465. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.G.; Thomas, A.D.; Pelster, D.; Rosenstock, T.S.; Sanz-Cobena, A. Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: Synthesis of available data and suggestions for further research. Biogeosciences 2016, 13, 4789–4809. [Google Scholar] [CrossRef] [Green Version]
- Dalal, R.C.; Wang, W.; Robertson, G.P.; Parton, W.J. Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Soil Res. 2003, 41, 165–195. [Google Scholar] [CrossRef]
- Ruser, R.; Flessa, H.; Russow, R.; Schmidt, G.; Buegger, F.; Munch, J.C. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting. Soil Biol. Biochem. 2006, 38, 263–274. [Google Scholar] [CrossRef]
- Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2013, 362, 389–417. [Google Scholar] [CrossRef] [Green Version]
- Keiluweit, M.; Wanzek, T.; Kleber, M.; Nico, P.; Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 2017, 8, 1771. [Google Scholar] [CrossRef]
- Scanlon, D.; Moore, T. Carbon dioxide production from peatland soil profiles: The influence of temperature, oxic/anoxic conditions and substrate. Soil Sci. 2000, 165, 153–160. [Google Scholar] [CrossRef]
- Szafranek-Nakonieczna, A.; Stêpniewska, Z. Aerobic and anaerobic respiration in profiles of Polesie Lubelskie peatlands. Int. Agrophysics 2014, 28, 219–229. [Google Scholar] [CrossRef]
- Kulshreshtha, S.; Junkins, B. Effect of irrigation development on greenhouse gas emissions in Alberta and Saskatchewan. Can. Water Resour. J. Rev. Can. Des Ressour. Hydr. 2001, 26, 107–127. [Google Scholar] [CrossRef] [Green Version]
- McGill, B.M.; Hamilton, S.K.; Millar, N.; Robertson, G.P. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system. Glob. Chang. Biol. 2018, 24, 5948–5960. [Google Scholar] [CrossRef] [Green Version]
- Sainju, U.M.; Stevens, W.B.; Caesar-TonThat, T.; Liebig, M.A. Soil Greenhouse Gas Emissions Affected by Irrigation, Tillage, Crop Rotation, and Nitrogen Fertilization. J. Environ. Qual. 2012, 41, 1774–1786. [Google Scholar] [CrossRef] [Green Version]
- Scheer, C.; Grace, P.R.; Rowlings, D.W.; Payero, J. Nitrous oxide emissions from irrigated wheat in Australia: Impact of irrigation management. Plant Soil 2012, 359, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; Da Rosa, E.F.F.; Van Kessel, C. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Chang. Biol. 2015, 21, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, M. Irrigation in U.S. Agriculture: On-Farm Technologies and Best Management Practices; Congressional Research Service Report, R44158; Congressional Research Service: Washington, DC, USA, 2016; Available online: https://fas.org/sgp/crs/misc/R44158.pdf (accessed on 10 April 2020).
- Wu, J.; Guo, W.; Feng, J.; Li, L.; Yang, H.; Wang, X.; Bian, X. Greenhouse gas emissions from cotton field under different irrigation methods and fertilization regimes in arid northwestern China. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The, P.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohatgi, A. Webplotdigitizer. 2018. Available online: https://automeris.io/WebPlotDigitizer/ (accessed on 10 April 2020).
- Myhre, G.; Shindell, D.; Breon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.L.; Koch, D.; Lamarque, J.-F.; Lee, D.; MEndoza, B.; et al. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf (accessed on 1 December 2019).
- Gupta, D.K.; Bhatia, A.; Kumar, A.; Das, T.K.; Jain, N.; Tomer, R.; Malyan, S.K.; Fagodiya, R.K.; Dubey, R.; Pathak, H. Mitigation of greenhouse gas emission from rice-wheat system of the Indo-Gangetic plains: Through tillage, irrigation and fertilizer management. Agric. Ecosyst. Environ. 2016, 230, 1–9. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Choi, M.-Y.; Kim, B.-Y.; Lee, J.-S.; Song, J.; Kim, G.-Y.; Weon, H.-Y. Effects of Water-Saving Irrigation on Emissions of Greenhouse Gases and Prokaryotic Communities in Rice Paddy Soil. Microb. Ecol. 2014, 68, 271–283. [Google Scholar] [CrossRef]
- Ali, M.A.; Hoque, M.A.; Kim, P.J. Mitigating Global Warming Potentials of Methane and Nitrous Oxide Gases from Rice Paddies under different irrigation regimes. Ambio 2013, 42, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Berger, S.; Jang, I.; Seo, J.; Kang, H.; Gebauer, G. A record of N2O and CH4 emissions and underlying soil processes of Korean rice paddies as affected by different water management practices. Biogeochemistry 2013, 115, 317–332. [Google Scholar] [CrossRef]
- Edwards, K.P.; Madramootoo, C.A.; Whalen, J.K.; Adamchuk, V.I.; Su, A.S.M.; Benslim, H. Nitrous oxide and carbon dioxide emissions from surface and subsurface drip irrigated tomato fields. Can. J. Soil Sci. 2018, 98, 389–398. [Google Scholar] [CrossRef]
- Fangueiro, D.; Becerra, D.; Albarrán, Á.; Peña, D.; Sanchez-Llerena, J.; Rato-Nunes, J.M.; López-Piñeiro, A. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems. Atmos. Environ. 2017, 150, 303–312. [Google Scholar] [CrossRef]
- Fentabil, M.M.; Nichol, C.F.; Jones, M.D.; Neilsen, G.H.; Neilsen, D.; Hannam, K.D. Effect of drip irrigation frequency, nitrogen rate and mulching on nitrous oxide emissions in a semi-arid climate: An assessment across two years in an apple orchard. Agric. Ecosyst. Environ. 2016, 235, 242–252. [Google Scholar] [CrossRef]
- Franco-Luesma, S.; Alvaro-Fuentes, J.; Plaza-Bonilla, D.; Arrue, J.L.; Cantero-Martinez, C.; Cavero, J. Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions. Agric. Water Manag. 2019, 221, 303–311. [Google Scholar] [CrossRef]
- Haque, M.M.; Kim, G.W.; Kim, P.J.; Kim, S.Y. Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping. Field Crop. Res. 2016, 193, 133–142. [Google Scholar] [CrossRef]
- Haque, M.M.; Biswas, J.C.; Kim, S.Y.; Kim, P.J. Suppressing methane emission and global warming potential from rice fields through intermittent drainage and green biomass amendment. Soil Use Manag. 2016, 32, 72–79. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Rolston, D.E.; Horwath, W.R. Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation. Agric. Ecosyst. Environ. 2010, 137, 251–260. [Google Scholar] [CrossRef]
- Kumar, A.; Nayak, A.K.; Mohanty, S.; Das, B.S. Greenhouse gas emission from direct seeded paddy fields under different soil water potentials in Eastern India. Agric. Ecosyst. Environ. 2016, 228, 111–123. [Google Scholar] [CrossRef]
- Li, J.; Dong, W.; Oenema, O.; Chen, T.; Hu, C.; Yuan, H.; Zhao, L. Irrigation reduces the negative effect of global warming on winter wheat yield and greenhouse gas intensity. Sci. Total Environ. 2019, 646, 290–299. [Google Scholar] [CrossRef]
- Liang, K.; Zhong, X.; Huang, N.; Lampayan, R.M.; Liu, Y.; Pan, J.; Peng, B.; Hu, X.; Fu, Y. Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system. Sci. Total Environ. 2017, 609, 46–57. [Google Scholar] [CrossRef]
- Maris, S.C.; Teira-Esmatges, M.R.; Catala, M.M. Influence of irrigation frequency on greenhouse gases emission from a paddy soil. Paddy Water Environ. 2016, 14, 199–210. [Google Scholar] [CrossRef]
- Maris, S.C.; Teira-Esmatges, M.R.; Arbones, A.; Rufat, J. Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard. Sci. Total Environ. 2015, 538, 966–978. [Google Scholar] [CrossRef]
- Riya, S.; Katayama, M.; Takahashi, E.; Zhou, S.; Terada, A.; Hosomi, M. Mitigation of greenhouse gas emissions by water management in a forage rice paddy field supplemented with dry-thermophilic anaerobic digestion residue. WaterAir Soil Pollut. 2014, 225, 2118. [Google Scholar] [CrossRef]
- Samoy-Pascual, K.; Sibayan, E.B.; Grospe, F.S.; Remocal, A.T.; T-Padre, A.; Tokida, T.; Minamikawa, K. Is alternate wetting and drying irrigation technique enough to reduce methane emission from a tropical rice paddy? Soil Sci. Plant Nutr. 2019, 65, 203–207. [Google Scholar] [CrossRef]
- Scheer, C.; Wassmann, R.; Kienzler, K.; Ibragimov, N.; Lamers, J.P.A.; Martius, C. Methane and nitrous oxide fluxes in annual and perennial land-use systems of the irrigated areas in the Aral Sea Basin. Glob. Chang. Biol. 2008, 14, 2454–2468. [Google Scholar] [CrossRef]
- Scheer, C.; Del Grosso, S.J.; Parton, W.J.; Rowlings, D.W.; Grace, P.R. Modeling nitrous oxide emissions from irrigated agriculture: Testing DayCent with high-frequency measurements. Ecol. Appl. 2014, 24, 528–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Wang, J.J.; Li, Z.Y.; Wang, S.N.; Qu, Y.K. Effects of Irrigation Regime and Nitrogen Fertilizer Management on CH4, N2O and CO2 Emissions from Saline-Alkaline Paddy Fields in Northeast China. Sustainability 2018, 10, 475. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.S.; Liang, Y.P.; Zhang, Q.; Jha, S.K.; Gao, Y.; Shen, X.J.; Sun, J.S.; Duan, A.W. Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain. Agric. Water Manag. 2016, 163, 403–407. [Google Scholar] [CrossRef]
- Win, K.T.; Nonaka, R.; Win, A.T.; Sasada, Y.; Toyota, K.; Motobayashi, T. Effects of water saving irrigation and rice variety on greenhouse gas emissions and water use efficiency in a paddy field fertilized with anaerobically digested pig slurry. Paddy Water Environ. 2013, 13, 51–60. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, W.; Xie, X.L.; Yin, C.M.; Hou, H.J.; Yan, W.D.; Wang, G.J. Net global warming potential and greenhouse gas intensity as affected by different water management strategies in Chinese double rice-cropping systems. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ge, J.Z.; Tian, S.Y.; Li, S.Y.; Nguy-Robertson, A.L.; Zhan, M.; Cao, C.G. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Sci. Total Environ. 2015, 505, 1043–1052. [Google Scholar] [CrossRef]
- Xu, Y.; Zhan, M.; Cao, C.G.; Tian, S.Y.; Ge, J.Z.; Li, S.Y.; Wang, M.Y.; Yuan, G.Y. Improved water management to reduce greenhouse gas emissions in no-till rapeseed-rice rotations in Central China. Agric. Ecosyst. Environ. 2016, 221, 87–98. [Google Scholar] [CrossRef]
- Yang, S.H.; Peng, S.Z.; Xu, J.Z.; Luo, Y.F.; Li, D.X. Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation. Phys. Chem. Earth 2012, 53, 30–37. [Google Scholar] [CrossRef]
- Yang, S.H.; Xiao, Y.N.; Sun, X.; Ding, J.; Jiang, Z.W.; Xu, J.Z. Biochar improved rice yield and mitigated CH4 and N2O emissions from paddy field under controlled irrigation in the Taihu Lake Region of China. Atmos. Environ. 2019, 200, 69–77. [Google Scholar] [CrossRef]
- Zschornack, T.; da Rosa, C.M.; Pedroso, G.M.; Marcolin, E.; da Silva, P.R.F.; Bayer, C. Mitigation of yield-scaled greenhouse gas emissions in subtropical paddy rice under alternative irrigation systems. Nutr. Cycl. Agroecosystems 2016, 105, 61–73. [Google Scholar] [CrossRef]
- Tian, H.; Yang, J.; Xu, R.; Lu, C.; Canadell, J.G.; Davidson, E.A.; Jackson, R.B.; Arneth, A.; Chang, J.; Ciais, P.; et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Chang. Biol. 2019, 25, 640–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199. [Google Scholar] [CrossRef] [Green Version]
- Amos, B.; Arkebauer, T.J.; Doran, J.W. Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem. Soil Sci. Soc. Am. J. 2005, 69, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Scheer, C.; Wassmann, R.; Kienzler, K.; Ibragimov, N.; Eschanov, R. Nitrous oxide emissions from fertilized, irrigated cotton (Gossypium hirsutum L.) in the Aral Sea Basin, Uzbekistan: Influence of nitrogen applications and irrigation practices. Soil Biol. Biochem. 2008, 40, 290–301. [Google Scholar] [CrossRef]
- Chen, H.; Hou, H.-J.; Wang, X.-Y.; Zhu, Y.; Saddique, Q.; Wang, Y.-F.; Cai, H. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in a greenhouse tomato production system. J. Integr. Agric. 2018, 17, 449–460. [Google Scholar] [CrossRef]
- Yang, W.; Kang, Y.; Feng, Z.; Gu, P.; Wen, H.; Liu, L.; Jia, Y. Sprinkler irrigation is effective in reducing nitrous oxide emissions from a potato field in an arid region: A two-year field experiment. Atmosphere 2019, 10, 242. [Google Scholar] [CrossRef] [Green Version]
- Gebremichael, A.W.; Osborne, B.; Orr, P. Flooding-related increases in CO2 and N2O emissions from a temperate coastal grassland ecosystem. Biogeosciences 2017, 14, 2611–2626. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.J.; Patrick, W.H. Nitrous oxide emission as affected by alternate anaerobic and aerobic conditions from soil suspensions enriched with ammonium sulfate. Soil Biol. Biochem. 1983, 15, 693–697. [Google Scholar] [CrossRef]
- Kuang, W.; Gao, X.; Gui, D.; Tenuta, M.; Flaten, D.N.; Yin, M.; Zeng, F. Effects of fertilizer and irrigation management on nitrous oxide emission from cotton fields in an extremely arid region of northwestern China. Field Crop. Res. 2018, 229, 17–26. [Google Scholar] [CrossRef]
- Bouma, T.J.; Bryla, D.R. On the assessment of root and soil respiration for soils of different textures: Interactions with soil moisture contents and soil CO2 concentrations. Plant Soil 2000, 227, 215–221. [Google Scholar] [CrossRef]
- Olivella, S.; Alonso, E.E. Gas flow through clay barriers. Géotechnique 2008, 58, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Hamoud, Y.A.; Guo, X.; Wang, Z.; Chen, S.; Rasoul, G. Effects of irrigation water regime, soil clay content and their combination on growth, yield, and water use efficiency of rice grown in South China. Int. J. Agric. Biol. Eng. 2018, 11, 144–155. [Google Scholar]
- Neilson, J.W.; Pepper, I.L. Soil respiration as an index of soil aeration. Soil Sci. Soc. Am. J. 1990, 54, 428–432. [Google Scholar] [CrossRef]
- Dao, T.H. Tillage and crop residue effects on carbon dioxide evolution and carbon storage in a Paleustoll. Soil Sci. Soc. Am. J. 1998, 62, 250–256. [Google Scholar] [CrossRef]
- Jabro, J.D.; Sainju, U.; Stevens, W.B.; Evans, R.G. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. J. Environ. Manag. 2008, 88, 1478–1484. [Google Scholar] [CrossRef]
- Roberson, E.B.; Firestone, M.K.; Sarig, S. Cover crop management of polysaccharide-mediated aggregation in an orchard soil. Soil Sci. Soc. Am. J. 1991, 55, 734–739. [Google Scholar] [CrossRef]
- Liu, A.; Ma, B.L.; Bomke, A.A. Effects of cover crops on soil aggregate stability, total organic carbon, and polysaccharides. Soil Sci. Soc. Am. J. 2005, 69, 2041–2048. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Piao, S.; Janssens, I.A.; Tang, J.; Liu, W.; Chi, Y.; Wang, J.; Xu, S. Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration. Glob. Chang. Biol. 2014, 20, 3229–3237. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, G.; Huang, W.; Liu, J.; Fang, X. Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest. Plant Soil 2016, 409, 247–257. [Google Scholar] [CrossRef]
- Hou, A.X.; Chen, G.X.; Wang, Z.P.; Van Cleemput, O.; Patrick, W.H. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci. Soc. Am. J. 2000, 64, 2180–2186. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G. Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Linquist, B.; van Groenigen, K.J.; Adviento-Borbe, M.A.; Pittelkow, C.; van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Liang, K.; Zhong, X.; Huang, N.; Lampayan, R.M.; Pan, J.; Tian, K.; Liu, Y. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China. Agric. Water Manag. 2016, 163, 319–331. [Google Scholar] [CrossRef]
- Tarlera, S.; Capurro, M.C.; Irisarri, P.; Scavino, A.F.; Cantou, G.; Roel, A. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system. Sci. Agric. 2016, 73, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Yagi, K.; Akiyama, H.; Akimoto, H. Statistical analysis of the major variables controlling methane emission from rice fields. Glob. Chang. Biol. 2005, 11, 1131–1141. [Google Scholar] [CrossRef]
- Hou, H.; Peng, S.; Xu, J.; Yang, S.; Mao, Z. Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China. Chemosphere 2012, 89, 884–892. [Google Scholar] [CrossRef]
- Shen, Z.; Yang, X.; Pei, Y. Enhancing researches on elevating efficiency of water use in Chinese agriculture. In Strategies Against Water Crisis in Chinese Agriculture; Shen, Z.R., Su, R.Q., Eds.; Chinese Agricultural Science and Technology Press: Beijing, China, 1998; pp. 1–267. (In Chinese) [Google Scholar]
- Sass, R.L.; Fisher, F.M.; Wang, Y.B.; Turner, F.T.; Jund, M.F. Methane emission from rice fields: The effect of floodwater management. Glob. Biogeochem. Cycles 1992, 6, 249–262. [Google Scholar] [CrossRef]
- Sigren, L.K.; Lewis, S.T.; Fisher, F.M.; Sass, R.L. Effects of field drainage on soil parameters related to methane production and emission from rice paddies. Glob. Biogeochem. Cycles 1997, 11, 151–162. [Google Scholar] [CrossRef]
- Yagi, K.; Tsuruta, H.; Kanda, K.-I.; Minami, K. Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring. Glob. Biogeochem. Cycles 1996, 10, 255–267. [Google Scholar] [CrossRef]
- Cai, Z.-C.; Xing, G.-X.; Shen, G.-Y.; Xu, H.; Yan, X.-Y.; Tsuruta, H.; Yagi, K.; Minami, K. Measurements of CH4 and N2O emissions from rice paddies in Fengqiu, China. Soil Sci. Plant Nutr. 1999, 45, 1–13. [Google Scholar] [CrossRef]
- Jiao, Z.; Hou, A.; Shi, Y.; Huang, G.; Wang, Y.; Chen, X. Water Management Influencing Methane and Nitrous Oxide Emissions from Rice Field in Relation to Soil Redox and Microbial Community. Commun. Soil Sci. Plant Anal. 2006, 37, 1889–1903. [Google Scholar] [CrossRef]
- Jäckel, U.; Schnell, S. Suppression of methane emission from rice paddies by ferric iron fertilization. Soil Biol. Biochem. 2000, 32, 1811–1814. [Google Scholar] [CrossRef]
- Boye, K.; Noël, V.; Tfaily, M.M.; Bone, S.E.; Williams, K.H.; Bargar, J.R.; Fendorf, S. Thermodynamically controlled preservation of organic carbon in floodplains. Nat. Geosci. 2017, 10, 415–419. [Google Scholar] [CrossRef] [Green Version]
Article Number | References | Crop | Location | Irrigation Treatments* | Irrigation (mm) | N2O (kg/ha) § | CH4 (kg/ha) § | CO2 (kg/ha) § | Yield (kg/ha) | GWP (N2O + CH4) (kg CO2 e ha−1) ^ | GWP-All (kg CO2 e ha−1) ^ |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Ahn et al., 2014 [64] | Paddy | South Korea | Continuous Flooding | - | 0.003 | 286 | - | 5289 | 9725 | - |
Water Saving | - | 0.02 | 62 | - | 5670 | 2114 | - | ||||
2 | Ali et al., 2013 [65] | Paddy | Bangladesh | Continuous irrigation | - | 0.55 | 124 | - | 4290 | 4380 | - |
Intermittent irrigation | - | 0.98 | 90 | - | 4350 | 3352 | - | ||||
3 | Berger et al., 2013 [66] | Paddy | South Korea | Traditional irrigation | - | 0.88 | 2328 | - | 4356 | 79,414 | - |
Intermittent irrigation | - | −0.88 | 706 | - | 4638 | 23,742 | - | ||||
FDFM | - | 0.02 | 1541 | - | 7118 | 52,400 | - | ||||
4 | Edwards et al., 2018 [67] | Tomatoes | Canada | Subsurface drip | - | 4.2 | - | 2620 | - | - | - |
Surface drip | - | 3.89 | - | 2395 | - | - | - | ||||
5a | Fangueiro et al., 2017 (No-tillage) [68] | Paddy | Spain | Flood | 2300 | 14.24 | 125 | 5353 | 6100 | 8477 | 13,830 |
Sprinkler | 700 | 6.03 | −0.38 | 5802 | 5197 | 1784 | 7586 | ||||
5b | Fangueiro et al., 2017 (Tillage) [68] | Paddy | Spain | Flood | 2300 | 10.6 | 353 | 6680 | 6677 | 15,161 | 21,841 |
Sprinkler | 700 | 7.95 | 3 | 10,222 | 3567 | 2455 | 12,677 | ||||
6 | Fentabil et al. 2016 [69] | Apple | Canada | High frequency irrigation | - | 0.68 | - | - | - | - | - |
Low frequency irrigation | - | 0.49 | - | - | - | - | - | ||||
7 | Franco-Luesma et al., 2019 [70] | Maize | Spain | High frequency irrigation | 608 | 1.41 | −0.17 | 2090 | 14,840 | 414 | 2504 |
Low frequency irrigation | 608 | 1.36 | −0.21 | 2050 | 15,030 | 398 | 2448 | ||||
8 | Gupta et al., 2016 [63] | Paddy | India | ZTW-TPR | - | 0.6 | 39 | - | 5180 | 1513 | - |
ZTW-IWD | - | 0.77 | 27 | - | 4970 | 1139 | - | ||||
9 | Haque, kim et al., 2016 [71] | Paddy | South Korea | Continuous flooding | - | 0.5 | 258 | 3354 | 6700 | 8904 | 12,258 |
Mid-season drainage | - | 0.62 | 133 | 4935 | 6600 | 4690 | 9625 | ||||
10 | Haque et al., 2016 [72] | Paddy | South Korea | Continuous flooding | - | 0.52 | 240 | 3864 | 5500 | 8315 | 12,179 |
Intermittent drainage | - | 0.73 | 140 | 4606 | 5300 | 4978 | 9584 | ||||
11a | Kallenbach et al., 2010 (WLLC) [73] | Tomato | USA | Furrow irrigation | 886 | 0.02 kg/ha/d | - | 85 kg/ha/d | 79,000 | - | - |
Surface drip irrigation | 381 | 0.005 kg/ha/d | - | 74 kg/ha/d | 79,000 | - | - | ||||
11b | Kallenbach et al., 2010 (NCC) [73] | Tomato | USA | Furrow irrigation | 886 | 0.006 kg/ha/d | - | 52 kg/ha/d | 79,000 | - | - |
Surface drip irrigation | 381 | 0.005 kg/ha/d | - | 62 kg/ha/d | 79,000 | - | - | ||||
12 | Kumar et al., 2016 [74] | Paddy | India | Continuous flooding | 1200 | 1.04 | 35 | 1135 | 4940 | 1488 | 2623 |
−20 kPa | 840 | 1.25 | 24 | 1298 | 4850 | 1194 | 2491 | ||||
−30 kPa | 726 | 1.27 | 20 | 1416 | 4810 | 1043 | 2459 | ||||
−40 kPa | 673 | 0.98 | 17 | 1118 | 3780 | 863 | 1980 | ||||
−50 kPa | 643 | 0.89 | 15 | 1040 | 3220 | 777 | 1817 | ||||
−60 kPa | 608 | 0.84 | 14 | 1017 | 2560 | 722 | 1739 | ||||
13 | Li et al., 2019 [75] | Wheat | China | High irrigation | 630 | 0.97 | −1.86 | 7020 | 6790 | 226 | 7246 |
Low irrigation | 420 | 0.86 | −2.01 | 7350 | 7587 | 188 | 7538 | ||||
14a | Liang et al., 2017 (Early rice) [76] | Paddy | China | Farmer’s irrigation practice | 137 | 1.52 | 165 | - | 7387 | 6053 | - |
Optimize irrigation | 15 | 1.65 | 131 | - | 7477 | 4946 | - | ||||
14b | Liang et al., 2017 (Late rice) [76] | Paddy | China | Farmer’s irrigation practice | 283 | 2.64 | 209 | - | 8362 | 7900 | - |
Optimize irrigation | 196 | 2.97 | 121 | - | 8683 | 5013 | - | ||||
15 | Linquist et al., 2015 [57] ¶ | Paddy-Soybean | USA | Continuous flooding | 762 | 0.05 | 86 | - | 10,260 | 2922 | - |
AWD/40 Flood | 654 | 0.25 | 47 | - | 10,170 | 1671 | - | ||||
AWD/60 | 616 | 0.32 | 4 | - | 9730 | 246 | - | ||||
AWD/40 | 514 | 0.59 | 5 | - | 8970 | 337 | - | ||||
16 | Maris et al., 2016 [77] | Paddy | Spain | Continuous irrigation | - | −1.4 | −87 | 6045 | 9572 | −3378 | 2667 |
Intermittent irrigation | - | 0.73 | −156 | 8416 | 6291 | −5080 | 3336 | ||||
17 | Maris et al., 2015 [78] | Olive | Spain | Surface drip irrigation | 449 | 0.07 | −48 | 753 | 2144 | −1593 | −840 |
Subsurface drip irrigation | 242 | 0.02 | −63 | 781 | 2198 | −2135 | −1354 | ||||
18 | Riya et al., 2014 [79] | Paddy | Japan | Continuous flooding | - | - | 509 | 15,422 | 9707 | - | - |
Intermittent flooding | - | - | 306 | 9253 | 7167 | - | - | ||||
19 | Samoy-Pascual et al., 2019 [80] | Paddy | Philippines | Continuous flooding | 1123 | 1.77 | 52 | - | 7190 | 2282 | - |
AWD | 584 | 3.39 | 42 | - | 7090 | 2431 | - | ||||
20a | Scheer et al., 2008 [81] | Winter wheat | Uzbekistan | High irrigation intensity | 900 | 0.9 | below detection limit | - | - | - | - |
Low irrigation intensity | 800 | 0.6 | below detection limit | - | - | - | - | ||||
20b | Scheer et al., 2008 [81] | Cotton | Uzbekistan | High irrigation intensity | 463 | 4.4 | below detection limit | - | - | - | - |
Low irrigation intensity | 373 | 2.4 | below detection limit | - | - | - | - | ||||
21 | Scheer et al., 2012 [56] | Wheat | Australia | High irrigation | 244 | 0.75 | - | - | 3100 | - | - |
Medium irrigation | 161 | 0.43 | - | - | 1900 | - | - | ||||
Low irrigation | 65 | 0.45 | - | - | 1600 | - | - | ||||
22 | Scheer et al., 2014 [82] | Cotton | Australia | High irrigation | 734 | 0.82 | - | - | 1560 | - | - |
Medium irrigation | 633 | 1.07 | - | - | 1070 | - | - | ||||
Low irrigation | 586 | 0.8 | - | - | 730 | - | - | ||||
23a | Tang et al., 2018 (1-yr tillage) [83] | Paddy | China | Continuous flooding | - | 2.3 | 35 | 17,468 | - | 1879 | 19,347 |
Intermittent flooding | - | 2.90 | 30 | 22,241 | - | 1888 | 24,129 | ||||
23b | Tang et al., 2018 (57-yr tillage) [83] | Paddy | China | Continuous flooding | - | 2 | 323 | 21,202 | - | 11,592 | 32,793 |
Intermittent flooding | - | 2.4 | 252 | 26,496 | - | 9276 | 35,772 | ||||
24 | Wang et al., 2016 [84] | Wheat | China | Flood irrigation | 240 | 0.012 kg/ha/d | −0.01 kg/ha/d | 158 kg/ha/d | 7651 | - | - |
Surface drip irrigation | 160 | 0.01 kg/ha/d | −0.01 kg/ha/d | 155 kg/ha/d | 7355 | - | - | ||||
Sprinkler irrigation | 203 | 0.012 kg/ha/d | −0.01 kg/ha/d | 160 kg/ha/d | 8304 | - | - | ||||
25 | Win et al., 2013 [85] | Paddy | Japan | Continuous Flooding | 1952 | 1.2 | 238 | - | 19,080 | 8450 | - |
Water Saving | 248 | 1.4 | 84 | - | 19,600 | 3273 | - | ||||
26a | Wu et al., 2018 (Early season) [86] | Paddy | China | CF ¥ | - | 0.00 | 249 | - | 4636 | 8476 | - |
F-D-F | - | 0.07 | 131 | - | 3964 | 4488 | - | ||||
F-RF | - | 0.12 | 55 | - | 3850 | 1913 | - | ||||
26b | Wu et al., 2018 (Late season) [86] | Paddy | China | CF ¥ | - | −0.01 | 505 | - | 6250 | 17,177 | - |
F-D-F | - | 0.04 | 242 | - | 6280 | 8243 | - | ||||
F-RF | - | 0.2 | 57 | - | 5101 | 1981 | - | ||||
27 | Wu et al., 2014 [59] | Cotton | China | Furrow irrigation (mulch-free) | - | 1.71 | −3 | - | 1760 | 410 | - |
Drip irrigation (plastic film mulching) | - | 1.09 | −9 | - | 2020 | 23 | - | ||||
28 | Xu et al., 2015 [87] | Paddy | China | Continuous flooding | 1074 | 8.2 | 955 | 9249 | 6695 | 34,914 | 44,163 |
Flooded and wet intermittent | 671 | 9.2 | 365 | 12,137 | 6632 | 15,152 | 27,289 | ||||
Flooded and dry intermittent | 633 | 10.3 | 176 | 18,046 | 6006 | 9053 | 27,099 | ||||
29a | Xu et al., 2016 (Paddy) [88] | Paddy | China | Continuous flooding | 1022 | 6.76 | 769 | 10,858 | 8110 | 28,176 | 39,034 |
Flooded and wet intermittent | 440 | 8.44 | 280 | 13,367 | 7830 | 12,029 | 25,396 | ||||
Rain-fed with limited irrigation | 195 | 11.28 | 70 | 17,958 | 7080 | 5752 | 23,709 | ||||
29b | Xu et al., 2016 (Rapeseed) [88] | Rapeseed | China | Continuous flooding | 1022 | 12.05 | 24 | 11,139 | 1630 | 4415 | 15,554 |
Flooded and wet intermittent | 440 | 10.49 | 18 | 10,986 | 1710 | 3724 | 14,710 | ||||
Rain-fed with limited irrigation | 195 | 8.31 | 8 | 10,187 | 2150 | 2751 | 12,938 | ||||
30 | Yang et al., 2012 [89] | Paddy | China | Flood irrigation | 1135 | 0.96 | 117 | - | 8435 | 4267 | - |
Controlled irrigation | 324 | 1.07 | 22 | - | 8460 | 1058 | - | ||||
31 | Yang et al., 2019 (with biochar) [90] | Paddy | China | Flood irrigation | 1038 | 1.99 | 426 | - | 8170 | 15,060 | - |
Controlled irrigation | 539 | 3.58 | 100 | - | 7940 | 4479 | - | ||||
32 | Zschornack et al., 2016 (growing season 2) [91] | Paddy | Brazil | Continuous Flooding | - | 0.09 | 303 | - | 10,666 | 10,328 | - |
Sparse intermittent irrigation | - | 2.8 | 46 | - | 10,396 | 2398 | - | ||||
Frequent intermittent irrigation | - | 1.05 | 89 | - | 10,853 | 3339 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapkota, A.; Haghverdi, A.; Avila, C.C.E.; Ying, S.C. Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies. Soil Syst. 2020, 4, 20. https://doi.org/10.3390/soilsystems4020020
Sapkota A, Haghverdi A, Avila CCE, Ying SC. Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies. Soil Systems. 2020; 4(2):20. https://doi.org/10.3390/soilsystems4020020
Chicago/Turabian StyleSapkota, Anish, Amir Haghverdi, Claudia C. E. Avila, and Samantha C. Ying. 2020. "Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies" Soil Systems 4, no. 2: 20. https://doi.org/10.3390/soilsystems4020020
APA StyleSapkota, A., Haghverdi, A., Avila, C. C. E., & Ying, S. C. (2020). Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies. Soil Systems, 4(2), 20. https://doi.org/10.3390/soilsystems4020020