Impact of Mechanical Ventilation and Renal Replacement Therapy on Clinical Outcomes among Critically Ill COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, L.; Yang, B.; Jiang, N.; Fu, W.; He, X.; Zhou, Y.; Ma, W.L.; Wang, X. Three-month Follow-up Study of Survivors of Coronavirus Disease 2019 after Discharge. J. Korean Med. Sci. 2020, 35, e418. [Google Scholar] [CrossRef]
- Hu, T.; Liu, Y.; Zhao, M.; Zhuang, Q.; Xu, L.; He, Q. A comparison of COVID-19, SARS and MERS. PeerJ 2020, 8, e9725. [Google Scholar] [CrossRef] [PubMed]
- Bellan, M.; Soddu, D.; Balbo, P.E.; Baricich, A.; Zeppegno, P.; Avanzi, G.C.; Baldon, G.; Bartolomei, G.; Battaglia, M.; Battistini, S.; et al. Respiratory and Psychophysical Sequelae among Patients With COVID-19 Four Months after Hospital Discharge. JAMA Netw. Open 2021, 4, e2036142. [Google Scholar] [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef] [PubMed]
- McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun. Rev. 2020, 19, 102537. [Google Scholar] [CrossRef]
- Daher, A.; Balfanz, P.; Cornelissen, C.; Müller, A.; Bergs, I.; Marx, N.; Müller-Wieland, D.; Hartmann, B.; Dreher, M.; Müller, T. Follow-up of patients with severe coronavirus disease 2019 (COVID-19): Pulmonary and extrapulmonary disease sequelae. Respir. Med. 2020, 174, 106197. [Google Scholar] [CrossRef]
- Bruchfeld, A. The COVID-19 pandemic: Con-sequences for nephrology. Nat. Rev. Nephrol. 2021, 17, 81–82. [Google Scholar] [CrossRef]
- Yang, X.; Tian, S.; Guo, H. Acute kidney injury and renal replacement therapy in COVID-19 patients: A systematic review and meta-analysis. Int. Immunopharmacol. 2021, 90, 107159. [Google Scholar] [CrossRef]
- Gansevoort, R.T.; Hilbrands, L.B. CKD is a key risk factor for COVID-19 mortality. Nat. Rev. Nephrol. 2020, 16, 705–706. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Liu, J.; Geng, L.; Zhong, Z.; Tan, J.; Wen, D.; Zhou, L.; Tang, Y.; Qin, W. The Influences of COVID-19 on Patients with Chronic Kidney Disease: A Multicenter Cross-Sectional Study. Front. Psychiatry 2021, 12, 754310. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- ERA-EDTA Council; ERACODA Working Group. Chronic kidney disease is a key risk factor for severe COVID-19: A call to action by the ERA-EDTA. Nephrol. Dial. Transplant. 2021, 36, 87–94. [Google Scholar] [CrossRef]
- Hittesdorf, E.; Panzer, O.; Wang, D.; Stevens, J.S.; Hastie, J.; Jordan, D.A.; Yoh, N.; Eiseman, K.A.; Elisman, K.; Wagener, G. Mortality and renal outcomes of patients with severe COVID-19 treated in a provisional intensive care unit. J. Crit. Care 2021, 62, 172–175. [Google Scholar] [CrossRef]
- Ahmadian, E.; Hosseiniyan, K.S.M.; Razi, S.S.; Abediazar, S.; Shoja, M.M.; Ardalan, M.; Zununi Vahed, S. COVID-19 and kidney injury: Pathophysiology and molecular mechanisms. Rev. Med. Virol. 2021, 31, e2176. [Google Scholar] [CrossRef] [PubMed]
- Dorjee, K.; Kim, H.; Bonomo, E.; Dolma, R. Prevalence and predictors of death and severe disease in patients hospitalized due to COVID-19: A comprehensive systematic review and meta-analysis of 77 studies and 38,000 patients. PLoS ONE 2020, 15, e0243191. [Google Scholar] [CrossRef]
- Jdiaa, S.S.; Mansour, R.; El Alayli, A.; Gautam, A.; Thomas, P.; Mustafa, R.A. COVID-19 and chronic kidney disease: An updated overview of reviews. J. Nephrol. 2022, 35, 69–85. [Google Scholar] [CrossRef]
- Ji, W.; Huh, K.; Kang, M.; Hong, J.; Bae, G.H.; Lee, R.; Na, Y.; Choi, H.; Gong, S.Y.; Choi, Y.H.; et al. Effect of Underlying Comorbidities on the Infection and Severity of COVID-19 in Korea: A Nationwide Case-Control Study. J. Korean Med. Sci. 2020, 35, e237. [Google Scholar] [CrossRef]
- Chishinga, N.; Gandhi, N.R.; Onwubiko, U.N.; Telford, C.; Prieto, J.; Smith, S.; Chamberlain, A.T.; Khan, S.; Williams, S.; Khan, F.; et al. Characteristics and Risk Factors for Hospitalization and Mortality among Persons with COVID-19 in Atlanta Metropolitan Area. medRxiv 2020, 2020, 12.15.20248214. [Google Scholar] [CrossRef]
- Lee, S.G.; Park, G.U.; Moon, Y.R.; Sung, K. Clinical Characteristics and Risk Factors for Fatality and Severity in Patients with Coronavirus Disease in Korea: A Nationwide Population-Based Retrospective Study Using the Korean Health Insurance Review and Assessment Service (HIRA) Database. Int. J. Environ. Res. Public Health 2020, 17, 8559. [Google Scholar] [CrossRef]
- Forest, S.J.; Michler, R.E.; Skendelas, J.P.; DeRose, J.J.; Friedmann, P.; Parides, M.K.; Forest, S.K.; Chauhan, D.; Goldstein, D.J. De Novo Renal Failure and Clinical Outcomes of Patients with Critical Coronavirus Disease 2019. Crit. Care Med. 2021, 49, e161–e169. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.S.; Ng, J.H.; Ross, D.W.; Sharma, P.; Shah, H.H.; Barnett, R.L.; Hazzan, A.D.; Fishbane, S.; Jhaveri, K.D.; Northwell COVID-19 Research Consortium; et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020, 98, 209–218. [Google Scholar] [CrossRef]
- MacLaren, G.; Fisher, D.; Brodie, D. Preparing for the Most Critically Ill Patients With COVID-19: The Potential Role of Extracorporeal Membrane Oxygenation. JAMA 2020, 323, 1245–1246. [Google Scholar] [CrossRef] [PubMed]
- Selewski, D.T.; Wille, K.M. Continuous renal replacement therapy in patients treated with extracorporeal membrane oxygenation. Semin. Dial. 2021, 34, 537–549. [Google Scholar] [CrossRef]
- Peerapornratana, S.; Manrique-Caballero, C.L.; Gómez, H.; Kellum, J.A. Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019, 96, 1083–1099. [Google Scholar] [CrossRef]
- Wang, C.; Xie, J.; Zhao, L.; Fei, X.; Zhang, H.; Tan, Y.; Nie, X.; Zhou, L.; Liu, Z.; Ren, Y.; et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine 2020, 57, 102833. [Google Scholar] [CrossRef]
- Paramitha, M.P.; Suyanto, J.C.; Puspitasari, S. The role of continuous renal replacement therapy (Crrt) in Coronavirus disease 2019 (COVID-19) patients. Trends Anaesth. Crit. Care 2021, 39, 12–18. [Google Scholar] [CrossRef]
- Lin, L.; Lu, L.; Cao, W.; Li, T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-A review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect. 2020, 9, 727–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adapa, S.; Aeddula, N.R.; Konala, V.M.; Chenna, A.; Naramala, S.; Madhira, B.R.; Gayam, V.; Balla, M.; Muppidi, V.; Bose, S. COVID-19 and Renal Failure: Challenges in the Delivery of Renal Replacement Therapy. J. Clin. Med. Res. 2020, 12, 276–285. [Google Scholar] [CrossRef]
- De Corte, W.; Dhondt, A.; Vanholder, R.; De Waele, J.; Decruyenaere, J.; Sergoyne, V.; Vanhalst, J.; Claus, S.; Hoste, E.A. Long-term outcome in ICU patients with acute kidney injury treated with renal replacement therapy: A prospective cohort study. Crit. Care 2016, 20, 256. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Morrow, A.J.; Sykes, R.; McIntosh, A.; Kamdar, A.; Bagot, C.; Bayes, H.K.; Blyth, K.G.; Briscoe, M.; Bulluck, H.; Carrick, D.; et al. A multisystem, cardio-renal investigation of post-COVID-19 illness. Nat. Med. 2022, 28, 1303–1313. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Laukkanen, J.A. Renal complications in COVID-19: A systematic review and meta-analysis. Ann. Med. 2020, 52, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, Q.; Chi, J.; Dong, B.; Lv, W.; Shen, L.; Wang, Y. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 99, 47–56. [Google Scholar] [CrossRef]
- Ma, C.; Gu, J.; Hou, P.; Zhang, L.; Bai, Y.; Guo, Z.; Wu, H.; Zhang, B.; Li, P.; Zhao, H. Incidence, clinical characteristics and prognostic factor of patients with COVID-19: A systematic review and meta-analysis. medRxiv 2020, 41, 145. [Google Scholar]
- Oyelade, T.; Alqahtani, J.; Canciani, G. Prognosis of COVID-19 in Patients with Liver and Kidney Diseases: An Early Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2020, 5, 80. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Gillies, C.L.; Singh, R.; Singh, A.; Chudasama, Y.; Coles, B.; Seidu, S.; Zaccardi, F.; Davies, M.J.; Khunti, K. Prevalence of co-morbidities and their association with mortality in patients with COVID-19: A systematic review and meta-analysis. Diabetes Obes. Metab. 2020, 22, 1915–1924. [Google Scholar] [CrossRef]
- Fathi, M.; Vakili, K.; Sayehmiri, F.; Mohamadkhani, A.; Hajiesmaeili, M.; Rezaei-Tavirani, M.; Eilami, O. The prognostic value of comorbidity for the severity of COVID-19: A systematic review and meta-analysis study. PLoS ONE 2021, 16, e0246190. [Google Scholar] [CrossRef]
- Burke, E.; Haber, E.; Pike, C.W.; Sonti, R. Outcomes of renal replacement therapy in the critically ill with COVID-19. Med. Intensiv. 2021, 45, 325–331. [Google Scholar] [CrossRef]
- Nandy, K.; Salunke, A.; Pathak, S.K.; Pandey, A.; Doctor, C.; Puj, K.; Sharma, M.; Jain, A.; Warikoo, V. Coronavirus disease (COVID-19): A systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. Diabetes Metab. Syndr. 2020, 14, 1017–1025. [Google Scholar] [CrossRef]
- Degarege, A.; Naveed, Z.; Kabayundo, J.; Brett-Major, D. Heterogeneity and Risk of Bias in Studies Examining Risk Factors for Severe Illness and Death in COVID-19: A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 563. [Google Scholar] [CrossRef]
Variable | n (%) |
---|---|
Age (years) | |
<40 | 9 (8.4) |
≥40 | 98 (91.6) |
Mean ± SD | 57.6 ± 12.8 |
Sex | |
Female | 23 (21.5) |
Male | 84 (78.5) |
Nationality | |
Saudi | 11 (10.3) |
Non-Saudi | 96 (89.7) |
Co-morbidities | |
Diabetes mellitus | |
No | 47 (43.9) |
Yes | 60 (56.1) |
Hypertension | |
No | 46 (43.0) |
Yes | 61 (57.0) |
Heart failure | |
No | 94 (87.9) |
Yes | 13 (12.1) |
Chronic kidney disease | |
No | 90 (84.1) |
Yes | 17 (15.9) |
Body mass index (kg/m2) | |
Normal | 36 (33.7) |
Overweight | 44 (41.1) |
Obese | 27 (25.2) |
Mechanical ventilation | |
No | 42 (39.3) |
Yes | 65 (60.7) |
Mortality | |
No | 52 (48.6) |
Yes | 55 (51.4) |
Oxygen saturation (%) | |
Mean ± SD | 79.6 ± 12.6 |
Days of ICU admission (days) | |
Mean ± SD | 13.0 ± 11.6 |
Variable | Alive n (%) | Death n (%) | p-Value |
---|---|---|---|
Total | 52 | 55 | |
Age (years) | 0.66 | ||
<40 | 5 (55.6) | 4 (44.4) | |
≥40 | 47 (48.0) | 51 (52.0) | |
Sex | 0.31 | ||
Female | 9 (39.1) | 14 (60.9) | |
Male | 43 (51.2) | 41 (48.5) | |
Nationality | 0.29 | ||
Saudi | 45 (46.9) | 51 (53.1) | |
Non-Saudi | 7 (63.6) | 4 (36.4) | |
Body mass index (kg/m2) | 0.45 | ||
Normal | 19 (52.8) | 17 (47.2) | |
Overweight | 21 (47.7) | 23 (52.3) | |
Obese | 12 (44.4) | 15 (55.6) | |
Mechanical ventilation | 0.03 | ||
No | 26 (61.9) | 16 (38.1) | |
Yes | 26 (40.0) | 39 (60.0) | |
Diabetes mellitus | 0.74 | ||
No | 22 (46.8) | 25 (53.2) | |
Yes | 30 (50.0) | 30 (50.0) | |
Hypertension | 0.03 | ||
No | 28 (60.9) | 18 (39.1) | |
Yes | 24 (39.3) | 37 (60.7) | |
Heart failure | 0.85 | ||
No | 46 (48.9) | 48 (51.1) | |
Yes | 6 (46.2) | 7 (53.8) | |
Chronic kidney disease | 0.15 | ||
No | 41 (45.6) | 49 (54.4) | |
Yes | 11 (64.7) | 6 (35.3) | |
CRRT (n = 17) | 0.06 | ||
No | 7 (87.5) | 1 (12.5) | |
Yes | 4 (44.4) | 5 (55.6) | |
Oxygen saturation (%) | |||
Mean ± SD | 79.10 ± 10.1 | 76.1 ± 14.5 | 0.06 ** |
Days of ICU admission | |||
Mean ± SD | 10.4 ± 13.4 | 15.4 ± 13.6 | 0.23 ** |
Variable | Mortality n (%) | Crude OR (95% C.I.) | Adjusted OR (95% C.I.) | Adjusted p-Value |
---|---|---|---|---|
Age (years) | ||||
<40 | 4 (44.4) | 1 | 1 | 0.73 |
≥40 | 51 (52.0) | 1.4 (0.3–5.4) | 0.7 (0.1–4.5) | |
Sex | ||||
Female | 14 (60.9) | 1.6 (0.6–4.2) | 1.2 (0.3–54.4) | 0.78 |
Male | 41 (48.5) | 1 | 1 | |
Nationality | ||||
Saudi | 51 (53.1) | 1.9 (0.5–7.2) | 1.8 (0.4–9.0) | 0.45 |
Non-Saudi | 4 (36.4) | 1 | 1 | |
Body mass index (kg/m2) | ||||
Normal | 17 (47.2) | 1 | 1 | 0.26 |
Overweight | 23 (52.3) | 1.2 (0.5–3.0) | 1.9 (0.6–5.8) | |
Obese | 15 (55.6) | 1.4 (0.5–3.8) | 1.1 (0.3–4.2) | |
Mechanical ventilation | ||||
No | 16 (38.1) | 1 | 1 | 0.90 |
Yes | 39 (60.0) | 2.4 (1.1–5.4) | 4.4 (1.6–12.6) | |
Diabetes mellitus | ||||
No | 25 (53.2) | 1.1 (0.5–2.4) | 0.5 (0.1–1.6) | 0.005 |
Yes | 30 (50.0) | 1 | 1 | |
Hypertension | ||||
No | 18 (39.1) | 1 | 1 | 0.21 |
Yes | 37 (60.7) | 2.4 (1.1–5.3) | 5.8 (1.6–21.1) | |
Heart failure | ||||
No | 48 (51.1) | 1 | 1 | 0.007 |
Yes | 7 (53.8) | 1.1 (0.3–3.6) | 1.5 (0.3–7.5) | |
Chronic kidney disease | ||||
No | 49 (54.4) | 2.2 (0.7–6.4) | 1 | 0.59 |
Yes | 6 (35.3) | 1 | 5.4 (1.2–25.6) | 0.03 |
CRRT | ||||
No | 1 (12.5) | 1 | 1 | |
Yes | 5 (55.6) | 8.7 (0.7–103.8) | 4.3 (1.4–13.0) | 0.009 |
Days of ICU admission | 1.0 (0.9–1.1) | 1.0 (0.9–1.1) | 0.10 | |
Oxygen saturation | 1.0 (0.9–1.1) | 1.0 (0.9–1.1) | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sindi, A.A. Impact of Mechanical Ventilation and Renal Replacement Therapy on Clinical Outcomes among Critically Ill COVID-19 Patients. Reports 2023, 6, 31. https://doi.org/10.3390/reports6030031
Sindi AA. Impact of Mechanical Ventilation and Renal Replacement Therapy on Clinical Outcomes among Critically Ill COVID-19 Patients. Reports. 2023; 6(3):31. https://doi.org/10.3390/reports6030031
Chicago/Turabian StyleSindi, Anees A. 2023. "Impact of Mechanical Ventilation and Renal Replacement Therapy on Clinical Outcomes among Critically Ill COVID-19 Patients" Reports 6, no. 3: 31. https://doi.org/10.3390/reports6030031
APA StyleSindi, A. A. (2023). Impact of Mechanical Ventilation and Renal Replacement Therapy on Clinical Outcomes among Critically Ill COVID-19 Patients. Reports, 6(3), 31. https://doi.org/10.3390/reports6030031