Assessment of Soil Fertility under Different Land-Use Systems in Dhading District of Nepal
Abstract
:1. Introduction
2. Methodology
2.1. Study Area and Research Design
2.2. Soil Sampling Techniques
2.3. Soil Laboratory Analysis
3. Results and Discussion
3.1. Soil pH
3.2. Organic Matter (OM)
3.3. Total Nitrogen (N)
3.4. Available Phosphorus (P)
3.5. Available Potassium (K)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- AICC. Agriculture Information and Communication/Ministry of Agriculture, Land Management and Cooperatives. Hariharbhawan, Lalitpur, Nepal. Available online: http://www.aicc.gov.np/home/ (accessed on 27 May 2017).
- FAO. Healthy Soils Are the Basis for Healthy Food Production. Available online: http://www.fao.org/soils-2015/news/news-detail/en/c/277682/ (accessed on 22 May 2018).
- MOAD. Agriculture Development Strategy; Ministry of Agricultural Development: Kathmandu, Nepal, 2013.
- NPC. National Planning Commissions: “Nepal status paper—United Nations conference on sustainable development 2012 (Rio+ 20) synopsis”. In Proceedings of the United Nations Conference on Sustainable Development, Rio de Janeiro, Brazil, 20–22 June 2012. [Google Scholar]
- CBS. National Sample Census of Agriculture Nepal (2001/02); Central Bureau of Statistics: Kathmandu, Nepal, 2003.
- CBS. Compendium of Environment Statistics; Central Bureau of Statistics: Kathmandu, Nepal, 2016.
- Uddin, K.M.; Murthy, S.R.; Wahid, S.M.; Matin, M.A. Estimation of soil erosion dynamics in the Koshi basin using gis and remote sensing to assess priority areas for conservation. PLoS ONE 2016, 11, e0150494. [Google Scholar] [CrossRef] [PubMed]
- Panday, D. Adapting climate change in agriculture: The sustainable way in Nepalese context. Hydro Nepal J. Water Energy Environ. 2012, 11, 91–94. [Google Scholar] [CrossRef]
- Rijal, S.P. Soil fertility decline in Nepal: Problem and strategy. Nepal J. Sci. Technol. 2001, 3, 1. [Google Scholar]
- Acharya, A.K.; Kafle, N. Land degradation issues in Nepal and its management through agroforestry. J. Agric. Environ. 2009, 10, 133–143. [Google Scholar] [CrossRef]
- Deshar, B.D. An overview of agricultural degradation in Nepal and its impact on economy and environment. Glob. J. Econ. Soc. Dev. 2013, 3, 1–20. [Google Scholar]
- Paudel, B.; Pandit, J.; Reed, B. Fragmentation and Conversion of Agriculture Land in Nepal and Land Use Policy 2012. 2013. Available online: https://mpra.ub.uni-muenchen.de/58880/1/MPRA_paper_58880.pdf (accessed on 17 February 2018).
- Kennedy, C.M.; Hawthorne, P.L.; Miteva, D.A.; Baumgarten, L.; Sochi, K.; Matsumoto, M.; Evans, J.S.; Polasky, S.; Hamel, P.; Vieira, E.M.; et al. Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services. Biol. Conserv. 2016, 204, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Burgess, M. Soil Erosion Threatens Food Production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.N. National Workshop on Sustainable Soil Management Program; Soil Management Directorate: Lalitpur, Nepal, 2007.
- MOAD. Statistical Information on Nepalese Agriculture; Ministry of Agricultural Development, Monitoring, Evaluation and Statistics Division: Kathmandu, Nepal, 2017.
- Pandey, S.; Bhatta, N.P.; Paudel, P.; Pariyar, R.; Maskey, K.H.; Khadka, J.; Thapa, T.B.; Rijal, B.; Panday, D. Improving fertilizer recommendations for Nepalese farmers with the help of soil-testing mobile van. J. Crop Improv. 2018, 32, 19–32. [Google Scholar] [CrossRef]
- PMAMP. Project Prepared for Assisting the Implementation of Agriculture Development Strategy; Ministry of Agriculture Development and Cooperatives: Kathmandu, Nepal, 2016.
- Wright, A.L.; Dou, F.; Hons, F.M. Crop species and tillage effects on carbon sequestration in subsurface soil. Soil Sci. 2007, 172, 124–131. [Google Scholar] [CrossRef]
- Panday, D.; Maharjan, B. Yield response and ammonia volatilization in variably irrigated corn in western Nebraska. In Proceedings of Great Plains Soil Fertility Conference, Denver, CO, USA, 6–7 March 2018; Volume 17, pp. 162–168. [Google Scholar]
- Ye, R.; Wright, A.L.; Inglett, K.; Wang, Y.; Ogram, A.V.; Reddy, K.R. Land-Use Effects on Soil Nutrient Cycling and Microbial Community Dynamics in the Everglades Agricultural Area, Florida. Commun. Soil Sci. Plant Anal. 2009, 1, 2725–2742. [Google Scholar] [CrossRef]
- Panday, D.; Maharjan, B.; Chalise, D.; Shrestha, R.K.; Twanabasu, B. Digital Soil Mapping in the Bara District of Nepal using Kriging Tool in ArcGIS. PLoS ONE 2018. [Google Scholar] [CrossRef] [PubMed]
- Khatri-Chhetri, T.B. Introduction to Soils and Soil Fertility; Tribhuvan University Institute of Agricultural and Animal Science: Rampur, Chitwan, Nepal, 1991. [Google Scholar]
- McCauley, A.; Jones, C.; Jacobsen, J. Soil pH and organic matter. In Nutrient Management Module; Montana State University Extension: Bozeman, MT, USA, 2009; Volume 8. [Google Scholar]
- Pal, S.K. Textbook of Soil Science; Oxford and IBH Publishing Co. Pvt. Ltd.: New Delhi, India, 2016. [Google Scholar]
- Islam, K.R.; Weil, R.R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agric. Ecosyst. Environ. 2000, 79, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Yeshaneh, G.T. Effect of slope position on Soil Physico-Chemical properties with different management practices in Small Holder Cultivated Farms of Abuhoy Gara Catchment, Gidan District, North Wollo. Am. J. Environ. Prot. 2015, 3, 174–179. [Google Scholar]
- Harter, R.D. Acid Soils of the Tropics; Echo Tehnical Note: North Fort Myers, FL, USA, 2007; Available online: http://courses.umass.edu/psoil370/Syllabus-files/Acid_Soils_of_the_Tropics.pdf (accessed on 3 March 2018).
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soil, 12th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Diwakar, J.; Prasai, T.; Pant, S.R.; Jayana, B.L. Study on major pesticides and fertilizers used in Nepal. Sci. World 2008, 6, 76–80. [Google Scholar] [CrossRef]
- Bista, P. Effect of Different Land Use Systems and Management Practices in Soil Fertility Status of Nuwakot and Chitwan Valley; Unpublished Graduate Dissertation; Institute of Agriculture and Animal Sciences: Rampur, Nepal, 2010. [Google Scholar]
- Chauhan, R.P.; Pande, K.R.; Thakur, S. Soil properties affected by land use systems in Western Chitwan, Nepal. Int. J. Appl. Sci. Biotechnol. 2014, 2, 265–269. [Google Scholar] [CrossRef]
- Glanz, J. Saving Our Soil: Solutions for Sustaining Earth’s Vital Resource; Johnson Books: Chicago, IL, USA, 1995. [Google Scholar]
- Funderburg, E. Organic Matter Serves Important Role in Soil Health; Noble Research Institute: Ardmore, OK, USA, 2016. [Google Scholar]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. No. 80; Food and Agriculture Organization: Rome, Italy, 2005. [Google Scholar]
- Duguma, L.A.; Hager, H.; Sieghardt, M. Effects of land use types on soil chemical properties in smallholder farmers of central highland Ethiopia. Ekológia (Bratislava) 2010, 29, 1–14. [Google Scholar] [CrossRef]
- Yimer, F.; Ledin, S.; Abdelkadir, A. Changes in soil organic carbon and total nitrogen contents in three adjacent land use types in the Bale Mountains, south-eastern highlands of Ethiopia. For. Ecol. Manag. 2007, 242, 337–342. [Google Scholar] [CrossRef]
- Matsumoto, S.; Ae, N. Characteristics of extractable soil organic nitrogen determine using various chemical solutions and its significance for nitrogen uptake by crops. Soil Sci. Plant Nutr. 2004, 50, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Peng, C.; Wang, M.; Qiuan, Z.; Yang, Y.; Xi, T. A global meta-analysis of changes in soil carbon, nitrogen, phosphorus and sulfur, and stoichiometric shifts after forestation. Plant Soil 2016, 407, 323–340. [Google Scholar] [CrossRef]
- Li, D.; Niu, S.; Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytol. 2012, 195, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, W.L. Chemical Equilibria in Soils; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 1979. [Google Scholar]
- Thomason, W. Understanding Phosphorus Behavior in Soils; Noble Research Institute: Ardmore, OK, USA, 2002. [Google Scholar]
- Richardson, A.E.; Barea, J.M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Nelson, N.O.; Janke, R.R. Phosphorus sources and management in organic production systems. HortTechnology 2007, 17, 442–454. [Google Scholar]
- Pavinato, P.S.; Merlin, A.; Rosolem, C.A. Organic compounds from plant extracts and their effect on soil phosphorus availability. Pesqu. Agropecu. Bras. 2008, 43, 1379–1388. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, P. Soil Texture and pH Effects on Potassium and Phosphorus Availability; The potash Development Association: London, UK, 2015. [Google Scholar]
Land Use | Soil pH | OM (%) | Total N (%) | Available P (mg kg−1) | Available K (mg kg−1) |
---|---|---|---|---|---|
Grazing land | 5.17 b | 2.61 b | 0.14 b | 2.89 c | 36.80 d |
Forest land | 4.74 c | 3.55 a | 0.18 a | 4.15 c | 77.50 b |
Upland farm | 5.56 b | 1.26 d | 0.06 d | 39.89 a | 57 c |
Vegetable farm | 6.61 a | 2.49 b | 0.12 c | 41.07 a | 130.2 a |
Lowland farm | 5.4 b | 1.61 c | 0.06 d | 9.02 b | 43.2 d |
LSD (0.05) | 0.43 *** | 0.24 *** | 0.02 *** | 4.31 *** | 11.25 *** |
SEM (±) | 0.14 | 0.08 | 0.01 | 1.44 | 3.75 |
Grand Mean | 5.49 | 2.31 | 0.11 | 19.4 | 68.9 |
% CV | 5.8 | 7.7 | 13.3 | 16.6 | 12.2 |
Parameter | Total N | Available P | Available K | Soil pH |
---|---|---|---|---|
OM | 0.92 ** | −0.40 * | 0.27 | −0.15 |
Total N | −0.27 | 0.08 | −0.03 | |
Available P | 0.85 ** | 0.46 * | ||
Available K | 0.38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharal, S.; Khanal, B.R.; Panday, D. Assessment of Soil Fertility under Different Land-Use Systems in Dhading District of Nepal. Soil Syst. 2018, 2, 57. https://doi.org/10.3390/soilsystems2040057
Kharal S, Khanal BR, Panday D. Assessment of Soil Fertility under Different Land-Use Systems in Dhading District of Nepal. Soil Systems. 2018; 2(4):57. https://doi.org/10.3390/soilsystems2040057
Chicago/Turabian StyleKharal, Sudarshan, Babu Ram Khanal, and Dinesh Panday. 2018. "Assessment of Soil Fertility under Different Land-Use Systems in Dhading District of Nepal" Soil Systems 2, no. 4: 57. https://doi.org/10.3390/soilsystems2040057
APA StyleKharal, S., Khanal, B. R., & Panday, D. (2018). Assessment of Soil Fertility under Different Land-Use Systems in Dhading District of Nepal. Soil Systems, 2(4), 57. https://doi.org/10.3390/soilsystems2040057