Magic Number N = 350 Predicted by the Deformed Relativistic Hartree-Bogoliubov Theory in Continuum: Z = 136 Isotopes as an Example
Abstract
1. Introduction
2. Theoretical Framework
3. Numerical Details
4. Results and Discussions
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oganessian, Y.T.; Abdullin, F.S.; Alexander, C.; Binder, J.; Boll, R.A.; Dmitriev, S.N.; Ezold, J.; Felker, K.; Gostic, J.M.; Grzywacz, R.K.; et al. Production and Decay of the Heaviest Nuclei 293,294117 and 294118. Phys. Rev. Lett. 2012, 109, 162501. [Google Scholar] [CrossRef] [PubMed]
- Dechargé, J.; Berger, J.F.; Dietrich, K.; Weiss, M. Superheavy and hyperheavy nuclei in the form of bubbles or semi-bubbles. Phys. Lett. B 1999, 451, 275–282. [Google Scholar] [CrossRef]
- Weizsäcker, C.F.V. Zur Theorie der Kernmassen. Z. Phys. 1935, 96, 431–458. [Google Scholar] [CrossRef]
- Sorlin, O.; Porquet, M.G. Nuclear magic numbers: New features far from stability. Prog. Part. Nucl. Phys. 2008, 61, 602–673. [Google Scholar] [CrossRef]
- Otsuka, T.; Gade, A.; Sorlin, O.; Suzuki, T.; Utsuno, Y. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 2020, 92, 015002. [Google Scholar] [CrossRef]
- Lunney, D.; Pearson, J.M.; Thibault, C. Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 2003, 75, 1021–1082. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Koura, H.; Litvinov, Y.; Wang, M. Masses of exotic nuclei. Prog. Part. Nucl. Phys. 2021, 120, 103882. [Google Scholar] [CrossRef]
- Mumpower, M.; Surman, R.; McLaughlin, G.; Aprahamian, A. The impact of individual nuclear properties on r-process nucleosynthesis. Prog. Part. Nucl. Phys. 2016, 86, 86–126. [Google Scholar] [CrossRef]
- Jiang, X.F.; Wu, X.H.; Zhao, P.W. Sensitivity Study of r-process Abundances to Nuclear Masses. Astrophys. J. 2021, 915, 29. [Google Scholar] [CrossRef]
- Wu, X.H.; Zhao, P.W.; Zhang, S.Q.; Meng, J. High-precision Nuclear Chronometer for the Cosmos. Astrophys. J. 2022, 941, 152. [Google Scholar] [CrossRef]
- Wu, X.H.; Meng, J. Supporting the CMB cosmic age from nuclear physics. Sci. Bull. 2023, 68, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Huang, W.; Kondev, F.; Audi, G.; Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 2021, 45, 030003. [Google Scholar] [CrossRef]
- Pearson, J.; Nayak, R.; Goriely, S. Nuclear mass formula with Bogolyubov-enhanced shell-quenching: Application to r-process. Phys. Lett. B 1996, 387, 455–459. [Google Scholar] [CrossRef]
- Wang, N.; Liu, M.; Wu, X.; Meng, J. Surface diffuseness correction in global mass formula. Phys. Lett. B 2014, 734, 215–219. [Google Scholar] [CrossRef]
- Möller, P.; Sierk, A.; Ichikawa, T.; Sagawa, H. Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data Tables 2016, 109–110, 1–204. [Google Scholar] [CrossRef]
- Koura, H.; Tachibana, T.; Uno, M.; Yamada, M. Nuclidic Mass Formula on a Spherical Basis with an Improved Even-Odd Term. Prog. Theor. Phys. 2005, 113, 305–325. [Google Scholar] [CrossRef]
- Goriely, S.; Chamel, N.; Pearson, J.M. Skyrme-Hartree-Fock-Bogoliubov Nuclear Mass Formulas: Crossing the 0.6 MeV Accuracy Threshold with Microscopically Deduced Pairing. Phys. Rev. Lett. 2009, 102, 152503. [Google Scholar] [CrossRef]
- Goriely, S.; Hilaire, S.; Girod, M.; Péru, S. First Gogny-Hartree-Fock-Bogoliubov Nuclear Mass Model. Phys. Rev. Lett. 2009, 102, 242501. [Google Scholar] [CrossRef]
- Peña-Arteaga, D.; Goriely, S.; Chamel, N. Relativistic mean-field mass models. Eur. Phys. J. 2016, 52, 320. [Google Scholar] [CrossRef]
- Xia, X.; Lim, Y.; Zhao, P.; Liang, H.; Qu, X.; Chen, Y.; Liu, H.; Zhang, L.; Zhang, S.; Kim, Y.; et al. The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory. At. Data Nucl. Data Tables 2018, 121–122, 1–215. [Google Scholar] [CrossRef]
- Yang, Y.L.; Wang, Y.K.; Zhao, P.W.; Li, Z.P. Nuclear landscape in a mapped collective Hamiltonian from covariant density functional theory. Phys. Rev. C 2021, 104, 054312. [Google Scholar] [CrossRef]
- Zhang, K.; Cheoun, M.K.; Choi, Y.B.; Chong, P.S.; Dong, J.; Dong, Z.; Du, X.; Geng, L.; Ha, E.; He, X.T.; et al. Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, I: Even–even nuclei. At. Data Nucl. Data Tables 2022, 144, 101488. [Google Scholar] [CrossRef]
- Pan, C.; Cheoun, M.K.; Choi, Y.B.; Dong, J.; Du, X.; Fan, X.H.; Gao, W.; Geng, L.; Ha, E.; He, X.T.; et al. Deformed relativistic Hartree-Bogoliubov theory in continuum with a point-coupling functional. II. Examples of odd Nd isotopes. Phys. Rev. C 2022, 106, 014316. [Google Scholar] [CrossRef]
- Guo, P.; Cao, X.; Chen, K.; Chen, Z.; Cheoun, M.K.; Choi, Y.B.; Lam, P.C.; Deng, W.; Dong, J.; Du, P.; et al. Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, II: Even-Z nuclei. At. Data Nucl. Data Tables 2024, 158, 101661. [Google Scholar] [CrossRef]
- Utama, R.; Piekarewicz, J.; Prosper, H.B. Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach. Phys. Rev. C 2016, 93, 014311. [Google Scholar] [CrossRef]
- Neufcourt, L.; Cao, Y.; Nazarewicz, W.; Olsen, E.; Viens, F. Neutron Drip Line in the Ca Region from Bayesian Model Averaging. Phys. Rev. Lett. 2019, 122, 062502. [Google Scholar] [CrossRef]
- Wu, X.H.; Zhao, P.W. Predicting nuclear masses with the kernel ridge regression. Phys. Rev. C 2020, 101, 051301. [Google Scholar] [CrossRef]
- Wu, X.H.; Guo, L.H.; Zhao, P.W. Nuclear masses in extended kernel ridge regression with odd-even effects. Phys. Lett. B 2021, 819, 136387. [Google Scholar] [CrossRef]
- Guo, L.H.; Wu, X.H.; Zhao, P.W. Nuclear Mass Predictions of the Relativistic Density Functional Theory with the Kernel Ridge Regression and the Application to r-Process Simulations. Symmetry 2022, 14, 1078. [Google Scholar] [CrossRef]
- Wu, X.H.; Lu, Y.Y.; Zhao, P.W. Multi-task learning on nuclear masses and separation energies with the kernel ridge regression. Phys. Lett. B 2022, 834, 137394. [Google Scholar] [CrossRef]
- Du, X.K.; Guo, P.; Wu, X.H.; Zhang, S.Q. Examination of machine learning for assessing physical effects: Learning the relativistic continuum mass table with kernel ridge regression*. Chin. Phys. C 2023, 47, 074108. [Google Scholar] [CrossRef]
- Wu, X.H.; Pan, C.; Zhang, K.Y.; Hu, J. Nuclear mass predictions of the relativistic continuum Hartree-Bogoliubov theory with the kernel ridge regression. Phys. Rev. C 2024, 109, 024310. [Google Scholar] [CrossRef]
- Niu, Z.M.; Liang, H.Z. Nuclear mass predictions with machine learning reaching the accuracy required by r-process studies. Phys. Rev. C 2022, 106, L021303. [Google Scholar] [CrossRef]
- Li, M.; Sprouse, T.M.; Meyer, B.S.; Mumpower, M.R. Atomic masses with machine learning for the astrophysical r process. Phys. Lett. B 2024, 848, 138385. [Google Scholar] [CrossRef]
- Wu, X.H.; Zhao, P.W. Principal components of nuclear mass models. Sci. China-Phys. Mech. Astron. 2024, 67, 272011. [Google Scholar] [CrossRef]
- Wu, X.H.; Pan, C. Nuclear mass predictions with anisotropic kernel ridge regression. Phys. Rev. C 2024, 110, 034322. [Google Scholar] [CrossRef]
- Zhou, S.G.; Meng, J.; Ring, P.; Zhao, E.G. Neutron halo in deformed nuclei. Phys. Rev. C 2010, 82, 011301. [Google Scholar] [CrossRef]
- Li, L.; Meng, J.; Ring, P.; Zhao, E.G.; Zhou, S.G. Deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2012, 85, 024312. [Google Scholar] [CrossRef]
- Sun, X.X. Deformed two-neutron halo in 19B. Phys. Rev. C 2021, 103, 054315. [Google Scholar] [CrossRef]
- Zhang, K.; He, X.; Meng, J.; Pan, C.; Shen, C.; Wang, C.; Zhang, S. Predictive power for superheavy nuclear mass and possible stability beyond the neutron drip line in deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2021, 104, L021301. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, K.Y.; Chong, P.S.; Heo, C.; Ho, M.C.; Lee, J.; Li, Z.P.; Sun, W.; Tam, C.K.; Wong, S.H.; et al. Possible bound nuclei beyond the two-neutron drip line in the 50 ≤ Z ≤ 70 region. Phys. Rev. C 2021, 104, 024331. [Google Scholar] [CrossRef]
- Sun, X.X.; Zhou, S.G. Rotating deformed halo nuclei and shape decoupling effects. Sci. Bull. 2021, 66, 2072–2078. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.B.; Lee, C.H.; Mun, M.H.; Kim, Y. Bubble nuclei with shape coexistence in even-even isotopes of Hf to Hg. Phys. Rev. C 2022, 105, 024306. [Google Scholar] [CrossRef]
- Kim, S.; Mun, M.H.; Cheoun, M.K.; Ha, E. Shape coexistence and neutron skin thickness of Pb isotopes by the deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2022, 105, 034340. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, S.; An, J.; Zhang, S.; Papakonstantinou, P.; Mun, M.H.; Kim, Y.; Yan, H. Missed prediction of the neutron halo in 37Mg. Phys. Lett. B 2023, 844, 138112. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Papakonstantinou, P.; Mun, M.H.; Kim, Y.; Yan, H.; Sun, X.X. Collapse of the N = 28 shell closure in the newly discovered 39Na nucleus and the development of deformed halos towards the neutron dripline. Phys. Rev. C 2023, 107, L041303. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Niu, Z.M.; Sun, W.; Xia, X.W. Nuclear charge radii and shape evolution of Kr and Sr isotopes with the deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2023, 108, 024310. [Google Scholar] [CrossRef]
- Guo, P.; Pan, C.; Zhao, Y.C.; Du, X.K.; Zhang, S.Q. Prolate-shape dominance in atomic nuclei within the deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2023, 108, 014319. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Zhang, S.Q.; Meng, J. Possible neutron halo in the triaxial nucleus 42Al. Phys. Rev. C 2023, 108, L041301. [Google Scholar] [CrossRef]
- Mun, M.H.; Kim, S.; Cheoun, M.K.; So, W.; Choi, S.; Ha, E. Odd-even shape staggering and kink structure of charge radii of Hg isotopes by the deformed relativistic Hartree–Bogoliubov theory in continuum. Phys. Lett. B 2023, 847, 138298. [Google Scholar] [CrossRef]
- Xiao, Y.; Xu, S.Z.; Zheng, R.Y.; Sun, X.X.; Geng, L.S.; Zhang, S.S. One-proton emission from 148–151Lu in the DRHBc+WKB approach. Phys. Lett. B 2023, 845, 138160. [Google Scholar] [CrossRef]
- He, X.T.; Wu, J.W.; Zhang, K.Y.; Shen, C.W. Odd-even differences in the stability “peninsula” in the 106 ≤ Z ≤ 112 region with the deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2024, 110, 014301. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, K.Y.; Zhang, S.S. Triaxial shape of the one-proton emitter 149Lu. Phys. Lett. B 2024, 856, 138922. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, K.; Zhang, S. Nuclear magnetism in the deformed halo nucleus 31Ne. Phys. Lett. B 2024, 855, 138792. [Google Scholar] [CrossRef]
- An, J.L.; Zhang, K.Y.; Lu, Q.; Zhong, S.Y.; Zhang, S.S. A unified description of the halo nucleus 37Mg from microscopic structure to reaction observables. Phys. Lett. B 2024, 849, 138422. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Pan, C.; Wang, S. Examination of the evidence for a proton halo in 22Al. Phys. Rev. C 2024, 110, 014320. [Google Scholar] [CrossRef]
- DRHBc Mass Table Collaboration. Available online: http://drhbctable.jcnp.org/ (accessed on 1 October 2024).
- Zhao, P.W.; Li, Z.P.; Yao, J.M.; Meng, J. New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C 2010, 82, 054319. [Google Scholar] [CrossRef]
- Zhang, K.; Cheoun, M.K.; Choi, Y.B.; Chong, P.S.; Dong, J.; Geng, L.; Ha, E.; He, X.; Heo, C.; Ho, M.C.; et al. Deformed relativistic Hartree-Bogoliubov theory in continuum with a point-coupling functional: Examples of even-even Nd isotopes. Phys. Rev. C 2020, 102, 024314. [Google Scholar] [CrossRef]
- Kucharek, H.; Ring, P. Relativistic field theory of superfluidity in nuclei. Z. Phys. A 1991, 339, 23–35. [Google Scholar] [CrossRef]
- Zhou, S.G.; Meng, J.; Ring, P. Spherical relativistic Hartree theory in a Woods-Saxon basis. Phys. Rev. C 2003, 68, 034323. [Google Scholar] [CrossRef]
- Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: New York, NY, USA, 1980. [Google Scholar]
- Pan, C.; Zhang, K.; Zhang, S. Multipole expansion of densities in the deformed relativistic Hartree-Bogoliubov theory in continuum. Int. J. Mod. Phys. E 2019, 28, 1950082. [Google Scholar] [CrossRef]
- Chatt, J. Recommendations for the naming of elements of atomic numbers greater than 100. Pure Appl. Chem. 1979, 51, 381–384. [Google Scholar]
- Wang, S.; Guo, P.; Cong, P. Determining the ground state for superheavy nuclei from the deformed relativistic Hartree-Bogoliubov theory in continuum. Particles. 11 under review.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.-J.; Lv, C.-J.; Guo, P.; Pan, C.; Wang, S.; Wu, X.-H. Magic Number N = 350 Predicted by the Deformed Relativistic Hartree-Bogoliubov Theory in Continuum: Z = 136 Isotopes as an Example. Particles 2024, 7, 1078-1085. https://doi.org/10.3390/particles7040065
Liu W-J, Lv C-J, Guo P, Pan C, Wang S, Wu X-H. Magic Number N = 350 Predicted by the Deformed Relativistic Hartree-Bogoliubov Theory in Continuum: Z = 136 Isotopes as an Example. Particles. 2024; 7(4):1078-1085. https://doi.org/10.3390/particles7040065
Chicago/Turabian StyleLiu, Wei-Jian, Chen-Jun Lv, Peng Guo, Cong Pan, Sibo Wang, and Xin-Hui Wu. 2024. "Magic Number N = 350 Predicted by the Deformed Relativistic Hartree-Bogoliubov Theory in Continuum: Z = 136 Isotopes as an Example" Particles 7, no. 4: 1078-1085. https://doi.org/10.3390/particles7040065
APA StyleLiu, W.-J., Lv, C.-J., Guo, P., Pan, C., Wang, S., & Wu, X.-H. (2024). Magic Number N = 350 Predicted by the Deformed Relativistic Hartree-Bogoliubov Theory in Continuum: Z = 136 Isotopes as an Example. Particles, 7(4), 1078-1085. https://doi.org/10.3390/particles7040065