Ecophysiological and Biochemical Adaptation of Thymus saturejoides to Contrasting Soil Conditions in the Western High Atlas Under Climate Change
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Analysis
2.3. Collectoin of Plant Samples
2.4. Physiological Measurement
2.4.1. Water Content Assessment
2.4.2. Chlorophyll Pigments Content
2.5. Proteins, Soluble Sugar and Proline Content
2.6. Lipid Peroxidation and Hydrogen Peroxide Content
2.7. Antioxidant Enzymes Activities
2.8. Data Analysis
3. Results
3.1. Soil Characteristics
3.2. Physiological Responses
3.2.1. Water Content in the Plant
3.2.2. Chlorophyll Pigment Content
3.3. Proteins, Soluble Sugar and Proline Content
3.4. Hydrogen Peroxide and Malondialdehyde Levels
3.5. Antioxidant Enzyme Content
3.6. Principal Component Analysis and Heat Mapping
4. Discussion
4.1. Influence of Pedo-Climatic Constraints on T. saturejoides in the Western High Atlas
4.2. Soil Physico-Chemical Variability and Nutrient Availability Across Sites
4.3. Soil Texture and Water Availability as Drivers of Plant Water Status
4.4. Effects of Soil Properties on Photosynthetic Pigments and Physiological Performance
4.5. Biochemical Stress Responses Induced by Soil Constraints
4.6. Antioxidant Defense Systems Under Contrasting Edaphic Conditions
4.7. Ecological Implications for Adaptability and Conservation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| A | Clay |
| AP | Available phosphorus |
| C/N | carbon nitrogen ratio |
| Car | Carotenoid |
| Chl a | Chlorophyll a |
| Chl b | Chlorophyll b |
| EC | Electrical conductivity |
| HCA | Hierarchical clustering analysis |
| L | silt |
| MDA | Malondialdehyde |
| PCA | Principal Component Analysis |
| POX | peroxidase |
| PPO | Polyphenol Oxidase |
| Pro | Proline |
| S | Sand |
| SF | Sti Fadma |
| SP | Soluble protein |
| T Chl | Total chlorophyll |
| TA | Taouss |
| TKN | Total Kjeldahl nitrogen |
| TM | Tidili msfioua |
| TN | Tisi ntast |
| TOC | Total organic carbon |
| TOM | Total organic matter |
| TSS | Total soluble sugar |
| WC | Water content in plant |
References
- Amante, G.; Wedajo, M. Impacts of Climate change on soil microbial diversity, distribution and abundance. Int. J. Food Agric. Nat. Resour. 2024, 5, 158–168. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Aderdour, N.; Rhinane, H.; Buerkert, A. Vegetation Cover Dynamics in the High Atlas Mountains of Morocco. Remote Sens. 2023, 15, 1366. [Google Scholar] [CrossRef]
- Montanari, B. Aromatic, medicinal plants and vulnerability of traditional herbal knowledge in a berber community of the high atlas mountains of Morocco. Plant Divers. Resour. 2014, 36, 388–402. [Google Scholar]
- Taleb, M.S. Aromatic and medicinal plants in Morocco: Diversity and socio-economic role. Int. J. Agric. Biosyst. Eng. 2017, 11, 812–816. [Google Scholar]
- Nassif, F.; Tanji, A. Conserving plant diversity: An opportunity for the 21st century for Morocco. In Environmental, Social and Economic Issues of the 21st Century; Nova Science Publishers: Hauppauge, NY, USA, 2017; Volume 1. [Google Scholar]
- Elgadi, S.; Zine, H.; Dallahi, Y.; Ouhammou, A. Unveiling floristic diversity in the High Atlas: Insights from a protected reserve in a global Mediterranean biodiversity hotspot. Biosyst. Divers. 2024, 32, 416–425. [Google Scholar] [CrossRef]
- Oublid, H.; Ait Hamza, M.; Boubaker, H.; El Hamdaoui, A.; El Yaagoubi, M.; Abbad, I.; El Moutaouakil, M.; Msanda, F. Effect of temperature, pretreatments, gibberellin (GA3), salt and drought stress on germination of Thymus satureioides coss of Morocco. J. Appl. Res. Med. Aromat. Plants 2024, 38, 100524. [Google Scholar] [CrossRef]
- Benabid, A. Flore et Écosystèmes du Maroc: Evaluation et Préservation de la Biodiversité; Société Française d’Ethnopharmacologie: Metz, France, 2000. [Google Scholar]
- Chaachouay, N.; Douira, A.; Zidane, L. Herbal Medicine Used in the Treatment of Human Diseases in the Rif, Northern Morocco. Arab. J. Sci. Eng. 2021, 47, 131–153. [Google Scholar] [CrossRef]
- Hayat, J.; Mustapha, A.; Abdelmajid, M.; Mourad, B.; Ali, S.; Said, E.; Saadia, B. Ethnobotanical survey of medicinal plants growing in the region of “Oulad Daoud Zkhanine”(Nador Province), in Northeastern Morocco. Ethnobot. Res. Appl. 2020, 19, 1–12. [Google Scholar]
- Fadili, K.; Sekkate, C.; Alistiqsa, F.; Haloui, Z.; Chakir, S.; Zair, T. Ethnobotanical study of medicinal plants from Er-Rich region (Moroccan high atlas). Adv. Environ. Biol. 2017, 11, 27–41. [Google Scholar]
- Abouri, M.; El Mousadik, A.; Msanda, F.; Boubaker, H.; Saadi, B.; Cherifi, K. An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. Int. J. Med. Plants Res. 2012, 1, 99–123. [Google Scholar]
- Kasrati, A.; Jamali, C.A.; Bekkouche, K.; Wohlmuth, H.; Leach, D.; Abbad, A. Comparative evaluation of antioxidant and insecticidal properties of essential oils from five Moroccan aromatic herbs. J. Food Sci. Technol. 2015, 52, 2312–2319. [Google Scholar] [CrossRef] [PubMed]
- El Asbahani, A.; Jilale, A.; Voisin, S.N.; Aït Addi, E.H.; Casabianca, H.; El Mousadik, A.; Hartmann, D.J.; Renaud, F.N.R. Chemical composition and antimicrobial activity of nine essential oils obtained by steam distillation of plants from the Souss-Massa Region (Morocco). J. Essent. Oil Res. 2015, 27, 34–44. [Google Scholar] [CrossRef]
- El-Bakkal, S.E.; Zeroual, S.; Elouazkiti, M.; Mansori, M.; Bouamama, H.; Zehhar, N.; El-Kaoua, M. Comparison of yield chemical composition and biological activities of essential oils obtained from thymus pallidus and thymus satureioides Coss. grown in wild and cultivated conditions in Morocco. J. Essent. Oil Bear. Plants 2020, 23, 1–14. [Google Scholar] [CrossRef]
- Boubaker, H.; Karim, H.; El-Hamdaoui, A.; Msanda, F.; Leach, D.; Bombarda, I.; Vanloot, P.; Abbad, A.; Boudyach, E.H.; Aoumar, A.A.B. Chemical characterization and antifungal activities of four Thymus species essential oils against postharvest fungal pathogens of citrus. Ind. Crops Prod. 2016, 86, 95–101. [Google Scholar] [CrossRef]
- Kasrati, A.; Jamali, C.A.; Fadli, M.; Bekkouche, K.; Hassani, L.; Wohlmuth, H.; Leach, D.; Abbad, A. Antioxidative activity and synergistic effect of Thymus saturejoides Coss. essential oils with cefixime against selected food-borne bacteria. Ind. Crops Prod. 2014, 61, 338–344. [Google Scholar] [CrossRef]
- Maimouni, S.; Daghor, L.; Oukassou, M.; Moutaki, S.E.; Lhissou, R. Evaluate the effect of topographic factors and lithology on forest cover distribution: A case study of the Moroccan high atlas. Environ. Model. Assess. 2021, 26, 787–801. [Google Scholar] [CrossRef]
- El Yaagoubi, M.; Mechqoq, H.; El Hamdaoui, A.; Mukku, V.J.; El Mousadik, A.; Msanda, F.; El Aouad, N. A review on Moroccan Thymus species: Traditional uses, essential oils chemical composition and biological effects. J. Ethnopharmacol. 2021, 278, 114205. [Google Scholar] [CrossRef]
- Perrino, E.V.; Valerio, F.; Jallali, S.; Trani, A.; Mezzapesa, G.N. Ecological and Biological Properties of Satureja cuneifolia Ten. and Thymus spinulosus Ten.: Two Wild Officinal Species of Conservation Concern in Apulia (Italy). A Preliminary Survey. Plants 2021, 10, 1952. [Google Scholar] [CrossRef]
- Ouarghidi, A.; Abbad, I.; Mfuni, T. Factors Shaping Phenotypic Variation in Thymus saturejoides. Plants 2025, 14, 1772. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, I.; Fahsi, N.; Annaz, H.; Drissi, B.; Barakate, M. Thymus satureioides Coss.: Mineral Composition, Nutritional Value, Phytochemical Profiling, and Dermatological Properties. Molecules 2023, 28, 4636. [Google Scholar] [CrossRef] [PubMed]
- Halat, D.H.; Krayem, M.; Khaled, S. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022, 14, 2104. [Google Scholar] [CrossRef]
- Ayt Ougougdal, H.; Yacoubi Khebiza, M.; Messouli, M.; Lachir, A. Assessment of future water demand and supply under IPCC climate change and socio-economic scenarios, using a combination of models in Ourika Watershed, High Atlas, Morocco. Water 2020, 12, 1751. [Google Scholar] [CrossRef]
- Sparks, A.; White, T.; Stackhouse, P. POWER Data Access Viewer 2024. NASA Langley Research Center. Available online: https://power.larc.nasa.gov (accessed on 25 April 2025).
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa Region; ICARDA: Beirut, Lebanon, 2013; Volume 3, pp. 65–119. [Google Scholar]
- Aubert, G. Methodes D’analyses des Sols: Documents de Travail Tous Droits Reserves; Centre Régional de Documentation Pédagogique: Lyon, France, 1978. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Agronomy Monograph; Wiley: Hoboken, NJ, USA, 1982; pp. 421–422. [Google Scholar]
- Kjeldahl, J. New method for the determination of nitrogen. Chem. News 1883, 48, 101–102. [Google Scholar] [CrossRef]
- Kramer, P.J.; Boyer, J.S. Water Relations of Plants and Soils; Academic Press: London, UK, 1995. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Dubois, M.K. Use of phenol reagent for the determination of total sugar. Anal. Chem. 1956, 28, 350. [Google Scholar] [CrossRef]
- Carillo, P.; Mastrolonardo, G.; Nacca, F.; Parisi, D.; Verlotta, A.; Fuggi, A. Nitrogen metabolism in durum wheat under salinity: Accumulation of proline and glycine betaine. Funct. Plant Biol. 2008, 35, 412–426. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Gauillard, F.; Richardforget, F.; Nicolas, J. New spectrophotometric assay for polyphenol oxidase activity. Anal. Biochem. 1993, 215, 59–65. [Google Scholar] [CrossRef]
- Polle, A.; Otter, T.; Seifert, F. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 1994, 106, 53–60. [Google Scholar] [CrossRef]
- El-Ghazouani, F.; Boukhanfer, R.; Yacoubi, B.; Zekhnini, A. Ethnobotanical study of medicinal plants used in the rural area of the Western High Atlas (Morocco). Ethnobot. Res. Appl. 2024, 29, 1–26. [Google Scholar] [CrossRef]
- Ouhaddou, R.; Ech-chatir, L.; Ikan, C.; Soussani, F.E.; Errouh, F.; Boutasknit, A.; Rodrigez, J.C.; Er-Raki, S.; Duponnois, R.; Meddich, A. Investigation of the impact of dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on drought tolerance of maize grown in a compost-amended field under Mediterranean conditions. Front. Microbiol. 2024, 15, 1432637. [Google Scholar] [CrossRef]
- Noroozisharaf, A.; Kaviani, M. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiol. Mol. Biol. Plants 2018, 24, 423–431. [Google Scholar] [CrossRef]
- Vasil, I.E.; Shabanova, E.V.; Tsagaan, B. applied sciences Elemental Profiles of Wild Thymus L. Plants Growing in Different Soil and Climate Conditions. Appl. Sci. 2022, 12, 3094. [Google Scholar] [CrossRef]
- Clarholm, M.; Skyllberg, U. Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils. Soil Biol. Biochem. 2013, 63, 142–153. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Vogt, R.D.; Mulder, J.; Wang, Y.; Qian, C.; Wang, J.; Zhang, X. Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands. Geoderma 2020, 366, 114234. [Google Scholar] [CrossRef]
- Vaičiulytė, V.; Ložienė, K.; Sivicka, I. Effect of Organic Matter Fertilizers on the Composition of Volatiles, Morphometrical and Anatomical Parameters of Essential Oil-Bearing Thymus × citriodorus Cultivated in an Open Field Conditions. Horticulturae 2022, 8, 917. [Google Scholar] [CrossRef]
- Ismail, S.M.; Almulhim, N.; Sedky, A.; El-Cossy, S.A.-N.; Mahmoud, E. Impact of Soil Ameliorants on Soil Chemical Characteristics, Sugar Beet Water Productivity, and Yield Components in Sandy Soils Under Deficit Irrigation. Sustainability 2025, 17, 1513. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, J.; Hui, D.; Li, J.; Yao, X.; Zhang, D. Science of the Total Environment Soil acidification suppresses phosphorus supply through enhancing organomineral association. Sci. Total Environ. 2023, 905, 167105. [Google Scholar] [CrossRef]
- Lacour, S.; Deluchat, V.; Bollinger, J.-C.; Serpaud, B. Complexation of trivalent cations (Al (III), Cr (III), Fe (III)) with two phosphonic acids in the pH range of fresh waters. Talanta 1998, 46, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Martín, M.; Baigorri, R.; Rubio-Gracia, S.; García, R.; San Francisco, S.; Caballero, M.; Atarés, S. Single Superphosphate-P Fractions Influence Bacterial Communities in Wheat Rhizosphere Soil Under Microcosm Conditions. Eur. J. Soil Sci. 2025, 76, e70096. [Google Scholar] [CrossRef]
- Gowthaman, S.; Yamamoto, M.; Nakashima, K.; Ivanov, V. Calcium phosphate biocement using bone meal and acid urease: An eco-friendly approach for soil improvement. J. Clean. Prod. 2021, 319, 128782. [Google Scholar] [CrossRef]
- Yang, J.; Masoudi, A.; Li, H.; Gu, Y.; Wang, C.; Wang, M.; Wu, C.; Liu, Y.; Zhao, X.; Yu, Z. Soil total nitrogen mediated the impact of climatic factors on urban soil organic matter under different land uses. J. Soil Sci. Plant Nutr. 2024, 24, 5487–5504. [Google Scholar] [CrossRef]
- Salangsang, M.C.D.; Sekine, M.; Akizuki, S.; Sakai, H.D.; Kurosawa, N.; Toda, T. Effect of carbon to nitrogen ratio of food waste and short resting period on microbial accumulation during anaerobic digestion. Biomass Bioenergy 2022, 162, 106481. [Google Scholar] [CrossRef]
- Van Peteghem, L.; Sakarika, M.; Matassa, S.; Rabaey, K. The role of microorganisms and carbon-to-nitrogen ratios for microbial protein production from bioethanol. Appl. Environ. Microbiol. 2022, 88, e01188-22. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, R.; Wang, X.; Xu, X.; Ai, C.; He, P.; Liang, G.; Zhou, W.; Zhu, P. Effect of high soil C/N ratio and nitrogen limitation caused by the long-term combined organic-inorganic fertilization on the soil microbial community structure and its dominated SOC decomposition. J. Environ. Manag. 2022, 303, 114155. [Google Scholar] [CrossRef]
- Guan, H.L.; Fan, J.W.; Lu, X. Soil specific enzyme stoichiometry reflects nitrogen limitation of microorganisms under different types of vegetation restoration in the karst areas. Appl. Soil Ecol. 2022, 169, 104253. [Google Scholar] [CrossRef]
- Simonneaux, V.; Cheggour, A.; Deschamps, C.; Mouillot, F.; Cerdan, O.; Le Bissonnais, Y. Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco). J. Arid Environ. 2015, 122, 64–75. [Google Scholar] [CrossRef]
- Ding, S.J.; Zhang, X.F.; Yang, W.L.; Xin, X.L.; Zhu, A.N.; Huang, S.M. Soil nutrients and aggregate composition of four soils with contrasting textures in a long-term experiment. Eurasian Soil Sci. 2021, 54, 1746–1755. [Google Scholar] [CrossRef]
- Pandao, M.R.; Thakare, A.A.; Choudhari, R.J.; Navghare, N.R.; Sirsat, D.D.; Rathod, S.R. Soil health and nutrient management. Int. J. Plant Soil Sci. 2024, 36, 873–883. [Google Scholar] [CrossRef]
- Huntley, B.J. Soil, water and nutrients. In Ecology of Angola: Terrestrial Biomes and Ecoregions; Springer: Berlin/Heidelberg, Germany, 2023; pp. 127–147. [Google Scholar]
- Ding, S.; Xin, X.; Yang, W.; Zhang, X.; Zhu, A.; Huang, S.; Yang, J.; Ren, G.; Li, M. Transformation of fertilizer nitrogen in fluvo-aquic soils with different textures and its influencing factors. Plant Soil 2022, 471, 541–558. [Google Scholar] [CrossRef]
- Kuśmierz, S.; Skowrońska, M.; Tkaczyk, P.; Lipiński, W.; Mielniczuk, J. Soil organic carbon and mineral nitrogen contents in soils as affected by their pH, texture and fertilization. Agronomy 2023, 13, 267. [Google Scholar] [CrossRef]
- Ye, C.; Zheng, G.; Tao, Y.; Xu, Y.; Chu, G.; Xu, C.; Chen, S.; Liu, Y.; Zhang, X.; Wang, D. Effect of soil texture on soil nutrient status and rice nutrient absorption in paddy soils. Agronomy 2024, 14, 1339. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Shao, L.; Qin, F.; Yang, J.; Gu, H.; Zhai, P.; Pan, X. Effects of organic fertilizers on yield, soil physico-chemical property, soil microbial community diversity and structure of Brassica rapa var. Chinensis. Front. Microbiol. 2023, 14, 1132853. [Google Scholar] [CrossRef] [PubMed]
- Ikan, C.; Soussani, F.; Ouhaddou, R.; Ech-Chatir, L.; Errouh, F.; Boutasknit, A.; Assouguem, A.; Ali, E.A.; Ullah, R.; Ait Barka, E.; et al. Use of Biofertilizers as an Effective Management Strategy to Improve the Photosynthetic Apparatus, Yield, and Tolerance to Drought Stress of Drip-Irrigated Wheat in Semi-Arid Environments. Agronomy 2024, 14, 1316. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Jat, H.S.; Choudhary, M.; Abdelaty, E.F.; Sharma, P.C.; Jat, M.L. Conservation agriculture effects on soil water holding capacity and water-saving varied with management practices and agroecological conditions: A Review. Agronomy 2021, 11, 1681. [Google Scholar] [CrossRef]
- Santos, J.A.; Gonzaga, M.I.S.; dos Santos, W.M.; da Silva, A.J. Water retention and availability in tropical soils of different textures amended with biochar. Catena 2022, 219, 106616. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, S. Soil structure and plant growth. In Soil Physical Environment and Plant Growth: Evaluation and Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 125–154. [Google Scholar]
- Benaffari, W.; Boutasknit, A.; Anli, M.; Ait-El-mokhtar, M.; Ait-Rahou, Y.; Ben-Laouane, R.; Ben Ahmed, H.; Mitsui, T.; Baslam, M.; Meddich, A. The Native Arbuscular Mycorrhizal Fungi and Vermicompost-Based Organic Amendments Enhance Soil Fertility, Growth Performance, and the Drought Stress Tolerance of Quinoa. Plants 2022, 11, 393. [Google Scholar] [CrossRef]
- Ouhaddou, R.; Ech-chatir, L.; Anli, M.; Ben-Laouane, R.; Boutasknit, A.; Meddich, A. Secondary Metabolites, Osmolytes and Antioxidant Activity as the Main Attributes Enhanced by Biostimulants for Growth and Resilience of Lettuce to Drought Stress. Gesunde Pflanz. 2023, 75, 1737–1753. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Dong, J.-Y.; Cheng, X.-F.; Fu, T.-R.; Ding, J.-L.; Fan, X.-L. Determination of chlorophyll a and b using absorption spectrum. Guang Pu Xue Yu Guang Pu Fen Xi 2008, 28, 141–144. [Google Scholar] [PubMed]
- Bouain, N.; Cho, H.; Sandhu, J.; Tuiwong, P.; Prom-u-thai, C.; Zheng, L.; Shahzad, Z.; Rouached, H. Plant Growth Stimulation by High CO2 Depends on Phosphorus Homeostasis in Chloroplasts. Curr. Biol. 2022, 32, 4493–4500.e4. [Google Scholar] [CrossRef]
- Chiyaneh, E.R.; Mahdavikia, H.; Alipour, H.; Dolatabadian, A.; Battaglia, M.L.; Maitra, S.; Harrison, M.T. Biostimulants alleviate water deficit stress and enhance essential oil productivity: A case study with savory. Sci. Rep. 2023, 13, 720. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.C.; Al-Babili, S. Are carotenoids the true colors of crop improvement? New Phytol. 2022, 237, 1946–1950. [Google Scholar] [CrossRef]
- Fathi, A. Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: A review. Agrisost 2022, 28, 1–8. [Google Scholar]
- Chen, L.-H.; Xu, M.; Cheng, Z.; Yang, L.-T. Effects of nitrogen deficiency on the photosynthesis, chlorophyll a fluorescence, antioxidant system, and sulfur compounds in Oryza sativa. Int. J. Mol. Sci. 2024, 25, 10409. [Google Scholar] [CrossRef]
- Muhammad, I.; Yang, L.; Ahmad, S.; Farooq, S.; Al-Ghamdi, A.A.; Khan, A.; Zeeshan, M.; Elshikh, M.S.; Abbasi, A.M.; Zhou, X.-B. Nitrogen fertilizer modulates plant growth, chlorophyll pigments and enzymatic activities under different irrigation regimes. Agronomy 2022, 12, 845. [Google Scholar] [CrossRef]
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef] [PubMed]
- Maslova, T.G.; Markovskaya, E.F.; Slemnev, N.N. Functions of carotenoids in leaves of higher plants. Biol. Bull. Rev. 2021, 11, 476–487. [Google Scholar] [CrossRef]
- Dewanjee, S.; Bhattacharjee, N.; Chakraborty, P.; Bhattacharjee, S. Carotenoids as antioxidants. In Carotenoids: Structure and Function in the Human Body; Springer: Berlin/Heidelberg, Germany, 2021; pp. 447–473. [Google Scholar]
- Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors 2022, 48, 611–633. [Google Scholar] [CrossRef]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef]
- Swapnil, P.; Meena, M.; Singh, S.K.; Dhuldhaj, U.P.; Marwal, A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Curr. Plant Biol. 2021, 26, 100203. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Liu, H.; Chen, S.; uz Zaman, Q.; Rehman, M.; El-Kahtany, K.; Fahad, S.; Deng, G.; Yang, J. Variability in morpho-biochemical, photosynthetic pigmentation, enzymatic and quality attributes of potato for salinity stress tolerance. Plant Physiol. Biochem. 2023, 203, 108036. [Google Scholar] [CrossRef]
- Li, W.; Meng, R.; Liu, Y.; Chen, S.; Jiang, J.; Wang, L.; Zhao, S.; Wang, Z.; Fang, W.; Chen, F. Heterografted chrysanthemums enhance salt stress tolerance by integrating reactive oxygen species, soluble sugar, and proline. Hortic. Res. 2022, 9, uhac073. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, M.; Turkyilmaz Unal, B.; García-Caparrós, P.; Khursheed, A.; Gul, A.; Hasanuzzaman, M. Osmoregulation and its actions during the drought stress in plants. Physiol. Plant. 2021, 172, 1321–1335. [Google Scholar] [CrossRef] [PubMed]
- Kesawat, M.S.; Satheesh, N.; Kherawat, B.S.; Kumar, A.; Kim, H.-U.; Chung, S.-M.; Kumar, M. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules—Current perspectives and future directions. Plants 2023, 12, 864. [Google Scholar] [CrossRef] [PubMed]
- Hosseinifard, M.; Stefaniak, S.; Ghorbani Javid, M.; Soltani, E.; Wojtyla, Ł.; Garnczarska, M. Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. Int. J. Mol. Sci. 2022, 23, 5186. [Google Scholar] [CrossRef]
- Mohammadi, M.A.; Cheng, Y.; Aslam, M.; Jakada, B.H.; Wai, M.H.; Ye, K.; He, X.; Luo, T.; Ye, L.; Dong, C. ROS and oxidative response systems in plants under biotic and abiotic stresses: Revisiting the crucial role of phosphite triggered plants defense response. Front. Microbiol. 2021, 12, 631318. [Google Scholar] [CrossRef]







| Sites | Longitude | Latitude | Altitude (m) |
|---|---|---|---|
| TM | 31°26′42.0″ N | 7°36′00.0″ W | 1232 |
| SF | 31°16′41.85″ N | 7°41′29.57″ W | 1342 |
| TA | 30°57′04.9″ N | 8°15′43.5″ W | 1336 |
| TN | 30°51′53.9″ N | 8°22′43.0″ W | 2155 |
| PH | EC (dS/m) | TOC (mg/g) | AP (ppm) | TKN (%) | C/N | Texture | |
|---|---|---|---|---|---|---|---|
| TM | 6.93 ± 0.14 b | 0.13 ± 0.01b c | 2.20 ± 0.20 b | 16.65 ± 2.56 b | 0.09 ± 0.00 d | 24.4 | Sandy-silty |
| SF | 6.89 ± 0.02 b | 0.10 ± 0.01 c | 2.43 ± 0.00 b | 14.89 ± 0.25 b | 0.17 ± 0.00 c | 14.3 | Sandy-silty |
| TA | 7.24 ± 0.04 a | 0.18 ± 0.06 ab | 1.50 ± 0.20 b | 26.06 ± 1.71 a | 0.14 ± 0.01 b | 10.7 | Silty |
| TN | 7.15 ± 0.02 a | 0.25 ± 0.03 a | 3.66 ± 0.67 a | 18.58 ± 1.62 b | 0.27 ± 0.02 a | 13.5 | Silty |
| Chl a (mg g−1 FW) | Chl b (mg g−1 FW) | T Chl (mg g−1 FW) | Car (mg g−1 FW) | |
|---|---|---|---|---|
| TM | 15.30 ± 0.36 b | 10.21 ± 0.23 b | 25.51 ± 0.39 b | 48.08 ± 5.89 a |
| SF | 15.07 ± 0.17 b | 9.46 ± 0.11 b | 24.53 ± 0.06 b | 38.87 ± 2.14 b |
| TA | 10.62 ± 1.31 c | 6.47 ± 0.84 c | 17.10 ± 2.16 c | 25.70 ± 1.79 c |
| TN | 18.75 ± 0.12 a | 12.32 ± 0.01 a | 31.08 ± 0.13 a | 40.90 ± 0.76 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bouchari, M.E.H.; Meddich, A.; Boutasknit, A.; Ouhaddou, R.; Fassih, B.; Ech-Chatir, L.; Anli, M.; Haddioui, A. Ecophysiological and Biochemical Adaptation of Thymus saturejoides to Contrasting Soil Conditions in the Western High Atlas Under Climate Change. Soil Syst. 2026, 10, 13. https://doi.org/10.3390/soilsystems10010013
Bouchari MEH, Meddich A, Boutasknit A, Ouhaddou R, Fassih B, Ech-Chatir L, Anli M, Haddioui A. Ecophysiological and Biochemical Adaptation of Thymus saturejoides to Contrasting Soil Conditions in the Western High Atlas Under Climate Change. Soil Systems. 2026; 10(1):13. https://doi.org/10.3390/soilsystems10010013
Chicago/Turabian StyleBouchari, Mohamed El Hassan, Abdelilah Meddich, Abderrahim Boutasknit, Redouane Ouhaddou, Boujemaa Fassih, Lahoucine Ech-Chatir, Mohamed Anli, and Abdelmajid Haddioui. 2026. "Ecophysiological and Biochemical Adaptation of Thymus saturejoides to Contrasting Soil Conditions in the Western High Atlas Under Climate Change" Soil Systems 10, no. 1: 13. https://doi.org/10.3390/soilsystems10010013
APA StyleBouchari, M. E. H., Meddich, A., Boutasknit, A., Ouhaddou, R., Fassih, B., Ech-Chatir, L., Anli, M., & Haddioui, A. (2026). Ecophysiological and Biochemical Adaptation of Thymus saturejoides to Contrasting Soil Conditions in the Western High Atlas Under Climate Change. Soil Systems, 10(1), 13. https://doi.org/10.3390/soilsystems10010013

