Agronomic Practices for Reducing Soil Erosion in Hillside Vineyards under Atlantic Climatic Conditions (Galicia, Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Sites
2.2. Soil and Climate Characterization of the Experimental Vineyards
2.3. Soil Loss Quantification
2.3.1. Erosion Pins
2.3.2. Erosion Plots
2.3.3. Improved Stock Unearthing Method
2.4. Statistical Analysis
3. Results
3.1. Climate and Soil Characterization of the Experimental Sites
3.2. Weather Conditions over the Study Period
3.3. Soil Loss Quantification
3.3.1. Erosion Pins
3.3.2. Erosion Plots
3.3.3. Improved Stock Unearthing Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- C.E.C. (Commission of the European Communities). Communication for the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. Thematic Strategy for Soil Protection, 2006. Brussels, 22.9.2006. COM 2006, 231. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52006DC0231&from=EN (accessed on 1 April 2020).
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. Earth Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Boardman, J.; Poesen, J. Soil Erosion in Europe; Wiley Editions: Chichester, UK, 2006. [Google Scholar]
- Brenot, J.; Quiquerez, A.; Petit, C.; Garcia, J.P. Erosion rates and sediment budgets in vineyards at 1-m resolution based on stock unearthing (Burgundy, France). Geomorphology 2008, 100, 345–355. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. Catena 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Keizer, J.J.; Santos, L.M.B.; Serpa, D.; Silva, K.; Cerqueira, M.; Ferreira, A.J.D.; Abrantes, N. Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale. Agric. Ecosyst. Environ. 2018, 256, 184–193. [Google Scholar] [CrossRef]
- Maetens, W.; Poesen, J.; Vanmaercke, M. How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? Earth Sci. Rev. 2012, 115, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Nutrient losses by runoff in vineyards of the Mediterranean Alt Penedès region (NE Spain). Agric. Ecosyst. Environ. 2006, 113, 356–363. [Google Scholar] [CrossRef]
- Marques, M.J.; García-Muñoz, S.; Muñoz-Organero, G.; Bienes, R. Soil conservation beneath grass cover in hillside vineyards under Mediterrranean climatic conditions (Madrid, Spain). Land Degrad. Dev. 2010, 21, 122–131. [Google Scholar] [CrossRef]
- Biddoccu, M.; Ferraris, S.; Opsi, F.; Cavallo, E. Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North-West Italy). Soil Tillage Res. 2016, 155, 176–189. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Quiquerez, A.; Follain, S.; Raclot, D.; Le Bissonnais, Y.; Casalí, J.; Giménez, R.; Cerdà, A.; Keestra, S.D.; Brevik, E.C.; et al. Soil erosion in sloping vineyards assessed by using botanical indicators and sediment collectors in the Ruwer-Mosel valley. Agric. Ecosyst. Environ. 2016, 233, 158–170. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Saladino, S.S.; Santoro, A.; Cerdà, A. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil Tillage Res. 2011, 117, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth Sci. Rev. 2018, 179, 436–447. [Google Scholar] [CrossRef]
- Durán-Zuazo, V.H.; Rodríguez-Pleguezuelo, C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 2008, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Colmenero, M.; Bienes, R.; Marques, M.J. Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil Tillage Res. 2011, 117, 211–223. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014; p. 372.
- Carter, M.R.; Gregorich, E.G. (Eds.) Soil Sampling Methods of Analysis; Canadian Society of Soil Science: Pinawa, MB, Canada; CRC Press: Boca Raton, FL, USA, 2008; p. 1224. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Eng. 1982, 108, 225–230. [Google Scholar]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Haigh, M.J. The use of erosion pins in the study of slope evolution. Br. Geomorphol. Res. Group Tech. Bull. 1977, 18, 31–49. [Google Scholar]
- Novara, A.; Pisciotta, A.; Minacapilli, M.; Maltese, A.; Capodici, F.; Cerdà, A.; Gristina, L. The impact of soil erosion on soil fertility and vine vigor. A multidisciplinary approach based on field, laboratory and remote sensing approaches. Sci. Total Environ. 2018, 622, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Mirás-Avalos, J.M.; Bertol, I.; de Abreu, C.A.; Vidal Vázquez, E.; Paz González, A. Crop residue effects on total and dissolved losses of Fe, Mn, Cu, and Zn by runoff. Commun. Soil Sci. Plant Anal. 2015, 46, 272–282. [Google Scholar] [CrossRef]
- Cogo, N.P. Effect of Residue Cover, Tillage-Induced Roughness, and Slope Length on Erosion and Related Parameters. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 1981. [Google Scholar]
- Rodrigo-Comino, J.; Keestra, S.D.; Cerdà, A. Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surf. Process. Landf. 2018, 43, 2193–2206. [Google Scholar] [CrossRef]
- Quiquerez, A.; Brenot, J.; Garcia, J.P.; Petit, C. Soil degradation caused by a high-intensity rainfall event: Implications for medium-term soil sustainability in Burgundian vineyards. Catena 2008, 73, 89–97. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Cerdà, A. Improving stock unearthing method to measure soil erosion rates in vineyards. Ecol. Indic. 2018, 85, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Paroissien, J.B.; Lagacherie, P.; Le Bissonnais, Y. A regional-scale study of multi-decennial erosion of vineyard fields using vine-stock unearthing-burying measurements. Catena 2010, 82, 159–168. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://R-project.org/ (accessed on 4 January 2020).
- Rodrigo-Comino, J.R.; Sinoga, J.R.; González, J.S.; Guerra-Merchán, A.; Seeger, M.; Ries, J.B. High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). Catena 2016, 145, 274–284. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Ramos, M.C. The cost of soil erosion in vineyard fields in the Penedès-Anoia Region (NE Spain). Catena 2006, 68, 194–199. [Google Scholar] [CrossRef]
- Chevigny, E.; Quiquerez, A.; Petit, C.; Curmi, P. Lithology, landscape structure and management practice changes: Key factors patterning vineyard soil erosion at metre-scale spatial resolution. Catena 2014, 121, 354–364. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keestra, S.; Novara, A.; Cerdà, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Guerra, B.; Steenwerth, K. Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: A review. Am. J. Enol. Vitic. 2012, 63, 149–164. [Google Scholar] [CrossRef]
- Trigo-Córdoba, E.; Bouzas-Cid, Y.; Orriols-Fernández, I.; Díaz-Losada, E.; Mirás-Avalos, J.M. Influence of cover crop treatments on the performance of a vineyard in a humid region. Span. J. Agric. Res. 2015, 13, e0907. [Google Scholar] [CrossRef] [Green Version]
- Ferrero, A.; Usowicz, B.; Lipiec, J. Effects of tractor traffic on spatial variability of soil strength and water content in grass covered and cultivated sloping vineyard. Soil Tillage Res. 2005, 84, 127–138. [Google Scholar] [CrossRef]
- Masselink, R.J.H.; Heckman, T.; Temme, A.J.A.M.; Anders, N.S.; Gooren, H.P.A.; Keesstra, S.D. A network theory approach for a better understanding of overland flow connectivity. Hydrol. Process. 2017, 31, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J.; Brevik, E.C.; Cerdà, A. The age of vines as a controlling factor of soil erosion processes in Mediterranean vineyards. Sci. Total Environ. 2018, 616, 1163–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lampurlanés, J.; Cantero-Martínez, C. Hydraulic conductivity, residue cover and soil surface roughness under different tillage systems in semiarid conditions. Soil Till. Res. 2006, 85, 13–26. [Google Scholar] [CrossRef]
- Warnemuende, E.A.; Patterson, J.P.; Smith, D.R.; Huang, C. Effects of tilling no-till soil on losses of atrazine and glyphosate to runoff water under variable intensity simulated rainfall. Soil Tillage Res. 2007, 95, 19–26. [Google Scholar] [CrossRef]
- Morvan, X.; Naisse, C.; Malam Issa, O.; Desprats, J.F.; Combaud, A.; Cerdan, O. Effect of ground-cover type on surface runoff and subsequent soil erosion in Champagne vineyards in France. Soil Use Manag. 2014, 30, 372–381. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Keesstra, S.D.; Cerdà, A. Soil erosion as an environmental concern in vineyards: The case study of Celler del Roure, Eastern Spain, by means of rainfall simulation experiments. Beverages 2018, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Boix-Fayos, C.; Martínez-Mena, M.; Arnau-Rosalén, E.; Calvo-Cases, A.; Castillo, V.; Albadalejo, J. Measuring soil erosion by field plots: Understanding the sources of variation. Earth Sci. Rev. 2006, 78, 267–285. [Google Scholar] [CrossRef]
- López-Vicente, M.; Álvarez, S. Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops. Earth Surf. Process. Landf. 2018, 43, 1403–1415. [Google Scholar] [CrossRef]
- Krenz, J.; Greenwood, P.; Kuhn, N.J. Soil degradation mapping in drylands using unmanned aerial vehicle (UAV) data. Soil Syst. 2019, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- d’Oleire-Oltmanns, S.; Marzoff, I.; Peter, K.D.; Ries, J.B. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens. 2012, 4, 3390–3416. [Google Scholar] [CrossRef] [Green Version]
Soil Property | Units | Rías Baixas | Ribeira Sacra |
---|---|---|---|
Bulk density | g cm−3 | 1.13 ± 0.02 | 1.23 ± 0.08 |
Fine fraction | % | 59.8 ± 0.3 | 58.3 ± 1.8 |
Coarse fraction | 40.2 ± 0.9 | 41.7 ± 1.8 | |
Sand | 54.2 ± 0.7 | 41.3 ± 2.9 | |
Silt | 22.3 ± 0.7 | 32.9 ± 2.0 | |
Clay | 23.5 ± 0.3 | 25.8 ± 1.7 | |
Organic matter | 4.06 ± 0.14 | 2.94 ± 0.27 | |
pH (H2O) | 5.84 ± 0.08 | 5.19 ± 0.19 | |
pH (KCl) | 5.27 ± 0.08 | 4.39 ± 0.20 | |
Effective cation exchange capacity | cmol(+) kg−1 | 8.50 ± 0.46 | 4.97 ± 0.72 |
Electrical conductivity | mS cm−1 | 149.1 ± 8.8 | 75.8 ± 12.0 |
Period | Treatment | Rainfall (mm) | Runoff (L m−2) | Sediment (kg ha−1) |
---|---|---|---|---|
First (12/06/2018–16/10/2018) | R-Slope | 109 | 4.58 | 13.3 |
I-NT | 4.41 | 19.7 | ||
I-ST | 5.59 | 22.5 | ||
Second (17/10/2018–21/01/2019) | R-Slope | 561 | 42.95 | 79.7 |
I-NT | 34.47 | 340.4 | ||
I-ST | 20.56 | 43.1 | ||
Third (22/01/2019–29/04/2019) | R-Slope | 459 | 29.05 | 153.5 |
I-NT | 31.56 | 298.4 | ||
I-ST | 32.16 | 198.2 | ||
R-Against | 55.19 | 151.7 | ||
Fourth (30/04/2019–29/08/2019) | R-Slope | 180 | 7.99 | 21.8 |
I-NT | 5.49 | 30.9 | ||
I-ST | 6.27 | 34.4 | ||
R-Against | 7.00 | 51.9 | ||
Total | R-Slope | 1310 | 84.57 | 268.3 |
I-NT | 75.93 | 689.4 | ||
I-ST | 64.58 | 298.2 | ||
R-Against | 639 | 62.19 | 203.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirás-Avalos, J.M.; Ramírez-Cuesta, J.M.; Fandiño, M.; Cancela, J.J.; Intrigliolo, D.S. Agronomic Practices for Reducing Soil Erosion in Hillside Vineyards under Atlantic Climatic Conditions (Galicia, Spain). Soil Syst. 2020, 4, 19. https://doi.org/10.3390/soilsystems4020019
Mirás-Avalos JM, Ramírez-Cuesta JM, Fandiño M, Cancela JJ, Intrigliolo DS. Agronomic Practices for Reducing Soil Erosion in Hillside Vineyards under Atlantic Climatic Conditions (Galicia, Spain). Soil Systems. 2020; 4(2):19. https://doi.org/10.3390/soilsystems4020019
Chicago/Turabian StyleMirás-Avalos, José M., Juan M. Ramírez-Cuesta, María Fandiño, Javier J. Cancela, and Diego S. Intrigliolo. 2020. "Agronomic Practices for Reducing Soil Erosion in Hillside Vineyards under Atlantic Climatic Conditions (Galicia, Spain)" Soil Systems 4, no. 2: 19. https://doi.org/10.3390/soilsystems4020019
APA StyleMirás-Avalos, J. M., Ramírez-Cuesta, J. M., Fandiño, M., Cancela, J. J., & Intrigliolo, D. S. (2020). Agronomic Practices for Reducing Soil Erosion in Hillside Vineyards under Atlantic Climatic Conditions (Galicia, Spain). Soil Systems, 4(2), 19. https://doi.org/10.3390/soilsystems4020019