Radiative Corrections to Semileptonic Beta Decays: Progress and Challenges
Abstract
:1. Introduction
2. EWRC in a Generic Semileptonic Beta Decay
2.1. Basic Ingredients
2.2. Weak Corrections
2.2.1. First Diagram
2.2.2. Second Diagram
2.2.3. Third Diagram
2.2.4. pQCD Corrections
2.3. General Theory for Beta Decays
3. Sirlin’s Representation
- The first diagram is simply the wave function renormalization of the charged lepton. Elementary calculation gives:
- The second diagram represents the EMRC to the hadronic charged weak matrix element: . We will discuss it more later.
- The third diagram is the famous -box correction. For future convenience, we split it into two pieces: by applying the Dirac matrix identity (20) to the lepton structure:In particular, using the Ward identities (8), we are able to isolate a part of which is proportional to and is exactly integrable:As usual, terms of are discarded.
3.1. On-Mass-Shell Perturbation Formula and Ward Identity
3.2. Partial Cancellation between the Hadronic Vertex Correction and the -Box Diagram
3.3. Bremsstrahlung
3.4. Large Electroweak Logarithms and the Higher-Order QED Effects
4. Effective Field Theory Representation
4.1. Spontaneously-Broken Chiral Symmetry
4.2. pNGBs and the Chiral Power Counting
- It is invariant under in the limit of massless quarks;
- The chiral symmetry is spontaneously broken to SU(3), and the pseudoscalar octets appear as the pNGBs;
- The chiral symmetry is explicitly broken by the insertion of the quark mass matrix .
4.3. External Sources
4.4. Mesonic ChPT with External Sources
4.5. Nucleon Sector
5. Pion Semileptonic Beta Decay
- It is spinless, so at tree level only the vector component of the charged weak current contributes;
- It is near-degenerate, that is, , which simplifies the discussion a lot upon neglecting recoil corrections on top of the RCs;
- It does not suffer from nuclear structure uncertainties.
5.1. Tree-Level Analysis
5.2. EWRCs
5.3. Early Numerical Estimation
5.4. ChPT Treatment
5.5. First-Principles Calculation
5.5.1. Large- Contribution
5.5.2. Small- Contribution
6. Beta Decay of I = J = 1/2 Particles
6.1. Outer and Inner Corrections
6.2. Dispersive Representation
- First-principles calculation with lattice QCD, in analogy to the calculation of described in Section 5.5;
- Data-driven analysis that relates the hadronic matrix elements to experimental observables.
6.3. Asymptotic Contribution
6.4. Born Contribution
6.5. Exact Isospin Relations
7. Free Neutron
7.1. Earlier Attempts
- (long distances): Pure Born contribution, which is completely fixed by nucleon form factors, dominates.
- (intermediate distances): A VMD-inspired interpolating function is constructed:
- (short distances): is given by the leading-twist OPE + pQCD correction.
- The result of the integral (156) at is required to be the same using the VMD parameterization and the asymptotic expression;
- In the large- limit, the coefficient of the term in Equation (157) is required to vanish by chiral symmetry;
- Equation (157) is required to vanish at by ChPT;
- Finally, the connection scale is chosen through the matching of and at .
7.2. : DR Analysis
- The “non-asymptotic” pieces (Born, low-energy continuum, resonances): They are clearly different for different , and need to be calculated case-by-case;
- The “asymptotic” pieces ( at large and at large ): They are largely universal for different (up to multiplicative factors), so we can either calculate them explicitly (), or infer one from the other.
7.3. : DR Analysis
- The Born contribution is just given by Equation (148). Isospin symmetry requires and , so the integral is completely fixed by the nucleon electromagnetic form factors;
- For the inelastic contribution from , what we need is the following quantity:( is the pion production threshold) as a function of . At GeV, one resorts again to the pQCD-corrected polarized Bjorken sum rule, and include additionally a small higher-twist (HT) correction which is required to match the theory prediction with the experimental data [236,237,238]. At GeV, data are taken from the EG1b experiment at JLab [228,229] that provided the first three moments of from 0.05 GeV to 3.5 GeV, which allow for a precise reconstruction of at any value of within the range. Figure 13 shows the combination of the experimental and theory prediction of . One then performs the -integral to obtain the full contribution.
- Finally, the contribution is split into two pieces, namely the twist-two and twist-three (and higher) contributions. The former is related to through the Wandzura–Wilczek relation [239], while the latter is related to the so-called nucleon color polarizability [240,241] calculated within the baryon chiral effective theory [242].
7.4. Future Prospects with Lattice QCD
8. Superallowed Beta Decays
- At tree level only the vector charged weak current is involved, whose matrix element is exactly known assuming isospin symmetry;
- Experimental data of 23 superallowed transitions had been accumulated over five decades [164,255,256,257,258,259,260,261], with 15 among them whose -value precision is 0.23% or better; the large sample size leads to a huge gain in statistics [261]. In fact, this makes it the only avenue where the experimental uncertainty in is smaller than the theory uncertainty.
8.1. The Nuclear Structure Correction
8.1.1. Earlier Treatments
8.1.2. Recent Developments
8.2. The Isospin-Breaking Correction
9. Kaon Semileptonic Decays
- is the charged weak form factor in the (unphysical) limit, with the general definition of the charged weak form factors in spinless systems given in Equation (95). High-precision lattice calculations of this quantity were performed over the past decade by the FNAL/MILC [326,327,328] and the ETM [329] collaborations and showed perfect mutual consistencies and a steady improvement in precision. The most recent Flavor Lattice Averaging Group (FLAG) online review (updated from the 2019 version [330]) quoted the following average: Refs. [328,329]However, a recent calculation from the PACS collaboration based on a single lattice spacing returned a somewhat smaller value [331].
- is a simple isospin factor defined through the value of in the SU(3) limit:
- is the tree-level phase space factor defined as: (Notice that a number of important review papers, for example, Refs. [102,332], contain a typo in their formula for .)
- Finally, is defined as the isospin breaking correction to the form factor at : (The appearance of the factor is simply due to our choice of normalization of the form factors in Equation (95).)
9.1. Kinematics
9.2. ChPT Treatment of the EWRC
- The mesonic loop diagrams depicted in Figure 17. They correct the form factors that enter the phase space factor .
9.3. EWRC in Sirlin’s Representation
9.3.1. and
9.3.2.
9.3.3.
9.3.4. Bremsstrahlung Contribution
9.3.5. Results and Discussions
- “sg” represents the very conservative estimation of the seagull diagram contribution in ;
- The uncertainties due to the form factor parameterization are mostly small. The only piece that brings a uncertainty is the uncertainty of the charge radius that only enters ;
- “lat” represents the lattice uncertainty in the evaluation of the forward -box diagrams;
- “NF” is the estimation of the non-forward correction in ;
- Finally, “” represents the (reduced) chiral uncertainty in the bremsstrahlung contribution.
10. Summary
- The first lattice calculation of the forward axial -box diagram has removed the major theory uncertainty in its ERWCs, making it 3 times as precise as the previous state-of-the-art determination from ChPT. This makes one of the theoretically cleanest avenues to measure . The major limitation is from the experimental error of its branching ratio, which will be improved in next-generation experiments of rare pion decays;
- The first DR analysis of the single-nucleon axial -box diagram with neutrino-nucleus scattering data as inputs improved its precision by a factor 2 and revealed a large systematic effect that was not captured in previous studies. It led to a reduction of the central value;
- A new theory framework for the EWRCs in was constructed to overcome the natural limitations from the traditional ChPT formalism. Its first application to has improved the existing theory precision by almost an order of magnitude.
- The current DR treatment of the free neutron inner corrections suffers from low precision of the experimental inputs and a residual model dependence in the matching between the data and the nucleon -box diagram, so one still cannot claim with full confidence that the outcome is free from detectable systematics. To resolve these ambiguities, one should perform direct lattice QCD calculations of the nucleon -box diagram;
- A similar DR analysis of the nuclear -box diagram revealed several potentially large nuclear structure corrections that were failed to be incorporated in previous nuclear model calculations. Ab-initio studies of these new effects are urgently needed. The current results of the nuclear isospin breaking corrections should also be scrutinized by model-independent approaches to make sure no large systematic uncertainties are hidden;
- The new theory analysis of the EWRC should also be applied to to complete the story. One expects a more complicated error analysis in the latter due to the non-negligible contributions from ;
- So far, the Sirlin’s representation has only been applied to semileptonic decays, but in principle it is also valid for leptonic decays. Particularly interesting examples are and which measure the ratio . The EWRCs in these channels were previously studied with ChPT and lattice QCD, and it is interesting to see if the new method is able to further improve its precision. This also serves as another cross-check of the discrepancy in the measurement.
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Derivation of the Free-Field OPE Relation
Appendix B. pQCD Corrections in
Appendix C. Crossing Symmetry of the Invariant Amplitudes
Appendix D. ChPT Loop Functions
Appendix E. IR-Divergent and IR-Finite Integrals in the Bremsstrahlung Contribution
References
- Brown, L.M. The idea of the neutrino. Phys. Today 1978, 31N9, 23–28. [Google Scholar] [CrossRef]
- Fermi, E. An attempt of a theory of beta radiation. 1. Z. Phys. 1934, 88, 161–177. [Google Scholar] [CrossRef]
- Wu, C.S.; Ambler, E.; Hayward, R.W.; Hoppes, D.D.; Hudson, R.P. Experimental Test of Parity Conservation in β Decay. Phys. Rev. 1957, 105, 1413–1414. [Google Scholar] [CrossRef]
- Lee, T.D.; Yang, C.N. Question of Parity Conservation in Weak Interactions. Phys. Rev. 1956, 104, 254–258. [Google Scholar] [CrossRef]
- Feynman, R.P.; Gell-Mann, M. Theory of Fermi interaction. Phys. Rev. 1958, 109, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Sudarshan, E.C.G.; Marshak, R.E. Chirality invariance and the universal Fermi interaction. Phys. Rev. 1958, 109, 1860. [Google Scholar] [CrossRef]
- Cabibbo, N. Unitary Symmetry and Leptonic Decays. Phys. Rev. Lett. 1963, 10, 531–533. [Google Scholar] [CrossRef]
- Kobayashi, M.; Maskawa, T. CP Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys. 1973, 49, 652–657. [Google Scholar] [CrossRef] [Green Version]
- Christenson, J.H.; Cronin, J.W.; Fitch, V.L.; Turlay, R. Evidence for the 2π Decay of the K20 Meson. Phys. Rev. Lett. 1964, 13, 138–140. [Google Scholar] [CrossRef] [Green Version]
- Aghanim, N. et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.D. The Faintest Dwarf Galaxies. Ann. Rev. Astron. Astrophys. 2019, 57, 375–415. [Google Scholar] [CrossRef] [Green Version]
- Salucci, P. The distribution of dark matter in galaxies. Astron. Astrophys. Rev. 2019, 27, 2. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.W.; Evrard, A.E.; Mantz, A.B. Cosmological Parameters from Observations of Galaxy Clusters. Ann. Rev. Astron. Astrophys. 2011, 49, 409–470. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G. et al. [Supernova Search Team] Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S. et al. [Supernova Cosmology Project Collaboration] Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Sakharov, A.D. Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe. Sov. Phys. Usp. 1991, 34, 392–393. [Google Scholar] [CrossRef] [Green Version]
- Mossa, V.; et al. The baryon density of the Universe from an improved rate of deuterium burning. Nature 2020, 587, 210–213. Available online: https://www.nature.com/articles/s41586-020-2878-4 (accessed on 28 September 2021). [CrossRef]
- Chatrchyan, S. et al. [CMS Collaboration] Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef]
- Central Scientific Results Page of the ATLAS Collaboration. Available online: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ (accessed on 28 September 2021).
- Central Scientific Results Page of the CMS Collaboration. Available online: http://cms-results.web.cern.ch/cms-results/public-results/publications/ (accessed on 28 September 2021).
- Abada, A. et al. [FCC Collaboration] FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1. Eur. Phys. J. C 2019, 79, 474. [Google Scholar] [CrossRef] [Green Version]
- Abada, A. et al. [FCC Collaboration] FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2. Eur. Phys. J. ST 2019, 228, 261–623. [Google Scholar] [CrossRef]
- Abada, A. et al. [FCC Collaboration] FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3. Eur. Phys. J. Spec. Top. 2019, 228, 755–1107. [Google Scholar] [CrossRef]
- Chou, W. et al. [CEPC Study Group] CEPC Conceptual Design Report: Volume 1—Accelerator. arXiv 2018, arXiv:1809.00285. [Google Scholar]
- Dong, M. et al. [CEPC Study Group] CEPC Conceptual Design Report: Volume 2—Physics & Detector. arXiv 2018, arXiv:1811.10545. [Google Scholar]
- Zyla, P. et al. [Particle Data Group] Review of Particle Physics. PTEP 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Bryman, D.; Shrock, R. Improved Constraints on Sterile Neutrinos in the MeV to GeV Mass Range. Phys. Rev. D 2019, 100, 053006. [Google Scholar] [CrossRef] [Green Version]
- Bryman, D.; Shrock, R. Constraints on Sterile Neutrinos in the MeV to GeV Mass Range. Phys. Rev. D 2019, 100, 073011. [Google Scholar] [CrossRef] [Green Version]
- Kirk, M. Cabibbo anomaly versus electroweak precision tests: An exploration of extensions of the standard model. Phys. Rev. D 2021, 103, 035004. [Google Scholar] [CrossRef]
- Grossman, Y.; Passemar, E.; Schacht, S. On the Statistical Treatment of the Cabibbo Angle Anomaly. JHEP 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Belfatto, B.; Beradze, R.; Berezhiani, Z. The CKM unitarity problem: A trace of new physics at the TeV scale? Eur. Phys. J. C 2020, 80, 149. [Google Scholar] [CrossRef]
- Cheung, K.; Keung, W.Y.; Lu, C.T.; Tseng, P.Y. Vector-like Quark Interpretation for the CKM Unitarity Violation, Excess in Higgs Signal Strength, and Bottom Quark Forward-Backward Asymmetry. JHEP 2020, 05, 117. [Google Scholar] [CrossRef]
- Jho, Y.; Lee, S.M.; Park, S.C.; Park, Y.; Tseng, P.Y. Light gauge boson interpretation for (g-2)μ and the KL→π0 + (invisible) anomaly at the J-PARC KOTO experiment. JHEP 2020, 04, 086. [Google Scholar] [CrossRef] [Green Version]
- Yue, C.X.; Cheng, X.J. Constraints on the charged-current non-standard neutrino interactions induced by the gauge boson W’. Nucl. Phys. B 2021, 963, 115280. [Google Scholar] [CrossRef]
- Endo, M.; Mishima, S. Muon g-2 and CKM unitarity in extra lepton models. JHEP 2020, 2020, 1–23. [Google Scholar] [CrossRef]
- Capdevila, B.; Crivellin, A.; Manzari, C.A.; Montull, M. Explaining b→sℓ+ℓ− and the Cabibbo angle anomaly with a vector triplet. Phys. Rev. D 2021, 103, 015032. [Google Scholar] [CrossRef]
- Eberhardt, O.; Martínez, A.P.N.; Pich, A. Global fits in the Aligned Two-Higgs-Doublet model. arXiv 2020, arXiv:2012.09200. [Google Scholar]
- Crivellin, A.; Hoferichter, M. β Decays as Sensitive Probes of Lepton Flavor Universality. Phys. Rev. Lett. 2020, 125, 111801. [Google Scholar] [CrossRef]
- Coutinho, A.M.; Crivellin, A.; Manzari, C.A. Global Fit to Modified Neutrino Couplings and the Cabibbo-Angle Anomaly. Phys. Rev. Lett. 2020, 125, 071802. [Google Scholar] [CrossRef]
- Gonzalez-Alonso, M.; Naviliat-Cuncic, O.; Severijns, N. New physics searches in nuclear and neutron β decay. Prog. Part. Nucl. Phys. 2019, 104, 165–223. [Google Scholar] [CrossRef] [Green Version]
- Falkowski, A.; González-Alonso, M.; Tabrizi, Z. Reactor neutrino oscillations as constraints on Effective Field Theory. JHEP 2019, 05, 173. [Google Scholar] [CrossRef] [Green Version]
- Cirigliano, V.; Garcia, A.; Gazit, D.; Naviliat-Cuncic, O.; Savard, G.; Young, A. Precision Beta Decay as a Probe of New Physics. arXiv 2019, arXiv:1907.02164. [Google Scholar]
- Falkowski, A.; González-Alonso, M.; Naviliat-Cuncic, O. Comprehensive analysis of beta decays within and beyond the Standard Model. JHEP 2021, 04, 126. [Google Scholar] [CrossRef]
- Bečirević, D.; Jaffredo, F.; Peñuelas, A.; Sumensari, O. New Physics effects in leptonic and semileptonic decays. arXiv 2020, arXiv:2012.09872. [Google Scholar]
- Crivellin, A.; Hoferichter, M.; Manzari, C.A. The Fermi constant from muon decay versus electroweak fits and CKM unitarity. arXiv 2021, arXiv:2102.02825. [Google Scholar]
- Tan, W. Laboratory tests of the ordinary-mirror particle oscillations and the extended CKM matrix. arXiv 2019, arXiv:1906.10262. [Google Scholar]
- Crivellin, A.; Hoferichter, M.; Kirk, M.; Manzari, C.A.; Schnell, L. First-Generation New Physics in Simplified Models: From Low-Energy Parity Violation to the LHC. arXiv 2021, arXiv:2107.13569. [Google Scholar]
- Crivellin, A.; Kirk, F.; Manzari, C.A.; Montull, M. Global Electroweak Fit and Vector-Like Leptons in Light of the Cabibbo Angle Anomaly. JHEP 2020, 12, 166. [Google Scholar] [CrossRef]
- Crivellin, A.; Kirk, F.; Manzari, C.A.; Panizzi, L. Searching for lepton flavor universality violation and collider signals from a singly charged scalar singlet. Phys. Rev. D 2021, 103, 073002. [Google Scholar] [CrossRef]
- Dekens, W.; Andreoli, L.; de Vries, J.; Mereghetti, E.; Oosterhof, F. A low-energy perspective on the minimal left-right symmetric model. arXiv 2021, arXiv:2107.10852. [Google Scholar]
- Abi, B. et al. [Muon g-2 Collaboration] Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; et al. The anomalous magnetic moment of the muon in the Standard Model. Phys. Rept. 2020, 887, 1–166. Available online: https://www.sciencedirect.com/science/article/pii/S0370157320302556 (accessed on 28 September 2021). [CrossRef]
- Miller, J.P.; de Rafael, E.; Roberts, B.L. Muon (g-2): Experiment and theory. Rept. Prog. Phys. 2007, 70, 795. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.P.; de Rafael, E.; Roberts, B.L.; Stöckinger, D. Muon (g-2): Experiment and Theory. Ann. Rev. Nucl. Part. Sci. 2012, 62, 237–264. [Google Scholar] [CrossRef]
- Jegerlehner, F.; Nyffeler, A. The Muon g-2. Phys. Rept. 2009, 477, 1–110. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R. et al. [LHCb Collaboration] Search for lepton-universality violation in B+→K+ℓ+ℓ− decays. Phys. Rev. Lett. 2019, 122, 191801. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R. et al. [LHCb Collaboration] Test of lepton universality using B+→K+ℓ+ℓ− decays. Phys. Rev. Lett. 2014, 113, 151601. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R. et al. [LHCb Collaboration] Measurement of the ratio of branching fractions B(B¯0→D*+τ−ν¯τ)/B(B¯0→D*+μ−ν¯μ). Phys. Rev. Lett. 2015, 115, 111803, Erratum in Phys. Rev. Lett. 2015, 115, 159901. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R. et al. [LHCb Collaboration] Angular analysis of the B0→K*0μ+μ− decay using 3 fb−1 of integrated luminosity. JHEP 2016, 02, 104. [Google Scholar] [CrossRef]
- Behrends, R.E.; Finkelstein, R.J.; Sirlin, A. Radiative corrections to decay processes. Phys. Rev. 1956, 101, 866–873. [Google Scholar] [CrossRef]
- Kinoshita, T.; Sirlin, A. Muon Decay with Parity Nonconserving Interactions and Radiative Corrections in the Two-Component Theory. Phys. Rev. 1957, 107, 593–599. [Google Scholar] [CrossRef]
- Kinoshita, T.; Sirlin, A. Radiative corrections to Fermi interactions. Phys. Rev. 1959, 113, 1652–1660. [Google Scholar] [CrossRef]
- Sirlin, A. General Properties of the Electromagnetic Corrections to the Beta Decay of a Physical Nucleon. Phys. Rev. 1967, 164, 1767–1775. [Google Scholar] [CrossRef]
- Kallen, G. Radiative Corrections to β-Decay and Nucleon Form Factors. Nucl. Phys. B 1967, 1, 225–263. [Google Scholar] [CrossRef]
- Wilkinson, D.; Macefield, B. The numerical evaluation of radiative corrections of order α to allowed nuclear β-decay. Nucl. Phys. A 1970, 158, 110–116. [Google Scholar] [CrossRef]
- Glashow, S.L. Partial Symmetries of Weak Interactions. Nucl. Phys. 1961, 22, 579–588. [Google Scholar] [CrossRef]
- Weinberg, S. A Model of Leptons. Phys. Rev. Lett. 1967, 19, 1264–1266. [Google Scholar] [CrossRef]
- Salam, A. Weak and Electromagnetic Interactions. Conf. Proc. C 1968, 680519, 367–377. [Google Scholar] [CrossRef]
- Sirlin, A. Radiative corrections to g(v)/g(mu) in simple extensions of the su(2) x u(1) gauge model. Nucl. Phys. B 1974, 71, 29–51. [Google Scholar] [CrossRef]
- Sirlin, A. Current Algebra Formulation of Radiative Corrections in Gauge Theories and the Universality of the Weak Interactions. Rev. Mod. Phys. 1978, 50, 573, Erratum in Rev. Mod. Phys. 1978, 50, 905. [Google Scholar] [CrossRef]
- Gross, D.J.; Wilczek, F. Ultraviolet Behavior of Nonabelian Gauge Theories. Phys. Rev. Lett. 1973, 30, 1343–1346. [Google Scholar] [CrossRef] [Green Version]
- Politzer, H.D. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 1973, 30, 1346–1349. [Google Scholar] [CrossRef] [Green Version]
- Sirlin, A. Large m(W), m(Z) Behavior of the O(alpha) Corrections to Semileptonic Processes Mediated by W. Nucl. Phys. 1982, B196, 83–92. [Google Scholar] [CrossRef]
- Ginsberg, E.S. Radiative Corrections to Kl-3 +/− Decays. Phys. Rev. 1966, 142, 1035–1040. [Google Scholar] [CrossRef]
- Ginsberg, E.S. Radiative corrections to k-e-3-neutral decays and the delta-i=1/2 rule. (erratum). Phys. Rev. 1968, 171, 1675, Erratum in Phys. Rev. 1968, 174, 2169. [Google Scholar] [CrossRef]
- Ginsberg, E.S. Radiative corrections to the k-l-3 +- dalitz plot. Phys. Rev. 1967, 162, 1570, Erratum in Phys. Rev. 1969, 187, 2280. [Google Scholar] [CrossRef]
- Ginsberg, E. Radiative corrections to k-mu-3 decays. Phys. Rev. D 1970, 1, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Becherrawy, T. Radiative Correction to K(l3) Decay. Phys. Rev. D 1970, 1, 1452–1468. [Google Scholar] [CrossRef]
- Bytev, V.; Kuraev, E.; Baratt, A.; Thompson, J. Radiative corrections to the K+-(e3) decay revised. Eur. Phys. J. C 2004, 27, 57–71, Erratum in Eur. Phys. J. C 2004, 34, 523–524. [Google Scholar] [CrossRef]
- Andre, T.C. Radiative corrections in K0(l3) decays. Ann. Phys. 2007, 322, 2518–2544. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.; Maya, M. Model Independent Radiative Corrections to M+-(l3) Decays. Phys. Rev. D 1981, 23, 2603. [Google Scholar] [CrossRef]
- Juarez-Leon, C.; Martinez, A.; Neri, M.; Torres, J.; Flores-Mendieta, R. Radiative corrections to the Dalitz plot of Kl3± decays. Phys. Rev. D 2012, 83, 054004, Erratum in Phys. Rev. D 2012, 86, 059901. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.; Martinez, A.; Neri, M.; Juarez-Leon, C.; Flores-Mendieta, R. Radiative corrections to the Dalitz plot of Kl3± decays: Contribution of the four-body region. Phys. Rev. D 2012, 86, 077501. [Google Scholar] [CrossRef] [Green Version]
- Neri, M.; Martínez, A.; Juárez-León, C.; Torres, J.; Flores-Mendieta, R. Radiative corrections to the Dalitz plot of Kl30 decays. Phys. Rev. D 2015, 92, 074022. [Google Scholar] [CrossRef] [Green Version]
- Urech, R. Virtual photons in chiral perturbation theory. Nucl. Phys. 1995, B433, 234–254. [Google Scholar] [CrossRef] [Green Version]
- Knecht, M.; Neufeld, H.; Rupertsberger, H.; Talavera, P. Chiral perturbation theory with virtual photons and leptons. Eur. Phys. J. 2000, C12, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Ananthanarayan, B.; Moussallam, B. Four-point correlator constraints on electromagnetic chiral parameters and resonance effective Lagrangians. JHEP 2004, 06, 047. [Google Scholar] [CrossRef] [Green Version]
- Descotes-Genon, S.; Moussallam, B. Radiative corrections in weak semi-leptonic processes at low energy: A Two-step matching determination. Eur. Phys. J. 2005, C42, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Cirigliano, V.; Knecht, M.; Neufeld, H.; Pichl, H. The Pionic beta decay in chiral perturbation theory. Eur. Phys. J. C 2003, 27, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Cirigliano, V.; Knecht, M.; Neufeld, H.; Rupertsberger, H.; Talavera, P. Radiative corrections to K(l3) decays. Eur. Phys. J. 2002, C23, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Cirigliano, V.; Neufeld, H.; Pichl, H. K(e3) decays and CKM unitarity. Eur. Phys. J. C 2004, 35, 53–65. [Google Scholar] [CrossRef]
- Cirigliano, V.; Giannotti, M.; Neufeld, H. Electromagnetic effects in K(l3) decays. JHEP 2008, 11, 006. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.S. Perturbation theory and selfmass insertions. Phys. Rev. 1969, 187, 2260–2265. [Google Scholar] [CrossRef]
- Adler, S.L.; Tung, W.K. Breakdown of asymptotic sum rules in perturbation theory. Phys. Rev. Lett. 1969, 22, 978–981. [Google Scholar] [CrossRef]
- Seng, C.Y.; Galviz, D.; Meißner, U.G. A New Theory Framework for the Electroweak Radiative Corrections in Kl3 Decays. JHEP 2020, 2020, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Seng, C.Y.; Feng, X.; Gorchtein, M.; Jin, L.C.; Meißner, U.G. New method for calculating electromagnetic effects in semileptonic beta-decays of mesons. JHEP 2020, 10, 179. [Google Scholar] [CrossRef]
- Kinoshita, T. Mass singularities of Feynman amplitudes. J. Math. Phys. 1962, 3, 650–677. [Google Scholar] [CrossRef]
- Lee, T.D.; Nauenberg, M. Degenerate Systems and Mass Singularities. Phys. Rev. 1964, 133, B1549–B1562. [Google Scholar] [CrossRef]
- Erler, J. Electroweak radiative corrections to semileptonic tau decays. Rev. Mex. Fis. 2004, 50, 200–202. [Google Scholar]
- Czarnecki, A.; Marciano, W.J.; Sirlin, A. Precision measurements and CKM unitarity. Phys. Rev. D 2004, 70, 093006. [Google Scholar] [CrossRef] [Green Version]
- Cirigliano, V.; Ecker, G.; Neufeld, H.; Pich, A.; Portoles, J. Kaon Decays in the Standard Model. Rev. Mod. Phys. 2012, 84, 399. [Google Scholar] [CrossRef] [Green Version]
- Scherer, S.; Schindler, M.R. A Primer for Chiral Perturbation Theory; Springer: Heidelberg, Germany, 2012; Volume 830. [Google Scholar] [CrossRef]
- Bernard, V.; Kaiser, N.; Meißner, U.G. Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E 1995, 4, 193–346. [Google Scholar] [CrossRef] [Green Version]
- Bernard, V. Chiral Perturbation Theory and Baryon Properties. Prog. Part. Nucl. Phys. 2008, 60, 82–160. [Google Scholar] [CrossRef] [Green Version]
- Gell-Mann, M. The Eightfold Way: A Theory of Strong Interaction Symmetry. 1961. Available online: https://www.osti.gov/biblio/4008239-eightfold-way-theory-strong-interaction-symmetry (accessed on 28 September 2021). [CrossRef] [Green Version]
- Ne’eman, Y. Derivation of strong interactions from a gauge invariance. Nucl. Phys. 1961, 26, 222–229. [Google Scholar] [CrossRef]
- Nambu, Y. Quasiparticles and Gauge Invariance in the Theory of Superconductivity. Phys. Rev. 1960, 117, 648–663. [Google Scholar] [CrossRef]
- Goldstone, J. Field Theories with Superconductor Solutions. Nuovo Cim. 1961, 19, 154–164. [Google Scholar] [CrossRef]
- Gasser, J.; Leutwyler, H. Chiral Perturbation Theory to One Loop. Ann. Phys. 1984, 158, 142. [Google Scholar] [CrossRef] [Green Version]
- Gasser, J.; Leutwyler, H. Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark. Nucl. Phys. 1985, B250, 465–516. [Google Scholar] [CrossRef] [Green Version]
- Fearing, H.W.; Scherer, S. Extension of the chiral perturbation theory meson Lagrangian to order p(6). Phys. Rev. D 1996, 53, 315–348. [Google Scholar] [CrossRef] [Green Version]
- Bijnens, J.; Colangelo, G.; Ecker, G. The Mesonic chiral Lagrangian of order p**6. JHEP 1999, 02, 020. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, E.E.; Manohar, A.V. Baryon chiral perturbation theory using a heavy fermion Lagrangian. Phys. Lett. B 1991, 255, 558–562. [Google Scholar] [CrossRef]
- Bernard, V.; Kaiser, N.; Kambor, J.; Meißner, U.G. Chiral structure of the nucleon. Nucl. Phys. B 1992, 388, 315–345. [Google Scholar] [CrossRef]
- Becher, T.; Leutwyler, H. Baryon chiral perturbation theory in manifestly Lorentz invariant form. Eur. Phys. J. C 1999, 9, 643–671. [Google Scholar] [CrossRef]
- Fuchs, T.; Gegelia, J.; Japaridze, G.; Scherer, S. Renormalization of relativistic baryon chiral perturbation theory and power counting. Phys. Rev. D 2003, 68, 056005. [Google Scholar] [CrossRef] [Green Version]
- Gegelia, J.; Japaridze, G. Matching heavy particle approach to relativistic theory. Phys. Rev. D 1999, 60, 114038. [Google Scholar] [CrossRef] [Green Version]
- Ando, S.; Fearing, H.W.; Gudkov, V.P.; Kubodera, K.; Myhrer, F.; Nakamura, S.; Sato, T. Neutron beta decay in effective field theory. Phys. Lett. B 2004, 595, 250–259. [Google Scholar] [CrossRef]
- Bernard, V.; Gardner, S.; Meißner, U.G.; Zhang, C. Radiative neutron β-decay in effective field theory. Phys. Lett. B 2004, 593, 105–114, Erratum in Phys. Lett. B 2004, 599, 348–348. [Google Scholar] [CrossRef]
- Behrends, R.E.; Sirlin, A. Effect of mass splittings on the conserved vector current. Phys. Rev. Lett. 1960, 4, 186–187. [Google Scholar] [CrossRef]
- Ademollo, M.; Gatto, R. Nonrenormalization Theorem for the Strangeness Violating Vector Currents. Phys. Rev. Lett. 1964, 13, 264–265. [Google Scholar] [CrossRef]
- Pocanic, D.; et al. Precise measurement of the pi+ —> pi0 e+ nu branching ratio. Phys. Rev. Lett. 2004, 93, 181803. Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.181803 (accessed on 28 September 2021). [CrossRef] [Green Version]
- Czarnecki, A.; Marciano, W.J.; Sirlin, A. Pion beta decay and Cabibbo–Kobayashi–Maskawa unitarity. Phys. Rev. D 2020, 101, 091301. [Google Scholar] [CrossRef]
- Meister, N.; Yennie, D. Radiative Corrections to High-Energy Scattering Processes. Phys. Rev. 1963, 130, 1210–1229. [Google Scholar] [CrossRef]
- Cirigliano, V. K(e3) and pi(e3) decays: Radiative corrections and CKM unitarity. In Proceedings of the 38th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, France, 15–22 March 2003. [Google Scholar]
- Moussallam, B. A Sum rule approach to the violation of Dashen’s theorem. Nucl. Phys. B 1997, 504, 381–414. [Google Scholar] [CrossRef] [Green Version]
- Knecht, M. Chiral perturbation theory confronted with experiment. Frascati Phys. Ser. 2004, 36, 397–404. [Google Scholar]
- Feng, X.; Gorchtein, M.; Jin, L.C.; Ma, P.X.; Seng, C.Y. First-principles calculation of electroweak box diagrams from lattice QCD. Phys. Rev. Lett. 2020, 124, 192002. [Google Scholar] [CrossRef]
- Gross, D.J.; Llewellyn Smith, C.H. High-energy neutrino—Nucleon scattering, current algebra and partons. Nucl. Phys. 1969, B14, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Marciano, W.J.; Sirlin, A. Improved calculation of electroweak radiative corrections and the value of V(ud). Phys. Rev. Lett. 2006, 96, 032002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjorken, J.D. Applications of the Chiral U(6) x (6) Algebra of Current Densities. Phys. Rev. 1966, 148, 1467–1478. [Google Scholar] [CrossRef]
- Bjorken, J.D. Inelastic Scattering of Polarized Leptons from Polarized Nucleons. Phys. Rev. D 1970, 1, 1376–1379. [Google Scholar] [CrossRef] [Green Version]
- Baikov, P.A.; Chetyrkin, K.G.; Kuhn, J.H. Adler Function, DIS sum rules and Crewther Relations. Nucl. Phys. B Proc. Suppl. 2010, 205–206, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Baikov, P.; Chetyrkin, K.; Kuhn, J. Adler Function, Bjorken Sum Rule, and the Crewther Relation to Order αs4 in a General Gauge Theory. Phys. Rev. Lett. 2010, 104, 132004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chetyrkin, K.G.; Kuhn, J.H.; Steinhauser, M. RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun. 2000, 133, 43–65. [Google Scholar] [CrossRef] [Green Version]
- Seng, C.Y. Vud radiative corrections with lattice input. In Proceedings of the 55th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Virtual Conference. 21–27 March 2021. [Google Scholar]
- Aguilar-Arevalo, A.; et al. Testing Lepton Flavor Universality and CKM Unitarity with Rare Pion Decay. Available online: https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF2_RF3-048.pdf (accessed on 11 September 2021).
- Weinberg, S. Charge symmetry of weak interactions. Phys. Rev. 1958, 112, 1375–1379. [Google Scholar] [CrossRef]
- Jackson, J.D.; Treiman, S.B.; Wyld, H.W. Possible tests of time reversal invariance in Beta decay. Phys. Rev. 1957, 106, 517–521. [Google Scholar] [CrossRef]
- Holstein, B.R. Recoil Effects in Allowed beta Decay: The Elementary Particle Approach. Rev. Mod. Phys. 1976, 46, 789, Erratum in Rev. Mod. Phys. 1976, 48, 673–673. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, D.H. Analysis of Neutron Beta Decay. Nucl. Phys. A 1982, 377, 474–504. [Google Scholar] [CrossRef]
- Gudkov, V.P. Asymmetry of recoil protons in neutron beta-decay. Phys. Rev. C 2008, 77, 045502. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Pitschmann, M.; Troitskaya, N.I. Neutron β− decay as a laboratory for testing the standard model. Phys. Rev. D 2013, 88, 073002. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Höllwieser, R.; Troitskaya, N.I.; Wellenzohn, M.; Berdnikov, Y.A. Corrections of order O(Ee2/mN2), caused by weak magnetism and proton recoil, to the neutron lifetime and correlation coefficients of the neutron beta decay. Results Phys. 2021, 21, 103806. [Google Scholar] [CrossRef]
- Burkhardt, H.; Cottingham, W.N. Sum rules for forward virtual Compton scattering. Ann. Phys. 1970, 56, 453–463. [Google Scholar] [CrossRef]
- Bowman, J.D.; et al. Determination of the Free Neutron Lifetime. arXiv 2014, arXiv:1410.5311. Available online: https://arxiv.org/abs/1410.5311 (accessed on 28 September 2021).
- Bopp, P.; Dubbers, D.; Hornig, L.; Klemt, E.; Last, J.; Schutze, H.; Freedman, S.J.; Scharpf, O. The Beta Decay Asymmetry of the Neutron and gA/gV. Phys. Rev. Lett. 1986, 56, 919, Erratum in Phys. Rev. Lett. 1986, 57, 1192. [Google Scholar] [CrossRef]
- Erozolimsky, B.; Kuznetsov, I.; Stepanenko, I.; Mostovoi, Y.A. Corrigendum: Corrected value of the beta-emission asymmetry in the decay of polarized neutrons measured in 1990. Phys. Lett. B 1997, 412, 240–241. [Google Scholar] [CrossRef]
- Liaud, P.; Schreckenbach, K.; Kossakowski, R.; Nastoll, H.; Bussiere, A.; Guillaud, J.P.; Beck, L. The measurement of the beta asymmetry in the decay of polarized neutrons. Nucl. Phys. A 1997, 612, 53–81. [Google Scholar] [CrossRef]
- Mostovoi, Y.A.; et al. Experimental value of G(A)/G(V) from a measurement of both P-odd correlations in free-neutron decay. Phys. Atom. Nucl. 2001, 64, 1955–1960. Available online: https://link.springer.com/article/10.1134/1.1423745 (accessed on 28 September 2021). [CrossRef]
- Schumann, M.; Kreuz, M.; Deissenroth, M.; Gluck, F.; Krempel, J.; Markisch, B.; Mund, D.; Petoukhov, A.; Soldner, T.; Abele, H. Measurement of the Proton Asymmetry Parameter C in Neutron Beta Decay. Phys. Rev. Lett. 2008, 100, 151801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mund, D.; Maerkisch, B.; Deissenroth, M.; Krempel, J.; Schumann, M.; Abele, H.; Petoukhov, A.; Soldner, T. Determination of the Weak Axial Vector Coupling from a Measurement of the Beta-Asymmetry Parameter A in Neutron Beta Decay. Phys. Rev. Lett. 2013, 110, 172502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darius, G.; et al. Measurement of the Electron-Antineutrino Angular Correlation in Neutron β Decay. Phys. Rev. Lett. 2017, 119, 042502. Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.042502 (accessed on 28 September 2021). [CrossRef] [PubMed] [Green Version]
- Brown, M.A.P. et al. [UCNA Collaboration] New result for the neutron β-asymmetry parameter A0 from UCNA. Phys. Rev. C 2018, 97, 035505. [Google Scholar] [CrossRef] [Green Version]
- Märkisch, B.; et al. Measurement of the Weak Axial-Vector Coupling Constant in the Decay of Free Neutrons Using a Pulsed Cold Neutron Beam. Phys. Rev. Lett. 2019, 122, 242501. Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.242501 (accessed on 28 September 2021). [CrossRef] [Green Version]
- Czarnecki, A.; Marciano, W.J.; Sirlin, A. Neutron Lifetime and Axial Coupling Connection. Phys. Rev. Lett. 2018, 120, 202002. [Google Scholar] [CrossRef] [Green Version]
- Pattie, R.W.; et al. Status of the UCNτ experiment. EPJ Web Conf. 2019, 219, 03004. Available online: https://inspirehep.net/literature/1770567 (accessed on 28 September 2021). [CrossRef] [Green Version]
- Wietfeldt, F.E.; Darius, G.; Dewey, M.S.; Fomin, N.; Greene, G.L.; Mulholland, J.; Snow, W.M.; Yue, A.T. A Path to a 0.1 s Neutron Lifetime Measurement Using the Beam Method. Phys. Procedia 2014, 51, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Fry, J.; et al. The Nab Experiment: A Precision Measurement of Unpolarized Neutron Beta Decay. EPJ Web Conf. 2019, 219, 04002. Available online: https://www.osti.gov/biblio/1761725 (accessed on 28 September 2021). [CrossRef] [Green Version]
- Dubbers, D.; Abele, H.; Baessler, S.; Maerkisch, B.; Schumann, M.; Soldner, T.; Zimmer, O. A Clean, bright, and versatile source of neutron decay products. Nucl. Instrum. Meth. A 2008, 596, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. et al. [PERC Collaboration] Design of the magnet system of the neutron decay facility PERC. EPJ Web Conf. 2019, 219, 04007. [Google Scholar] [CrossRef] [Green Version]
- Marciano, W.J.; Sirlin, A. Radiative Corrections to beta Decay and the Possibility of a Fourth Generation. Phys. Rev. Lett. 1986, 56, 22. [Google Scholar] [CrossRef]
- Hardy, J.C.; Towner, I.S. Superallowed 0+ —> 0+ nuclear beta decays: A Critical survey with tests of CVC and the standard model. Phys. Rev. C 2005, 71, 055501. [Google Scholar] [CrossRef] [Green Version]
- Seng, C.Y.; Gorchtein, M.; Patel, H.H.; Ramsey-Musolf, M.J. Reduced Hadronic Uncertainty in the Determination of Vud. Phys. Rev. Lett. 2018, 121, 241804. [Google Scholar] [CrossRef] [Green Version]
- Nachtmann, O. Positivity constraints for anomalous dimensions. Nucl. Phys. B 1973, 63, 237–247. [Google Scholar] [CrossRef]
- Nachtmann, O. Is There Evidence for Large Anomalous Dimensions? Nucl. Phys. B 1974, 78, 455–467. [Google Scholar] [CrossRef]
- Abramowicz, H. et al. [H1 and ZEUS Collaborations] Combination of measurements of inclusive deep inelastic e±p scattering cross sections and QCD analysis of HERA data. Eur. Phys. J. C 2015, 75, 580. [Google Scholar] [CrossRef] [Green Version]
- Argento, A.; et al. Measurement of the Interference Structure Function Xg(3) (X) in Muon—Nucleon Scattering. Phys. Lett. B 1984, 140, 142–144. Available online: https://inspirehep.net/literature/195945 (accessed on 28 September 2021). [CrossRef] [Green Version]
- Onengut, G. et al. [CHORUS Collaboration] Measurement of nucleon structure functions in neutrino scattering. Phys. Lett. B 2006, 632, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Arrington, J.; Hill, R.J.; Lee, G. Proton and Neutron Electromagnetic Form Factors and Uncertainties. Phys. Lett. B 2018, 777, 8–15. [Google Scholar] [CrossRef]
- Lorenz, I.T.; Hammer, H.W.; Meißner, U.G. The size of the proton—Closing in on the radius puzzle. Eur. Phys. J. A 2012, 48, 151. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, I.T.; Meißner, U.G.; Hammer, H.W.; Dong, Y.B. Theoretical Constraints and Systematic Effects in the Determination of the Proton Form Factors. Phys. Rev. D 2015, 91, 014023. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.H.; Hammer, H.W.; Meißner, U.G. High-precision determination of the electric and magnetic radius of the proton. Phys. Lett. B 2021, 816, 136254. [Google Scholar] [CrossRef]
- Lin, Y.H.; Hammer, H.W.; Meißner, U.G. Dispersion-theoretical analysis of the electromagnetic form factors of the nucleon: Past, present and future. arXiv 2021, arXiv:2106.06357. [Google Scholar]
- Bernard, V.; Elouadrhiri, L.; Meißner, U.G. Axial structure of the nucleon: Topical Review. J. Phys. G 2002, 28, R1–R35. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, B.; Hill, R.J.; Paz, G. Model independent determination of the axial mass parameter in quasielastic neutrino-nucleon scattering. Phys. Rev. D 2011, 84, 073006. [Google Scholar] [CrossRef] [Green Version]
- Seng, C.Y.; Gorchtein, M.; Ramsey-Musolf, M.J. Dispersive evaluation of the inner radiative correction in neutron and nuclear β decay. Phys. Rev. 2019, D100, 013001. [Google Scholar] [CrossRef] [Green Version]
- Lalakulich, O.; Paschos, E.A. Resonance production by neutrinos. I. J = 3/2 resonances. Phys. Rev. D 2005, 71, 074003. [Google Scholar] [CrossRef] [Green Version]
- Baikov, P.A.; Chetyrkin, K.G.; Kuhn, J.H.; Rittinger, J. Adler Function, Sum Rules and Crewther Relation of Order O(αs4): The Singlet Case. Phys. Lett. B 2012, 714, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Kashevarov, V.L.; Ostrick, M.; Tiator, L. Regge phenomenology in π0 and η photoproduction. Phys. Rev. C 2017, 96, 035207. [Google Scholar] [CrossRef] [Green Version]
- Lichard, P. Some implications of meson dominance in weak interactions. Phys. Rev. D 1997, 55, 5385–5407. [Google Scholar] [CrossRef] [Green Version]
- De Swart, J.J. The Octet model and its Clebsch-Gordan coefficients. Rev. Mod. Phys. 1965, 35, 916–939, Erratum in Rev. Mod. Phys. 1965, 37, 326–326. [Google Scholar] [CrossRef] [Green Version]
- Kataev, A.L.; Sidorov, A.V. The Jacobi polynomials QCD analysis of the CCFR data for xF3 and the Q**2 dependence of the Gross-Llewellyn-Smith sum rule. Phys. Lett. 1994, B331, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; et al. Measurement of alpha(s)(Q**2) from the Gross-Llewellyn Smith sum rule. Phys. Rev. Lett. 1998, 81, 3595–3598. Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.3595 (accessed on 28 September 2021). [CrossRef] [Green Version]
- Bolognese, T.; Fritze, P.; Morfin, J.; Perkins, D.H.; Powell, K.; Scott, W.G. Data on the Gross-llewellyn Smith Sum Rule as a Function of q2. Phys. Rev. Lett. 1983, 50, 224. [Google Scholar] [CrossRef] [Green Version]
- Allasia, D.; et al. Q**2 Dependence of the Proton and Neutron Structure Functions from Neutrino and anti-neutrinos Scattering in Deuterium. Z. Phys. 1985, C28, 321. Available online: https://link.springer.com/article/10.1007/BF01413595 (accessed on 28 September 2021). [CrossRef]
- Czarnecki, A.; Marciano, W.J.; Sirlin, A. Radiative Corrections to Neutron and Nuclear Beta Decays Revisited. arXiv 2019, arXiv:1907.06737. [Google Scholar] [CrossRef] [Green Version]
- Hayen, L. Standard Model O(α) renormalization of gA and its impact on new physics searches. arXiv 2020, arXiv:2010.07262. [Google Scholar]
- Hayen, L. Radiative corrections to nucleon weak charges and Beyond Standard Model impact. arXiv 2021, arXiv:2102.03458. [Google Scholar]
- Seng, C.Y.; Feng, X.; Gorchtein, M.; Jin, L.C. Joint lattice QCD–dispersion theory analysis confirms the quark-mixing top-row unitarity deficit. Phys. Rev. D 2020, 101, 111301. [Google Scholar] [CrossRef]
- Shiells, K.; Blunden, P.; Melnitchouk, W. Electroweak axial structure functions and improved extraction of the Vud CKM matrix element. arXiv 2020, arXiv:2012.01580. [Google Scholar]
- Khan, A.A. et al. [QCDSF Collaboration] Axial coupling constant of the nucleon for two flavours of dynamical quarks in finite and infinite volume. Phys. Rev. D 2006, 74, 094508. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.W.; Blum, T.; Ohta, S.; Sasaki, S.; Yamazaki, T. Nucleon structure with two flavors of dynamical domain-wall fermions. Phys. Rev. D 2008, 78, 014505. [Google Scholar] [CrossRef] [Green Version]
- Capitani, S.; Della Morte, M.; von Hippel, G.; Jager, B.; Juttner, A.; Knippschild, B.; Meyer, H.B.; Wittig, H. The nucleon axial charge from lattice QCD with controlled errors. Phys. Rev. D 2012, 86, 074502. [Google Scholar] [CrossRef] [Green Version]
- Horsley, R.; Nakamura, Y.; Nobile, A.; Rakow, P.E.L.; Schierholz, G.; Zanotti, J.M. Nucleon axial charge and pion decay constant from two-flavor lattice QCD. Phys. Lett. B 2014, 732, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Bali, G.S.; Collins, S.; Glässle, B.; Göckeler, M.; Najjar, J.; Rödl, R.H.; Schäfer, A.; Schiel, R.W.; Söldner, W.; Sternbeck, A. Nucleon isovector couplings from Nf=2 lattice QCD. Phys. Rev. D 2015, 91, 054501. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rehim, A.; et al. Nucleon and pion structure with lattice QCD simulations at physical value of the pion mass. Phys. Rev. D 2016, 92, 114513, Erratum in Phys. Rev. D 2016, 93, 039904. Available online: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.114513 (accessed on 28 September 2021). [CrossRef] [Green Version]
- Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Aviles-Casco, A.V. Nucleon axial form factors using Nf = 2 twisted mass fermions with a physical value of the pion mass. Phys. Rev. D 2017, 96, 054507. [Google Scholar] [CrossRef] [Green Version]
- Capitani, S.; Della Morte, M.; Djukanovic, D.; von Hippel, G.M.; Hua, J.; Jäger, B.; Junnarkar, P.M.; Meyer, H.B.; Rae, T.D.; Wittig, H. Isovector axial form factors of the nucleon in two-flavor lattice QCD. Int. J. Mod. Phys. A 2019, 34, 1950009. [Google Scholar] [CrossRef]
- Edwards, R.G.; Fleming, G.T.; Hagler, P.; Negele, J.W.; Orginos, K.; Pochinsky, A.V.; Renner, D.B.; Richards, D.G.; Schroers, W. The Nucleon axial charge in full lattice QCD. Phys. Rev. Lett. 2006, 96, 052001. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, T.; Aoki, Y.; Blum, T.; Lin, H.W.; Lin, M.F.; Ohta, S.; Sasaki, S.; Tweedie, R.J.; Zanotti, J.M. Nucleon axial charge in 2+1 flavor dynamical lattice QCD with domain wall fermions. Phys. Rev. Lett. 2008, 100, 171602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, T.; Aoki, Y.; Blum, T.; Lin, H.W.; Ohta, S.; Sasaki, S.; Tweedie, R.; Zanotti, J. Nucleon form factors with 2+1 flavor dynamical domain-wall fermions. Phys. Rev. D 2009, 79, 114505. [Google Scholar] [CrossRef] [Green Version]
- Bratt, J.D. et al. [LHPC Collaboration] Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions. Phys. Rev. D 2010, 82, 094502. [Google Scholar] [CrossRef] [Green Version]
- Green, J.R.; Engelhardt, M.; Krieg, S.; Negele, J.W.; Pochinsky, A.V.; Syritsyn, S.N. Nucleon Structure from Lattice QCD Using a Nearly Physical Pion Mass. Phys. Lett. B 2014, 734, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, N.; Hashimoto, S.; Kaneko, T.; Ohki, H. Nucleon charges with dynamical overlap fermions. Phys. Rev. D 2018, 98, 054516. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Yang, Y.B.; Draper, T.; Gong, M.; Liu, K.F. Quark spins and Anomalous Ward Identity. Phys. Rev. D 2018, 98, 074505. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, K.I.; Kuramashi, Y.; Sasaki, S.; Tsukamoto, N.; Ukawa, A.; Yamazaki, T. Nucleon form factors on a large volume lattice near the physical point in 2+1 flavor QCD. Phys. Rev. D 2018, 98, 074510. [Google Scholar] [CrossRef] [Green Version]
- Ottnad, K.; Harris, T.; Meyer, H.; von Hippel, G.; Wilhelm, J.; Wittig, H. Nucleon charges and quark momentum fraction with Nf=2+1 Wilson fermions. arXiv 2018, arXiv:1809.10638. [Google Scholar]
- Bhattacharya, T.; Cirigliano, V.; Cohen, S.; Gupta, R.; Lin, H.W.; Yoon, B. Axial, Scalar and Tensor Charges of the Nucleon from 2+1+1-flavor Lattice QCD. Phys. Rev. D 2016, 94, 054508. [Google Scholar] [CrossRef] [Green Version]
- Berkowitz, E.; et al. An accurate calculation of the nucleon axial charge with lattice QCD. arXiv 2017, arXiv:1704.01114. [Google Scholar]
- Chang, C.C.; et al. A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics. Nature 2018, 558, 91–94. Available online: https://www.nature.com/articles/s41586-018-0161-8 (accessed on 28 September 2021). [CrossRef]
- Gupta, R.; Jang, Y.C.; Yoon, B.; Lin, H.W.; Cirigliano, V.; Bhattacharya, T. Isovector Charges of the Nucleon from 2+1+1-flavor Lattice QCD. Phys. Rev. D 2018, 98, 034503. [Google Scholar] [CrossRef] [Green Version]
- Walker-Loud, A.; et al. Lattice QCD Determination of gA. PoS 2020, CD2018, 020. Available online: https://pos.sissa.it/317/020/ (accessed on 28 September 2021). [CrossRef] [Green Version]
- González-Alonso, M.; Camalich, J.M. Global Effective-Field-Theory analysis of New-Physics effects in (semi)leptonic kaon decays. JHEP 2016, 12, 052. [Google Scholar] [CrossRef] [Green Version]
- Alioli, S.; Cirigliano, V.; Dekens, W.; de Vries, J.; Mereghetti, E. Right-handed charged currents in the era of the Large Hadron Collider. JHEP 2017, 05, 086. [Google Scholar] [CrossRef] [Green Version]
- Anthony, P.L. et al. [E142 Collaboration] Determination of the neutron spin structure function. Phys. Rev. Lett. 1993, 71, 959–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, K. et al. [E143 Collaboration] Precision measurement of the proton spin structure function g1(p). Phys. Rev. Lett. 1995, 74, 346–350. [Google Scholar] [CrossRef] [Green Version]
- Abe, K. et al. [E154 Collaboration] Precision determination of the neutron spin structure function g1(n). Phys. Rev. Lett. 1997, 79, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Adams, D. et al. [Spin Muon (SMC) Collaboration] Measurement of the spin dependent structure function g1(x) of the proton. Phys. Lett. B 1994, 329, 399–406, Erratum in Phys. Lett. B 1994, 339, 332–333. [Google Scholar] [CrossRef] [Green Version]
- Alexakhin, V.Y. et al. [COMPASS Collaboration] The Deuteron Spin-dependent Structure Function g1(d) and its First Moment. Phys. Lett. B 2007, 647, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, M.G. et al. [COMPASS Collaboration] The Spin-dependent Structure Function of the Proton g1p and a Test of the Bjorken Sum Rule. Phys. Lett. B 2010, 690, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Aghasyan, M. et al. [COMPASS Collaboration] Longitudinal double-spin asymmetry A1p and spin-dependent structure function g1p of the proton at small values of x and Q2. Phys. Lett. B 2018, 781, 464–472. [Google Scholar] [CrossRef]
- Ackerstaff, K. et al. [HERMES Collaboration] Measurement of the neutron spin structure function g1(n) with a polarized He-3 internal target. Phys. Lett. B 1997, 404, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Deur, A.; et al. Experimental determination of the evolution of the Bjorken integral at low Q**2. Phys. Rev. Lett. 2004, 93, 212001. Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.212001 (accessed on 28 September 2021). [CrossRef] [Green Version]
- Wesselmann, F.R. et al. [RSS Collaboration] Proton spin structure in the resonance region. Phys. Rev. Lett. 2007, 98, 132003. [Google Scholar] [CrossRef] [Green Version]
- Deur, A.; et al. Experimental study of isovector spin sum rules. Phys. Rev. D 2008, 78, 032001. Available online: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.78.032001 (accessed on 28 September 2021). [CrossRef] [Green Version]
- Guler, N. et al. [CLAS Collaboration] Precise determination of the deuteron spin structure at low to moderate Q2 with CLAS and extraction of the neutron contribution. Phys. Rev. C 2015, 92, 055201. [Google Scholar] [CrossRef] [Green Version]
- Fersch, R. et al. [CLAS Collaboration] Determination of the Proton Spin Structure Functions for 0.05<Q2<5GeV2 using CLAS. Phys. Rev. C 2017, 96, 065208. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X. et al. [CLAS Collaboration] Measurement of the proton spin structure at long distances. Nat. Phys. 2021, 17, 736–741. [Google Scholar] [CrossRef]
- Anthony, P.L. et al. [E155 Collaboration] Measurement of the proton and deuteron spin structure functions g(2) and asymmetry A(2). Phys. Lett. B 1999, 458, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Anthony, P.L. et al. [E155 Collaboration] Precision measurement of the proton and deuteron spin structure functions g(2) and asymmetries A(2). Phys. Lett. B 2003, 553, 18–24. [Google Scholar] [CrossRef]
- Amarian, M. et al. [Jefferson Lab E94-010 Collaboration] Q**2 evolution of the neutron spin structure moments using a He-3 target. Phys. Rev. Lett. 2004, 92, 022301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, K.; et al. Q**2-dependence of the neutron spin structure function g**n(2) at low Q**2. Phys. Rev. Lett. 2005, 95, 142002. Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.142002 (accessed on 28 September 2021). [CrossRef] [PubMed] [Green Version]
- Gorchtein, M.; Seng, C.Y. Dispersion relation analysis of the radiative corrections to gA in the neutron β-decay. arXiv 2021, arXiv:2106.09185. [Google Scholar]
- Deur, A.; Prok, Y.; Burkert, V.; Crabb, D.; Girod, F.X.; Griffioen, K.A.; Guler, N.; Kuhn, S.E.; Kvaltine, N. High precision determination of the Q2 evolution of the Bjorken Sum. Phys. Rev. D 2014, 90, 012009. [Google Scholar] [CrossRef] [Green Version]
- Kotlorz, D.; Mikhailov, S.V.; Teryaev, O.V.; Kotlorz, A. Cut moments approach in the analysis of DIS data. Phys. Rev. D 2017, 96, 016015. [Google Scholar] [CrossRef] [Green Version]
- Ayala, C.; Cvetič, G.; Kotikov, A.V.; Shaikhatdenov, B.G. Bjorken polarized sum rule and infrared-safe QCD couplings. Eur. Phys. J. C 2018, 78, 1002. [Google Scholar] [CrossRef] [Green Version]
- Wandzura, S.; Wilczek, F. Sum Rules for Spin Dependent Electroproduction: Test of Relativistic Constituent Quarks. Phys. Lett. B 1977, 72, 195–198. [Google Scholar] [CrossRef]
- Shuryak, E.V.; Vainshtein, A.I. Theory of Power Corrections to Deep Inelastic Scattering in Quantum Chromodynamics. 2. Q**4 Effects: Polarized Target. Nucl. Phys. B 1982, 201, 141. [Google Scholar] [CrossRef]
- Jaffe, R.L. g2-The Nucleon’s Other Spin-Dependent Structure Function. Comments Nucl. Part. Phys. 1990, 19, 239–257. [Google Scholar]
- Alarcón, J.M.; Hagelstein, F.; Lensky, V.; Pascalutsa, V. Forward doubly-virtual Compton scattering off the nucleon in chiral perturbation theory: II. Spin polarizabilities and moments of polarized structure functions. Phys. Rev. D 2020, 102, 114026. [Google Scholar] [CrossRef]
- Acciarri, R. et al. [DUNE Collaboration] Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 1: The LBNF and DUNE Projects. arXiv 2016, arXiv:1601.05471. [Google Scholar]
- Alvarez-Ruso, L. et al. [NuSTEC Collaboration] NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering. Prog. Part. Nucl. Phys. 2018, 100, 1–68. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, T.; et al. Unitarity of CKM Matrix, |Vud|, Radiative Corrections and Semi-Leptonic Form Factors. Available online: https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF4_EF5-RF2_RF3_Rajan_Gupta-249.pdf (accessed on 31 August 2020).
- Feynman, R.P. Forces in Molecules. Phys. Rev. 1939, 56, 340–343. [Google Scholar] [CrossRef]
- Hellmann, H. Einführung in Die Quantenchemie; Deuticke: Leipzig, Germany; Vienna, Austria, 1937. [Google Scholar]
- Seng, C.Y.; Meißner, U.G. Toward a First-Principles Calculation of Electroweak Box Diagrams. Phys. Rev. Lett. 2019, 122, 211802. [Google Scholar] [CrossRef] [Green Version]
- Chambers, A.; Horsley, R.; Nakamura, Y.; Perlt, H.; Rakow, P.; Schierholz, G.; Schiller, A.; Somfleth, K.; Young, R.; Zanotti, J. Nucleon Structure Functions from Operator Product Expansion on the Lattice. Phys. Rev. Lett. 2017, 118, 242001. [Google Scholar] [CrossRef] [Green Version]
- Chambers, A.J. et al. [QCDSF and UKQCD and CSSM Collaborations] Electromagnetic form factors at large momenta from lattice QCD. Phys. Rev. D 2017, 96, 114509. [Google Scholar] [CrossRef] [Green Version]
- Agadjanov, A.; Meißner, U.G.; Rusetsky, A. Nucleon in a periodic magnetic field. Phys. Rev. D 2017, 95, 031502. [Google Scholar] [CrossRef]
- Agadjanov, A.; Meißner, U.G.; Rusetsky, A. Nucleon in a periodic magnetic field: Finite-volume aspects. Phys. Rev. D 2019, 99, 054501. [Google Scholar] [CrossRef] [Green Version]
- Ruiz de Elvira, J.; Meißner, U.G.; Rusetsky, A.; Schierholz, G. Feynman–Hellmann theorem for resonances and the quest for QCD exotica. Eur. Phys. J. C 2017, 77, 659. [Google Scholar] [CrossRef] [Green Version]
- Borsanyi, S.; et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD. Nature 2021, 593, 51–55. Available online: https://www.nature.com/articles/s41586-021-03418-1 (accessed on 28 September 2021). [CrossRef]
- Towner, I.S.; Hardy, J.C. Superallowed 0 + → 0 + nuclear β-decays. Nucl. Phys. A 1973, 205, 33–55. [Google Scholar] [CrossRef]
- Hardy, J.C.; Towner, I.S. Superallowed 0+ –> 0+ Nuclear beta Decays and Cabibbo Universality. Nucl. Phys. A 1975, 254, 221–240. [Google Scholar] [CrossRef]
- Hardy, J.C.; Towner, I.S.; Koslowsky, V.T.; Hagberg, E.; Schmeing, H. Superallowed 0+ —> 0+ nuclear beta decays: A Critical survey with tests of CVC and the standard model. Nucl. Phys. A 1990, 509, 429–460. [Google Scholar] [CrossRef] [Green Version]
- Hardy, J.C.; Towner, I.S. Superallowed 0+ —> 0+ nuclear beta decays: A New survey with precision tests of the conserved vector current hypothesis and the standard model. Phys. Rev. C 2009, 79, 055502. [Google Scholar] [CrossRef] [Green Version]
- Towner, I.S.; Hardy, J.C. The evaluation of V(ud) and its impact on the unitarity of the Cabibbo–Kobayashi–Maskawa quark-mixing matrix. Rept. Prog. Phys. 2010, 73, 046301. [Google Scholar] [CrossRef] [Green Version]
- Hardy, J.C.; Towner, I.S. Superallowed 0+→0+ nuclear β decays: 2014 critical survey, with precise results for Vud and CKM unitarity. Phys. Rev. C 2015, 91, 025501. [Google Scholar] [CrossRef] [Green Version]
- Hardy, J.C.; Towner, I.S. Superallowed 0+→0+ nuclear β decays: 2020 critical survey, with implications for Vud and CKM unitarity. Phys. Rev. C 2020, 102, 045501. [Google Scholar] [CrossRef]
- Sirlin, A. Remarks Concerning the O(z alpha**2) Corrections to Fermi Decays, Conserved Vector Current Predictions and Universality. Phys. Rev. D 1987, 35, 3423. [Google Scholar] [CrossRef] [PubMed]
- Sirlin, A.; Zucchini, R. Accurate Verification of the Conserved Vector Current and Standard Model Predictions. Phys. Rev. Lett. 1986, 57, 1994–1997. [Google Scholar] [CrossRef]
- Towner, I.S.; Hardy, J.C. An Improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi beta decay. Phys. Rev. C 2008, 77, 025501. [Google Scholar] [CrossRef] [Green Version]
- Towner, I.S. Quenching of spin operators in the calculation of radiative corrections for nuclear beta decay. Phys. Lett. B 1994, 333, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Towner, I.S.; Hardy, J.C. Calculated corrections to superallowed Fermi beta decay: New evaluation of the nuclear structure dependent terms. Phys. Rev. C 2002, 66, 035501. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A.; Wildenthal, B.H. Corrections to the free-nucleon values of the single-particle matrix elements of the M-1 and Gamow-Teller operators, from a comparison of shell-model predictions with sd-shell data. Phys. Rev. C 1983, 28, 2397–2413. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A.; Wildenthal, B.H. Empirically optimum M1 operator for sd-shell nuclei. Nucl. Phys. A 1987, 474, 290–306. [Google Scholar] [CrossRef]
- Towner, I.S. Quenching of spin matrix elements in nuclei. Phys. Rept. 1987, 155, 263–377. [Google Scholar] [CrossRef]
- Jaus, W.; Rasche, G. Nuclear Structure Dependence of O (α) Corrections to Fermi Decays and the Value of the Kobayashi-Maskawa Matrix Element V (U D). Phys. Rev. D 1990, 41, 166–176. [Google Scholar] [CrossRef]
- Towner, I.S. The Nuclear structure dependence of radiative corrections in superallowed Fermi beta decay. Nucl. Phys. A 1992, 540, 478–500. [Google Scholar] [CrossRef]
- Barker, F.C.; Brown, B.A.; Jaus, W.; Rasche, G. Determination of V (ud) from Fermi decays and the unitarity of the KM mixing matrix. Nucl. Phys. A 1992, 540, 501–519. [Google Scholar] [CrossRef]
- Weinberg, S. Nuclear forces from chiral Lagrangians. Phys. Lett. B 1990, 251, 288–292. [Google Scholar] [CrossRef]
- Weinberg, S. Effective chiral Lagrangians for nucleon - pion interactions and nuclear forces. Nucl. Phys. B 1991, 363, 3–18. [Google Scholar] [CrossRef]
- Weinberg, S. Three body interactions among nucleons and pions. Phys. Lett. B 1992, 295, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Van Kolck, U. Effective field theory of nuclear forces. Prog. Part. Nucl. Phys. 1999, 43, 337–418. [Google Scholar] [CrossRef] [Green Version]
- Epelbaum, E. Few-nucleon forces and systems in chiral effective field theory. Prog. Part. Nucl. Phys. 2006, 57, 654–741. [Google Scholar] [CrossRef] [Green Version]
- Machleidt, R.; Entem, D.R. Chiral effective field theory and nuclear forces. Phys. Rept. 2011, 503, 1–75. [Google Scholar] [CrossRef] [Green Version]
- Bernard, V.; Epelbaum, E.; Krebs, H.; Meißner, U.G. Subleading contributions to the chiral three-nucleon force. I. Long-range terms. Phys. Rev. C 2008, 77, 064004. [Google Scholar] [CrossRef] [Green Version]
- Bernard, V.; Epelbaum, E.; Krebs, H.; Meißner, U.G. Subleading contributions to the chiral three-nucleon force II: Short-range terms and relativistic corrections. Phys. Rev. C 2011, 84, 054001. [Google Scholar] [CrossRef]
- Girlanda, L.; Kievsky, A.; Viviani, M. Subleading contributions to the three-nucleon contact interaction. Phys. Rev. C 2020, 84, 014001. [Google Scholar] [CrossRef] [Green Version]
- Krebs, H.; Gasparyan, A.; Epelbaum, E. Chiral three-nucleon force at N4LO I: Longest-range contributions. Phys. Rev. C 2012, 85, 054006. [Google Scholar] [CrossRef] [Green Version]
- Krebs, H.; Gasparyan, A.; Epelbaum, E. Chiral three-nucleon force at N4LO II: Intermediate-range contributions. Phys. Rev. C 2013, 87, 054007. [Google Scholar] [CrossRef] [Green Version]
- Epelbaum, E.; Krebs, H.; Meißner, U.G. Precision nucleon-nucleon potential at fifth order in the chiral expansion. Phys. Rev. Lett. 2015, 115, 122301. [Google Scholar] [CrossRef] [Green Version]
- Entem, D.R.; Kaiser, N.; Machleidt, R.; Nosyk, Y. Dominant contributions to the nucleon-nucleon interaction at sixth order of chiral perturbation theory. Phys. Rev. C 2015, 92, 064001. [Google Scholar] [CrossRef] [Green Version]
- Reinert, P.; Krebs, H.; Epelbaum, E. Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order. Eur. Phys. J. A 2018, 54, 86. [Google Scholar] [CrossRef]
- Entem, D.R.; Machleidt, R.; Nosyk, Y. High-quality two-nucleon potentials up to fifth order of the chiral expansion. Phys. Rev. C 2017, 96, 024004. [Google Scholar] [CrossRef]
- Hammer, H.W.; König, S.; van Kolck, U. Nuclear effective field theory: Status and perspectives. Rev. Mod. Phys. 2020, 92, 025004. [Google Scholar] [CrossRef]
- Lee, D.; Borasoy, B.; Schäfer, T. Nuclear lattice simulations with chiral effective field theory. Phys. Rev. C 2004, 70, 014007. [Google Scholar] [CrossRef] [Green Version]
- Borasoy, B.; Epelbaum, E.; Krebs, H.; Lee, D.; Meißner, U.G. Lattice Simulations for Light Nuclei: Chiral Effective Field Theory at Leading Order. Eur. Phys. J. A 2007, 31, 105–123. [Google Scholar] [CrossRef] [Green Version]
- Lee, D. Lattice simulations for few- and many-body systems. Prog. Part. Nucl. Phys. 2009, 63, 117–154. [Google Scholar] [CrossRef] [Green Version]
- Lähde, T.A.; Meißner, U.G. Nuclear Lattice Effective Field Theory: An Introduction; Springer: Berlin/Heidelberg, Germany, 2019; Volume 957. [Google Scholar] [CrossRef]
- Gorchtein, M. γW Box Inside Out: Nuclear Polarizabilities Distort the Beta Decay Spectrum. Phys. Rev. Lett. 2019, 123, 042503. [Google Scholar] [CrossRef] [Green Version]
- Ormand, W.E.; Brown, B.A. Corrections to the Fermi Matrix Element for Superallowed Beta Decay. Phys. Rev. Lett. 1989, 62, 866–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormand, W.E.; Brown, B.A. Isospin-mixing corrections for fp-shell Fermi transitions. Phys. Rev. C 1995, 52, 2455–2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satula, W.; Dobaczewski, J.; Nazarewicz, W.; Rafalski, M. Microscopic calculations of isospin-breaking corrections to superallowed beta-decay. Phys. Rev. Lett. 2011, 106, 132502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H.; Van Giai, N.; Meng, J. Isospin corrections for superallowed Fermi beta decay in self-consistent relativistic random-phase approximation approaches. Phys. Rev. C 2009, 79, 064316. [Google Scholar] [CrossRef]
- Auerbach, N. Coulomb corrections to superallowed beta decay in nuclei. Phys. Rev. C 2009, 79, 035502. [Google Scholar] [CrossRef] [Green Version]
- Damgaard, J. Corrections to the ft-values of 0+→0+ superallowed β-decays. Nucl. Phys. A 1969, 130, 233–240. [Google Scholar] [CrossRef]
- Koshchii, O.; Erler, J.; Gorchtein, M.; Horowitz, C.J.; Piekarewicz, J.; Roca-Maza, X.; Seng, C.Y.; Spiesberger, H. Weak charge and weak radius of 12C. Phys. Rev. C 2020, 102, 022501. [Google Scholar] [CrossRef]
- Angeli, I.; Marinova, K.P. Table of experimental nuclear ground state charge radii: An update. Atom. Data Nucl. Data Tabl. 2013, 99, 69–95. [Google Scholar] [CrossRef]
- Souder, P.A. Parity Violation in Deep Inelastic Scattering with the SoLID Spectrometer at JLab. Int. J. Mod. Phys. Conf. Ser. 2016, 40, 1660077. [Google Scholar] [CrossRef]
- Becker, D.; et al. The P2 experiment. arXiv 2018, arXiv:1802.04759. Available online: https://link.springer.com/article/10.1140/epja/i2018-12611-6 (accessed on 28 September 2021). [CrossRef]
- Sher, A.; et al. High statistics measurement of the K+ —> pi0 e+ nu (K+(e3)) branching ratio. Phys. Rev. Lett. 2003, 91, 261802. Available online: https://pubmed.ncbi.nlm.nih.gov/14754040/ (accessed on 28 September 2021). [CrossRef] [Green Version]
- Alexopoulos, T. et al. [KTeV Collaboration] A Determination of the CKM parameter |V(us)|. Phys. Rev. Lett. 2004, 93, 181802. [Google Scholar] [CrossRef]
- Alexopoulos, T. et al. [KTeV Collaboration] Measurements of K(L) branching fractions and the CP violation parameter |eta+-|. Phys. Rev. D 2004, 70, 092006. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, T. et al. [KTeV Collaboration] Measurements of semileptonic K(L) decay form-factors. Phys. Rev. D 2004, 70, 092007. [Google Scholar] [CrossRef] [Green Version]
- Abouzaid, E. et al. [KTeV Collaboration] Improved K(L) —> pi+- e-+ nu form factor and phase space integral with reduced model uncertainty. Phys. Rev. D 2006, 74, 097101. [Google Scholar] [CrossRef] [Green Version]
- Abouzaid, E. et al. [KTeV Collaboration] Precise Measurements of Direct CP Violation, CPT Symmetry, and Other Parameters in the Neutral Kaon System. Phys. Rev. D 2011, 83, 092001. [Google Scholar] [CrossRef] [Green Version]
- Ambrosino, F. et al. [KLOE Collaboration] Measurement of the K(L) meson lifetime with the KLOE detector. Phys. Lett. B 2005, 626, 15–23. [Google Scholar] [CrossRef]
- Ambrosino, F. et al. [KLOE Collaboration] Measurement of the branching ratio of the K(L)→π+π− decay with the KLOE detector. Phys. Lett. B 2006, 638, 140–145. [Google Scholar] [CrossRef]
- Ambrosino, F. et al. [KLOE Collaboration] Measurements of the absolute branching ratios for the dominant K(L) decays, the K(L) lifetime, and V(us) with the KLOE detector. Phys. Lett. B 2006, 632, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Ambrosino, F. et al. [KLOE Collaboration] Study of the branching ratio and charge asymmetry for the decay K(s)→πeν with the KLOE detector. Phys. Lett. B 2006, 636, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Sciascia, B. KLOE extraction of Vus from kaon decays and lifetimes. PoS 2006, 21, 287. [Google Scholar] [CrossRef] [Green Version]
- Ambrosino, F. et al. [KLOE Collaboration] Measurement of the form-factor slopes for the decay K(L)→π±e∓ν with the KLOE detector. Phys. Lett. B 2006, 636, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Ambrosino, F. et al. [KLOE Collaboration] Measurement of the charged kaon lifetime with the KLOE detector. JHEP 2008, 01, 073. [Google Scholar] [CrossRef] [Green Version]
- Ambrosino, F. et al. [KLOE Collaboration] Measurement of the absolute branching ratios for semileptonic K± decays with the KLOE detector. JHEP 2008, 02, 098. [Google Scholar] [CrossRef]
- Ambrosino, F. et al. [KLOE Collaboration] Precision Measurement of KS Meson Lifetime with the KLOE detector. Eur. Phys. J. C 2011, 71, 1604. [Google Scholar] [CrossRef] [Green Version]
- Babusci, D. et al. [KLOE Collaboration] Measurement of the branching fraction for the decay KS→πμν with the KLOE detector. Phys. Lett. B 2020, 804, 135378. [Google Scholar] [CrossRef]
- Lai, A. et al. [NA48 Collaboration] Measurement of the branching ratio of the decay K(L) —> pi+- e-+ nu and extraction of the CKM parameter |V(us)|. Phys. Lett. B 2004, 602, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Lai, A. et al. [NA48 Collaboration] Measurement of the ratio Gamma(KL —> pi+ pi−)/Gamma(KL —> pi e nu) and extraction of the CP violation parameter |eta(+-)|. Phys. Lett. B 2007, 645, 26–35. [Google Scholar] [CrossRef]
- Batley, J.R. et al. [NA48/2 Collaboration] Measurements of Charged Kaon Semileptonic Decay Branching Fractions K+- —> pi0 mu+- nu and K+- —> pi0 e+- nu and Their Ratio. Eur. Phys. J. C 2007, 50, 329–340, Erratum in Eur. Phys. J. C 2007, 52, 1021–1023. [Google Scholar] [CrossRef]
- Lai, A. et al. [NA48 Collaboration] Measurement of K0(e3) form-factors. Phys. Lett. B 2004, 604, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Romanovsky, V.I.; et al. Measurement of K- —> pi0 e- anti-nu(gamma) branching ratio. arXiv 2007, arXiv:0704.2052. [Google Scholar]
- Yushchenko, O.P.; et al. High statistic measurement of the K- —> pi0 e- nu decay form-factors. Phys. Lett. B 2004, 589, 111–117. Available online: https://www.osti.gov/etdeweb/biblio/20814462 (accessed on 28 September 2021). [CrossRef]
- Gámiz, E. et al. [Fermilab Lattice and MILC Collaborations] Kaon Semileptonic Form Factors with Nf = 2 + 1 + 1 HISQ Fermions and Physical Light Quark Masses. PoS 2014, LATTICE2013, 395. [Google Scholar] [CrossRef] [Green Version]
- Bazavov, A. et al. [Fermilab Lattice and MILC Collaborations] Determination of |Vus| from a Lattice-QCD Calculation of the K→πℓν Semileptonic Form Factor with Physical Quark Masses. Phys. Rev. Lett. 2014, 112, 112001. [Google Scholar] [CrossRef] [Green Version]
- Bazavov, A. et al. [Fermilab Lattice and MILC Collaborations] |Vus| from Kℓ3 decay and four-flavor lattice QCD. Phys. Rev. 2019, D99, 114509. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, N.; Lami, P.; Lubicz, V.; Riggio, L.; Simula, S.; Tarantino, C. K→π semileptonic form factors with Nf=2+1+1 twisted mass fermions. Phys. Rev. D 2016, 93, 114512. [Google Scholar] [CrossRef] [Green Version]
- Aoki, S. et al. [Flavour Lattice Averaging Group] FLAG Review 2019: Flavour Lattice Averaging Group (FLAG). Eur. Phys. J. C 2020, 80, 113. [Google Scholar] [CrossRef] [Green Version]
- Kakazu, J.; Ishikawa, K.I.; Ishizuka, N.; Kuramashi, Y.; Nakamura, Y.; Namekawa, Y.; Taniguchi, Y.; Ukita, N.; Yamazaki, T.; Yoshié, T. Kl3 form factors at the physical point on a (10.9fm)3 volume. Phys. Rev. D 2020, 101, 094504. [Google Scholar] [CrossRef]
- Antonelli, M. et al. [FlaviaNet Working Group on Kaon Decays Collaboration] An Evaluation of |Vus| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays. Eur. Phys. J. C 2010, 69, 399–424. [Google Scholar] [CrossRef] [Green Version]
- Abouzaid, E. et al. [KTeV Collaboration] Dispersive analysis of K (L mu3) and K (L e3) scalar and vector form factors using KTeV data. Phys. Rev. D 2010, 81, 052001. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.J. Constraints on the form factors for K —> pi l nu and implications for |V(us)|. Phys. Rev. D 2006, 74, 096006. [Google Scholar] [CrossRef] [Green Version]
- Bernard, V.; Oertel, M.; Passemar, E.; Stern, J. K(mu3)**L decay: A Stringent test of right-handed quark currents. Phys. Lett. 2006, B638, 480–486. [Google Scholar] [CrossRef] [Green Version]
- Bernard, V.; Oertel, M.; Passemar, E.; Stern, J. Dispersive representation and shape of the K(l3) form factors: Robustness. Phys. Rev. 2009, D80, 034034. [Google Scholar] [CrossRef] [Green Version]
- Batley, J.R. et al. [NA48/2 Collaboration] Measurement of the form factors of charged kaon semileptonic decays. JHEP 2018, 10, 150. [Google Scholar] [CrossRef] [Green Version]
- Seng, C.Y.; Galviz, D.; Marciano, W.J.; Meißner, U.G. An update on |Vus| and |Vus/Vud| from semileptonic kaon and pion decays. arXiv 2021, arXiv:2107.14708. [Google Scholar]
- Colangelo, G.; Lanz, S.; Leutwyler, H.; Passemar, E. Dispersive analysis of η→3π. Eur. Phys. J. C 2018, 78, 947. [Google Scholar] [CrossRef] [Green Version]
- Bijnens, J.; Prades, J. Electromagnetic corrections for pions and kaons: Masses and polarizabilities. Nucl. Phys. 1997, B490, 239–271. [Google Scholar] [CrossRef] [Green Version]
- Bijnens, J.; Ecker, G. Mesonic low-energy constants. Ann. Rev. Nucl. Part. Sci. 2014, 64, 149–174. [Google Scholar] [CrossRef] [Green Version]
- Giusti, D.; Lubicz, V.; Martinelli, G.; Sachrajda, C.; Sanfilippo, F.; Simula, S.; Tantalo, N. Radiative corrections to decay amplitudes in lattice QCD. PoS 2019, 334, 266. [Google Scholar] [CrossRef]
- Sachrajda, C.; Di Carlo, M.; Martinelli, G.; Giusti, D.; Lubicz, V.; Sanfilippo, F.; Simula, S.; Tantalo, N. Radiative corrections to semileptonic decay rates. In Proceedings of the 37th International Symposium on Lattice Field Theory, Wuhan, China, 16–22 June 2019. [Google Scholar]
- Cirigliano, V.; Davoudi, Z.; Bhattacharya, T.; Izubuchi, T.; Shanahan, P.E.; Syritsyn, S.; Wagman, M.L. The Role of Lattice QCD in Searches for Violations of Fundamental Symmetries and Signals for New Physics. Eur. Phys. J. A 2019, 55, 197. [Google Scholar] [CrossRef]
- Carrasco, N.; Lubicz, V.; Martinelli, G.; Sachrajda, C.; Tantalo, N.; Tarantino, C.; Testa, M. QED Corrections to Hadronic Processes in Lattice QCD. Phys. Rev. D 2015, 91, 074506. [Google Scholar] [CrossRef] [Green Version]
- Lubicz, V.; Martinelli, G.; Sachrajda, C.; Sanfilippo, F.; Simula, S.; Tantalo, N. Finite-Volume QED Corrections to Decay Amplitudes in Lattice QCD. Phys. Rev. D 2017, 95, 034504. [Google Scholar] [CrossRef] [Green Version]
- Giusti, D.; Lubicz, V.; Martinelli, G.; Sachrajda, C.T.; Sanfilippo, F.; Simula, S.; Tantalo, N.; Tarantino, C. First lattice calculation of the QED corrections to leptonic decay rates. Phys. Rev. Lett. 2018, 120, 072001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Carlo, M.; Giusti, D.; Lubicz, V.; Martinelli, G.; Sachrajda, C.T.; Sanfilippo, F.; Simula, S.; Tantalo, N. Light-meson leptonic decay rates in lattice QCD+QED. Phys. Rev. 2019, D100, 034514. [Google Scholar] [CrossRef] [Green Version]
- Boyle, P.; et al. High-Precision Determination of Vus and Vud from Lattice QCD. Available online: https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF2_RF0-TF5_TF0-CompF2_CompF0-054.pdf (accessed on 31 August 2021).
- Seng, C.Y.; Galviz, D.; Gorchtein, M.; Meißner, U.G. High-precision determination of the Ke3 radiative corrections. Phys. Lett. B 2021, 820, 136522. [Google Scholar] [CrossRef]
- Seng, C.Y.; Galviz, D.; Gorchtein, M.; Meißner, U.G. Improved Ke3 radiative corrections sharpen the Kμ2–Kl3 discrepancy. arXiv 2021, arXiv:2103.04843. [Google Scholar]
- Amendolia, S. et al. [NA7 Collaboration] A Measurement of the Space—Like Pion Electromagnetic Form-Factor. Nucl. Phys. B 1986, 277, 168. [Google Scholar] [CrossRef] [Green Version]
- Amendolia, S.; et al. A Measurement of the Kaon Charge Radius. Phys. Lett. B 1986, 178, 435–440. Available online: https://inspirehep.net/literature/231129 (accessed on 28 September 2021). [CrossRef] [Green Version]
- Ananthanarayan, B.; Caprini, I.; Das, D. Electromagnetic charge radius of the pion at high precision. Phys. Rev. Lett. 2017, 119, 132002. [Google Scholar] [CrossRef] [Green Version]
- Colangelo, G.; Hoferichter, M.; Stoffer, P. Two-pion contribution to hadronic vacuum polarization. JHEP 2019, 2019, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Passarino, G.; Veltman, M.J.G. One Loop Corrections for e+ e- Annihilation Into mu+ mu- in the Weinberg Model. Nucl. Phys. B 1979, 160, 151–207. [Google Scholar] [CrossRef] [Green Version]
- Ecker, G.; Gasser, J.; Pich, A.; de Rafael, E. The Role of Resonances in Chiral Perturbation Theory. Nucl. Phys. B 1989, 321, 311–342. [Google Scholar] [CrossRef] [Green Version]
- Ecker, G.; Gasser, J.; Leutwyler, H.; Pich, A.; de Rafael, E. Chiral Lagrangians for Massive Spin 1 Fields. Phys. Lett. B 1989, 223, 425–432. [Google Scholar] [CrossRef]
- Cirigliano, V.; Ecker, G.; Eidemuller, M.; Kaiser, R.; Pich, A.; Portoles, J. Towards a consistent estimate of the chiral low-energy constants. Nucl. Phys. B 2006, 753, 139–177. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.X.; Feng, X.; Gorchtein, M.; Jin, L.C.; Seng, C.Y. Lattice QCD calculation of the electroweak box diagrams for the kaon semileptonic decays. Phys. Rev. D 2021, 103, 114503. [Google Scholar] [CrossRef]
- Larin, S.A.; Vermaseren, J.A.M. The alpha-s**3 corrections to the Bjorken sum rule for polarized electroproduction and to the Gross-Llewellyn Smith sum rule. Phys. Lett. B 1991, 259, 345–352. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seng, C.-Y. Radiative Corrections to Semileptonic Beta Decays: Progress and Challenges. Particles 2021, 4, 397-467. https://doi.org/10.3390/particles4040034
Seng C-Y. Radiative Corrections to Semileptonic Beta Decays: Progress and Challenges. Particles. 2021; 4(4):397-467. https://doi.org/10.3390/particles4040034
Chicago/Turabian StyleSeng, Chien-Yeah. 2021. "Radiative Corrections to Semileptonic Beta Decays: Progress and Challenges" Particles 4, no. 4: 397-467. https://doi.org/10.3390/particles4040034
APA StyleSeng, C.-Y. (2021). Radiative Corrections to Semileptonic Beta Decays: Progress and Challenges. Particles, 4(4), 397-467. https://doi.org/10.3390/particles4040034