Remote Sensing-Based and Participatory Analysis of Forests, Agricultural Land Dynamics, and Potential Land Conservation Measures in Kloto District (Togo, West Africa)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Analysis
3. Results
3.1. Net Change Analysis
3.2. Current Local Farming and Cropping Systems in a Changing Climate
3.3. Local Willingness to Adopt Integrated Soil and Water Conservation (SWC) Practices
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, X. Soil Degradation through Agriculture in China: Its Extent, Impacts and Implications for Environmental Law Reform. In International Yearbook of Soil Law and Policy; Springer: Cham, Switzerland, 2017; pp. 37–63. [Google Scholar]
- Cramer, W.; Bondeau, A.; Schaphoff, S.; Lucht, W.; Smith, B.; Sitch, S. Tropical forests and the global carbon cycle: Impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, G.R.; Morton, D.C.; DeFries, R.S.; Olivier, J.G.; Kasibhatla, P.S.; Jackson, R.B.; Collatz, G.J.; Randerson, J.T. CO2 emissions from forest loss. Nat. Geosci. 2009, 2, 737–738. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Moomen, A.W.; Dewan, A.; Corner, R. Landscape assessment for sustainable resettlement of potentially displaced communities in Ghana’s emerging northwest gold province. J. Clean. Prod. 2016, 133, 701–711. [Google Scholar] [CrossRef]
- Tegegne, Y.T.; Lindner, M.; Fobissie, K.; Kanninen, M. Evolution of drivers of deforestation and forest degradation in the Congo Basin forests: Exploring possible policy options to address forest loss. Land Use Policy 2016, 5, 1312–1324. [Google Scholar] [CrossRef]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Houghton, R. Tropical deforestation as a source of greenhouse gas emissions. In Tropical Deforestation and Climate Change; Instituto de Pesquisa Ambiental da Amazônia: Belém, Brazil, 2005. [Google Scholar]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2007, 2, 045023. [Google Scholar] [CrossRef]
- Wunder, S.; Kaphengst, T.; Frelih-Larsen, A. Implementing land degradation neutrality (SDG 15.3) at national level: General approach, indicator selection and experiences from Germany. In International Yearbook of Soil Law and Policy; Springer: Cham, Switzerland, 2017; pp. 191–219. [Google Scholar]
- Koglo, Y.S. Land Use Transition and Cropland Degradation on Forest Sustainability, Smallholders Economic and Food Self-Sufficiency under Current and Future Climate Change Scenarios in the Soudan and Guinea Savannah Zone (Togo, West Africa). Ph.D. Thesis, KNUST, Kumasi, Ghana, 2018. [Google Scholar]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Rawat, J.S.; Kumar, M. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2015, 18, 77–84. [Google Scholar] [CrossRef]
- Rawat, J.S.; Biswas, V.; Kumar, M. Changes in land use/cover using geospatial techniques-A case study of Ramnagar town area, district Nainital, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2013, 16, 111–117. [Google Scholar] [CrossRef]
- Folega, F.; Zhang, C.; Zhao, X.; Wala, K.; Batawila, K.; Huang, H.G.; Dourma, M.; Akpagana, K. Satellite monitoring of land-use and land-cover changes in northern Togo protected areas. J. Forestry Res. 2014, 25, 385–392. [Google Scholar] [CrossRef]
- Badjana, H.M.; Selsam, P.; Wala, K.; Flügel, W.A.; Fink, M.; Urban, M.; Helmschrot, J.; Afouda, A.; Akpagana, K. Assessment of land-cover changes in a sub-catchment of the Oti basin (West Africa): A case study of the Kara River basin. Zentralblatt Geologie Paläontologie Teil I 2014, 1, 151–170. [Google Scholar] [CrossRef]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef]
- Dimobe, K.; Ouédraogo, A.; Soma, S.; Goetze, D.; Porembski, S.; Thiombiano, A. Identification of driving factors of land degradation and deforestation in the Wildlife Reserve of Bontioli (Burkina Faso, West Africa). Glob. Ecol. Conserv. 2015, 4, 559–571. [Google Scholar] [CrossRef]
- Pontius, R.G.; Shusas, E.; Mceachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Aloô, C.A.; Pontius, R.G., Jr. Identifying systematic land-cover transitions using remote sensing and GIS: The fate of forests inside and outside protected areas of Southwestern Ghana. Environ. Plan. 2008, 35, 280–296. [Google Scholar] [CrossRef]
- Gao, Y.; Pontius, R.G., Jr.; Giner, N.M.; Kohyama, T.S.; Osaki, M.; Hirose, K. Land Change Analysis from 2000 to 2004 in Peatland of Central Kalimantan, Indonesia Using GIS and an Extended Transition Matrix. In Tropical Peatland Ecosystems; Springer: Tokyo, Japan, 2016; pp. 433–443. [Google Scholar]
- Diwediga, B.; Agodzo, S.; Wala, K.; Le, Q.B. Assessment of multifunctional landscapes dynamics in the mountainous basin of the Mo River (Togo, West Africa). J. Geogr. Sci. 2017, 27, 579–605. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Sall, I.; Sy, O. People and pixels in the Sahel: A study linking coarse-resolution remote sensing observations to land users’ perceptions of their changing environment in Senegal. Ecol. Soc. 2014, 19, 29. [Google Scholar] [CrossRef]
- Liverman, D.M.; Cuesta, R.M.R. Human interactions with the earth system: People and pixels revisited. Earth Surf. Process. Landf. 2008, 33, 1458–1471. [Google Scholar] [CrossRef]
- FAO. Guidelines for Land-Use Planning; FAO Development Series 1; FAO: Rome, Italy, 1993; Available online: www.fao.org/ docrep/t0715e/t0715e00.htm (accessed on 12 May 2018).
- FAO. Global Forest Resources Assessment 2010; FAO: Rome, Italy, 2010; Available online: www.fao.org/docrep/013/i1757e/i1757e.pdf (accessed on 12 May 2018).
- FAO. State of the World’s Forests 2016. Forests and Agriculture: Land-Use Challenges and Opportunities; FAO: Rome, Italy, 2016; p. 126. [Google Scholar]
- IPCC. Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006; Available online: www.ipcc.org (accessed on 20 February 2018).
- Kissinger, G.; Herold, M.; de Sy, V. Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+ Policymakers; Lexeme Consulting: Vancouver, BC, Canada, 2012; 48p. [Google Scholar]
- Moomen, A.W.; Dewan, A. Assessing the spatial relationships between mining and land degradation: Evidence from Ghana. Int. J. Min. Reclam. Environ. 2017, 31, 505–518. [Google Scholar] [CrossRef]
- Callo-Concha, D.; Gaiser, T.; Webber, H.; Tischbein, B.; Müller, M.; Ewert, F. Farming in the West African Sudan Savanna: Insights in the context of climate change. Afr. J. Agric. Res. 2013, 8, 4693–4705. [Google Scholar] [CrossRef]
Land Use Land Cover Type | Definition | Source |
---|---|---|
Forest | Areas covered with original vegetation of different tree species of a minimum height of 5 m at maturity and 30% maximum crown cover with 0.5 ha minimum area spanning. | [29] |
Cocoa agroforestry | Perennial arable and tillable land of mixing cocoa, trees and other crops (plantains) under conventional and family cropping systems. | Authors’ definitions |
Cassava | Annual/perennial arable and tillable land of local or improved cassava under conventional and family cropping systems. | |
Maize | Annually tilled lands for cropping improved maize varieties (Ikenne or Obatanpa) under conventional family cropping systems. | |
Settlement | Areas covered with human habitations where tree cover is negligible. | |
Other | Places occupied by, e.g., road, water. |
1985 | 2002 | 2017 | ||||
---|---|---|---|---|---|---|
Km2 | % | km2 | % | km2 | % | |
Unclassified | 0.54 | 0.10 | 0.75 | 0.14 | 0.72 | 0.14 |
Settlement | 8.29 | 1.57 | 11.24 | 2.13 | 49.89 | 9.44 |
Cassava | 75.03 | 14.37 | 54.76 | 10.37 | 279.85 | 52.98 |
Maize | 84.46 | 15.96 | 49.42 | 9.36 | 15.86 | 3.00 |
Cocoa agroforestry | 133.52 | 25.23 | 266.14 | 50.38 | 80.16 | 15.18 |
Forest | 226.37 | 42.78 | 145.92 | 27.62 | 101.74 | 19.26 |
Total | 528.21 | 100.00 | 528.23 | 100.00 | 528.22 | 100.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koglo, Y.S.; Agyare, W.A.; Diwediga, B.; Sogbedji, J.M.; Adden, A.K.; Gaiser, T. Remote Sensing-Based and Participatory Analysis of Forests, Agricultural Land Dynamics, and Potential Land Conservation Measures in Kloto District (Togo, West Africa). Soil Syst. 2018, 2, 49. https://doi.org/10.3390/soilsystems2030049
Koglo YS, Agyare WA, Diwediga B, Sogbedji JM, Adden AK, Gaiser T. Remote Sensing-Based and Participatory Analysis of Forests, Agricultural Land Dynamics, and Potential Land Conservation Measures in Kloto District (Togo, West Africa). Soil Systems. 2018; 2(3):49. https://doi.org/10.3390/soilsystems2030049
Chicago/Turabian StyleKoglo, Yawovi S., Wilson A. Agyare, Badabate Diwediga, Jean M. Sogbedji, Ayi K. Adden, and Thomas Gaiser. 2018. "Remote Sensing-Based and Participatory Analysis of Forests, Agricultural Land Dynamics, and Potential Land Conservation Measures in Kloto District (Togo, West Africa)" Soil Systems 2, no. 3: 49. https://doi.org/10.3390/soilsystems2030049
APA StyleKoglo, Y. S., Agyare, W. A., Diwediga, B., Sogbedji, J. M., Adden, A. K., & Gaiser, T. (2018). Remote Sensing-Based and Participatory Analysis of Forests, Agricultural Land Dynamics, and Potential Land Conservation Measures in Kloto District (Togo, West Africa). Soil Systems, 2(3), 49. https://doi.org/10.3390/soilsystems2030049