From Scalar Clouds to Rotating Hairy Black Holes
Abstract
:1. Introduction
2. Scalar Clouds around Subextremal BHs
2.1. Charged Scalar Clouds
2.2. Boundary Conditions
2.3. Neutral Scalar Clouds
3. Effective Potential and Existence of Scalar Clouds
4. Rotating Hairy Black Holes (RHBHs)
Global Quantities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Scalar Clouds around an Extremal Kerr Black Hole
Appendix B. Scalar Clouds around an Extremal Kerr–Newman Black Hole
References and Notes
- LIGO Scientific Collaboration; Virgo Collaboration. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- The Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. I–V. Astrophys. J. Lett. 2019, 875, L1–L5. [Google Scholar]
- The Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar]
- Carter, B. Global Structure of the Kerr Family of Gravitational Fields. Phys. Rev. 1968, 174, 1559. [Google Scholar] [CrossRef]
- Ruffini, R.; Wheeler, J.A. Introducing the black hole. Phys. Today 1971, 24, 30–41. [Google Scholar] [CrossRef]
- Israel, W. Event horizons in static vacuum space-times. Phys. Rev. 1967, 164, 1776. [Google Scholar] [CrossRef]
- Israel, W. Event horizons in static electrovac space-times. Commun. Math. Phys. 1971, 8, 245. [Google Scholar] [CrossRef]
- Carter, B. Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 1971, 26, 331. [Google Scholar] [CrossRef]
- Wald, R. Final states of gravitational collapse. Phys. Rev. Lett. 1971, 26, 1653. [Google Scholar] [CrossRef]
- Robinson, D.C. Uniqueness of the Kerr black hole. Phys. Rev. Lett. 1975, 34, 905. [Google Scholar] [CrossRef]
- Mazur, P.O. Proof of uniqueness of the Kerr-Newman black hole solution. J. Phys. A 1982, 15, 3173. [Google Scholar] [CrossRef]
- Mazur, P.O. A global identity for nonlinear σ-models. Phys. Lett. A 1984, 100, 341–344. [Google Scholar] [CrossRef]
- Heusler, M. Black Hole Uniqueness Theorems; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Bekenstein, J.D. Transcendence of the law of baryon-number conservation in black-hole physics. Phys. Rev. Lett. 1972, 28, 452. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Nonexistence of Baryon Number for Static Black Holes. Phys. Rev. D 1972, 5, 1239. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Nonexistence of Baryon Number for Black Holes. II. Phys. Rev. D 1972, 5, 2403. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Novel ‘‘no-scalar-hair’’ theorem for black holes. Phys. Rev. D 1995, 51, R6608. [Google Scholar] [CrossRef]
- Sudarsky, D. A simple proof of a no-hair theorem in Einstein-Higgs theory. Class. Quantum Gravity 1995, 12, 579. [Google Scholar] [CrossRef]
- Peña, I.; Sudarsky, D. Do collapsed boson stars result in new types of black holes? Class. Quantum Gravity 1997, 14, 3131. [Google Scholar] [CrossRef]
- Sudarsky, D.; Zannias, T. Spherical black holes cannot support scalar hair. Phys. Rev. D 1998, 58, 087502. [Google Scholar] [CrossRef]
- Bizon, P. Colored black holes. Phys. Rev. Lett. 1990, 64, 2844. [Google Scholar] [CrossRef]
- Bizon, P.; Chmaj, T. Gravitating skyrmions. Phys. Rev. D 1992, 297, 55. [Google Scholar] [CrossRef]
- Nucamendi, U.; Salgado, M. Scalar hairy black holes and solitons in asymptotically flat spacetimes. Phys. Rev. D 2003, 68, 044026. [Google Scholar] [CrossRef]
- Herdeiro, C.; Radu, E. Kerr black holes with scalar hair. Phys. Rev. Lett. 2014, 112, 221101. [Google Scholar] [CrossRef]
- Herdeiro, C.; Radu, E. Construction and physical properties of Kerr black holes with scalar hair. Class. Quantum Gravity 2015, 32, 144001. [Google Scholar] [CrossRef]
- Hod, S. Stationary scalar clouds around rotating black holes. Phys. Rev. D 2012, 86, 104026, Erratum in Phys. Rev. D 2012, 86, 129902. [Google Scholar] [CrossRef]
- Hod, S. Kerr-Newman black holes with stationary charged scalar clouds. Phys. Rev. D 2014, 90, 024051. [Google Scholar] [CrossRef]
- Hod, S. Extremal Kerr–Newman black holes with extremely short charged scalar hair. Phys. Lett. B 2015, 751, 177–183. [Google Scholar] [CrossRef]
- Benone, C.L.; Crispino, L.C.B.; Herdeiro, C.; Radu, E. Kerr-Newman scalar clouds. Phys. Rev. D 2014, 90, 104024. [Google Scholar] [CrossRef]
- Delgado, J.F.M.; Herdeiro, C.A.R.; Radu, E.; Rúnarsson, H. Kerr-Newman black holes with scalar hair. Phys. Lett. B 2016, 761, 234. [Google Scholar] [CrossRef]
- García, G.; Salgado, M. Regular scalar charged clouds around a Reissner-Nordstrom black hole and no-hair theorems. Phys. Rev. D 2021, 104, 064054. [Google Scholar] [CrossRef]
- García, G.; Salgado, M. Regular scalar clouds around a Kerr-Newman black hole: Subextremal and extremal scenarios. Phys. Rev. D 2023, 108, 104012. [Google Scholar] [CrossRef]
- García, G.; Salgado, M. Obstructions towards a generalization of no-hair theorems: Scalar clouds around Kerr black holes. Phys. Rev. D 2019, 99, 044036. [Google Scholar] [CrossRef]
- Benone, C.L.; Crispino, L.C.B.; Herdeiro, C.; Radu, E. Acoustic clouds: Standing sound waves around a black hole analogue. Phys. Rev. D 2015, 91, 104038. [Google Scholar] [CrossRef]
- Benone, C.L.; Crispino, L.C.B.; Herdeiro, C.A.R.; Richartz, M. Synchronized stationary clouds in a static fluid. Phys. Lett. B 2018, 786, 442. [Google Scholar] [CrossRef]
- Ciszak, M.; Marino, F. Acoustic black-hole bombs and scalar clouds in a photon-fluid model. Phys. Rev. D 2021, 103, 045004. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, D.J.; Zhai, X.H.; Li, X.Z. Scalar clouds around Kerr–Sen black holes. Class. Quantum Gravity 2017, 34, 15500. [Google Scholar] [CrossRef]
- Ferreira, H.R.C.; Herdeiro, C.A.R. Stationary scalar clouds around a BTZ black hole. Phys. Lett. B 2017, 773, 129. [Google Scholar] [CrossRef]
- Qiao, X.; Wang, M.; Pan, Q.; Jing, J. Kerr-MOG black holes with stationary scalar clouds. Eur. Phys. J. C 2020, 80, 509. [Google Scholar] [CrossRef]
- Croti Siqueria, P.H.; Richartz, M. Quasinormal modes, quasibound states, scalar clouds, and superradiant instabilities of a Kerr-like black hole. Phys. Rev. D 2022, 106, 024046. [Google Scholar] [CrossRef]
- García, G.; Gourgoulhon, E.; Grandclément, P.; Salgado, M. High precision numerical sequences of rotating hairy black holes. Phys. Rev. D 2023, 107, 084047. [Google Scholar] [CrossRef]
- At the horizon, χa becomes null, and thus, it is tangent to the null geodesic generators of the horizon.
- Hawking, S.W. Black holes and thermodynamics. Phys. Rev. D 1976, 13, 191. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover: Downers Grove, IL, USA, 1964. [Google Scholar]
- Teukolsky, S.A. Rotating Black Holes: Separable Wave Equations for Gravitational and Electromagnetic Perturbations. Phys. Rev. Lett. 1972, 29, 1114. [Google Scholar] [CrossRef]
- The same behavior is observed if the signs of the charges Q and q are exchanged.
- Initially considering a,Q,q > 0.
- Hod, S. On the instability regime of the rotating Kerr spacetime to massive scalar perturbations. Phys. Rev. D 2012, 708, 320. [Google Scholar] [CrossRef]
- Huang, J.H.; Chen, W.X.; Huang, Z.Y.; Mai, Z.F. Superradiant stability of Kerr black holes. Phys. Lett. B 2019, 798, 135026. [Google Scholar] [CrossRef]
- Lin, J.M.; Luo, M.J.; Zheng, Z.H.; Yin, L.; Huang, J.H. Extremal rotating black holes, scalar perturbations and superradiant stability. Phys. Rev. D 2021, 819, 136392. [Google Scholar] [CrossRef]
- García, G.; Salgado, M. Existence or absence of superregular boson clouds around extremal Kerr black holes and its connection with number theory. Phys. Rev. D 2020, 101, 044040. [Google Scholar] [CrossRef]
- Barranco, J.; Bernal, A.; Degollado, J.C.; Diez-Tejedor, A.; Megevand, M.; Alcubierre, M.; Núñez, D.; Sarbach, O. Are black holes a serious threat to scalar field dark matter models? Phys. Rev. D 2011, 84, 083008. [Google Scholar] [CrossRef]
- Barranco, J.; Bernal, A.; Degollado, J.C.; Diez-Tejedor, A.; Megevand, M.; Alcubierre, M.; Núñez, D.; Sarbach, O. Schwarzschild Black Holes can Wear Scalar Wigs. Phys. Rev. Lett. 2012, 109, 081102. [Google Scholar] [CrossRef]
- Here, and ΔH denotes that function evaluated at the horizon , which vanishes identically there.
- Because the backreaction of the scalar field on the spacetime was not taken into account for the analysis of the scalar clouds (and the problem becomes linear), we assumed that the energy-momentum tensor (5) associated with the scalar field does not contribute as a source to Einstein’s field equations.
- For simplicity, we will adopt the same coordinate notation that has been implemented in the previous section for the case of Boyer–Lindquist coordinates, but the reader must bear in mind that both coordinates are not the same, namely, the r coordinate; for instance, in vacuum and when a ≡ 0 (spherical symmetry), the Kerr metric in BL coordinates reduces to the Schwarzschild metric in the canonical area coordinates, while in the QI coordinates the Schwarzschild metric is given in terms of isotropic coordinates where A(r) = B(r).
- Notice the change in convention regarding the sign of the phase for the scalar field as compared with the analysis of the scalar clouds [cf. Equation (10)].
- Grandclément, P. KADATH: A spectral solver for theoretical physics. J. Comput. Phys. 2010, 229, 3334–3357. Available online: https://kadath.obspm.fr (accessed on 1 November 2023). [CrossRef]
- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- Gourgoulhon, E. 3+1 Formalism in General Relativity; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Shibata, M. Numerical Relativity (100 Years of General Relativity); World Scientific: Singapore, 2016; Volume 1. [Google Scholar]
- Schunck, F.E.; Mielke, E.W. Boson Stars: Rotation, Formation, and Evolution. Gen. Relativ. Gravit. 1999, 31, 787–798. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, G.; Salgado, M.; Grandclément, P.; Gourgoulhon, E. From Scalar Clouds to Rotating Hairy Black Holes. Particles 2024, 7, 1-24. https://doi.org/10.3390/particles7010001
García G, Salgado M, Grandclément P, Gourgoulhon E. From Scalar Clouds to Rotating Hairy Black Holes. Particles. 2024; 7(1):1-24. https://doi.org/10.3390/particles7010001
Chicago/Turabian StyleGarcía, Gustavo, Marcelo Salgado, Philippe Grandclément, and Eric Gourgoulhon. 2024. "From Scalar Clouds to Rotating Hairy Black Holes" Particles 7, no. 1: 1-24. https://doi.org/10.3390/particles7010001
APA StyleGarcía, G., Salgado, M., Grandclément, P., & Gourgoulhon, E. (2024). From Scalar Clouds to Rotating Hairy Black Holes. Particles, 7(1), 1-24. https://doi.org/10.3390/particles7010001