Directional Dark Matter Searches with CYGNO
Abstract
:1. Introduction
2. Time Projection Chambers for Directional Dark Matter Searches
3. The CYGNO TPC Optical 3D Approach
- The use of Gas Electron Multipliers (GEMs), which provides very high and uniform gas gains combined with high granularity at the amplification stage;
- The use of scientific CMOS-based cameras (sCMOS) positioned behind the amplification plane for the detection of the scintillation light produced together with the electron avalanche in the GEMs. These devices offer a high granularity 2D readout along with very high sensitivity in the visible range (>90% of quantum efficiency at 600 nm). sCMOS exhibit very low noise (≤1e/pixel), have low power consumption, and offer larger field of view compared to Charged Coupled Devices (×2.5 than any standard EM-CCD) combined with smaller pixels (6.5 × 6.5 m) (for more details see https://www.hamamatsu.com/eu/en/product/cameras/cmos-cameras/index.html, accessed on 5 July 2021). Coupled to the proper optics, large areas can be imaged with a single sCMOS camera while maintaining a small effective pixels size (i.e., 160 × 160 m for an area of 35 × 35 cm), favouring the scalability of this experimental approach. An example of images from Hamamatsu sCMOS cameras is shown in left panel of Figure 1, in particular a low energy electron in the top, and a nuclear recoil in the bottom;
- The combination of the sCMOS 2D X-Y track projection with the signal from a Photomultiplier (PMT) for the detection of the time profile of charge arrival. Thanks to this, the relative track extension along the drift direction () and the inclination with respect to the amplification plane can be inferred, and 3D reconstruction can be achieved with O(100) m precision [19]. An example of the PMT signal for tracks with different inclination with respect to the drift direction is shown in the right panel of Figure 1;
- The use of an He:CF 60:40 gas mixture at 1 atm, with spectral emission at 600 nm nicely matching the sCMOS camera sensitivity. Given the kinematic of the WIMP-nucleus elastic process, a direct DM detection experiment achieves its best sensitivity for WIMP masses equal to the target mass nuclei [20]. Thanks to its low density and atomic number, the use of helium can hence extend CYGNO sensitivity to low O(GeV) WIMP masses for spin independent coupling and allow to reach atmospheric pressure operation while maintaining good tracking. The CF is added for its well-known scintillation properties in the visible region [17,18], where sCMOS cameras have the maximum sensitivity. In addition, CF large Fluorine content provide a spin-odd target for simultaneous sensitivity to spin dependent WIMP-proton interactions;
- The atmospheric pressure and room temperature operation; while increasing the available target mass compared to current gaseous directional DM approaches, it also minimises the infrastructures needed (no need for cryogenics as noble liquids or bolometer detectors) and overall experiment dimensions, costs, and material budget (thin vessel compared to all other low/high pressure TPC approaches);
- The decoupling of the readout sensor from the gas target volume, not possible with charge-based readouts. This avoids the readout outgassing into the target, modifying the gas properties or producing recoiling radon progeny in or near the active detector volume, relatively relaxing the radiopurity requirements;
- The possibility to improve tracking and fiducialization performances with the use of negative ion drift gas mixture; here lies the cardinal synergy between CYGNO and INITIUM. The challenging goal of the INITIUM project (funded as the ERC Consolidator, grant 2018, proposal no. 818744) is to develop NID operation at 1 atm within the CYGNO optical approach by the addition of a small quantity of SF. SF has been recently demonstrated to work very well as negative ion gas between 20 and 100 Torr, including the possibility of high gains and fiducialization via minority charge carriers [21,22,23]. Compared to other gases typically employed to induce NID, SF has the substantial advantages of safer handling, combined with easier Radon purification and recirculation [24]. With charge pixels readout and triple-thin GEMs, the feasibility of NID has alredy been demonstrated with He:CF: SF at 360:240:10 Torr at nearly atmospheric pressure (0.8 atm) [25].
4. Experimental Results Obtained with CYGNO Prototypes
- Detector stability was evaluated operating continuously the detector for a month-long test [29]. The currents drawn by the high voltage channels supplying the electrodes of the GEM stack were monitored and recorded to identify sudden and large increases that could indicate discharges or other electrostatic issues. The autorecovery procedure implemented resulted in a dead time of less than 4%. Overall, the test demonstrated the high stability of the experimental approach;
- Light yield, energy resolution, and detection efficiency at O(keV) was studied analysing the sCMOS images of 55Fe X-rays-induced electron recoils. A response of about 514 photons/keV was measured with LEMOn, with 12% energy resolution [27,29] from the 55Fe spectrum show on the left of Figure 3 and full detection efficiency in the whole 7-L volume;
- Detection threshold was evaluated studying the sCMOS sensor noise in absence of light. Requiring that less than 10 fake events/year are reconstructed from sensor noise translate in a detection threshold of 1 keV [27];
- Event absolute drift distance estimation from the fit to diffusion, as demonstrated with charge pixels readout by [30], was studied with 450 MeV electrons from the LNF-BTF facility [28], for which the start time of the event can be known from the beam trigger. The transverse recorded light profile by both the sCMOS camera and PMT shows a dependence as a function of the absolute drift distance that can be used to infer the absolute Z with 15% uncertainty over a 20-cm length [28];
- Detection and identification of nuclear and electron recoils was assessed with a dedicated iterative algorithm (iDBSCAN) [31] developed from well-known Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [32] aimed at recognising tracks with different ionisation patterns. With iDBSCAN applied on electron recoils from Fe and nuclear recoils induced by AmBe, a 10 ER rejection at 5.9 keV with 40% NR efficiency was obtained with an elementary cut [33], a result that can be significantly improved by the use of a multivariate approach.
5. The CYGNO PHASE-1 Detector
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahlen, S.; Afshordi, N.; Battat, J.B.R.; Billard, J.; Bozorgnia, N.; Burgos, S.; Caldwell, T.; Carmona, J.M.; Cebrian, S.; Colas, P.; et al. The case for a directional dark matter detector and the status of current experimental efforts. Int. J. Mod. Phys. A 2010, 25, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Mayet, F.; Billard, J. A review of the discovery reach of directional Dark Matter detection. Phys. Rept. 2016, 627, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Billard, J.; Strigari, L.; Figueroa-Feliciano, E. Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 2014, 89, 023524. [Google Scholar] [CrossRef] [Green Version]
- Vahsen, S.E.; O’Hare, C.A.J.; Lynch, W.A.; Spooner, N.J.C.; Baracchini, E.; Barbeau, P.; Battat, J.B.R.; Crow, B.; Deaconu, C.; Eldridge, C.; et al. CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos. arXiv 2020, arXiv:2008.12587. [Google Scholar]
- Baracchini, E.; Derocco, W.; Dho, G. Discovering supernova-produced dark matter with directional detectors. Phys. Rev. D 2020, 102, 075036. [Google Scholar] [CrossRef]
- Seguinot, J.; Ypsilantis, T.; Zichichi, A. A High rate solar neutrino detector with energy determination. Conf. Proc. C 1992, 920310, 289–313. [Google Scholar]
- Arpesella, C.; Broggini, C.; Cattadori, C. A possible gas for solar neutrino spectroscopy. Astropart. Phys. 1996, 4, 333–341. [Google Scholar] [CrossRef]
- Alme, J.; Andres, Y.; Appelshauser, H.; Bablok, S.; Bialas, N.; Bolgen, R.; Bonnes, U.; Bramm, R.; Braun-Munzinger, P.; Campagnolo, R.; et al. The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events. Nucl. Instrum. Meth. A 2010, 622, 316–367. [Google Scholar] [CrossRef] [Green Version]
- Acciarri, R.; Acero, M.A.; Adamowski, M.; Adams, C.; Adamson, P.; Adhikari, S.; Ahmad, Z.; Albright, C.H.; Alion, T.; Amador, E.; et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF. arXiv 2016, arXiv:1601.02984. [Google Scholar]
- Battat, J.B.R.; Irastorza, I.G.; Aleksandrov, A.; Guler, M.A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; et al. Readout technologies for directional WIMP Dark Matter detection. Phys. Rept. 2016, 662, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Martoff, C.J.; Snowden-Ifft, D.P.; Ohnuki, T.; Spooner, N.; Lehner, M. Suppressing drift chamber diffusion without magnetic field. Nucl. Instrum. Meth. A 2000, 440, 355–359. [Google Scholar] [CrossRef]
- Ohnuki, T.; Snowden-Ifft, D.P.; Martoff, C.J. Measurement of carbon disulfide anion diffusion in a TPC. Nucl. Instrum. Meth. A 2001, 463, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Battat, J.B.R.; Ezeribe, A.C.; Gauvreau, J.-L.; Harton, J.L.; Lafler, R.; Law, E.; Lee, E.R.; Loomba, D.; Lumnah, A.; Miller, E.H.; et al. Low Threshold Results and Limits from the DRIFT Directional Dark Matter Detector. Astropart. Phys. 2017, 91, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Snowden-Ifft, D.P. Discovery of multiple, ionization-created CS2 anions and a new mode of operation for drift chambers. Rev. Sci. Instrum. 2014, 85, 013303. [Google Scholar] [CrossRef] [PubMed]
- Pipe, M. Background reduction and spin-dependent limits using DRIFT: A directionally sensitive dark matter detector. J. Phys. Conf. Ser. 2011, 315, 012017. [Google Scholar] [CrossRef] [Green Version]
- Dominik, W.; Zaganidis, N.; Astier, P.; Charpak, G.; Santiard, J.C.; Sauli, F.; Tribollet, E.; Geissbuhler, A.; Townsend, D. A Gaseous Detector for High Accuracy Autoradiography of Radioactive Compounds with Optical Readout of Avalanche Positions. Nucl. Instrum. Meth. A 1989, 278, 779. [Google Scholar] [CrossRef] [Green Version]
- Fraga, M.M.F.R.; Fraga, F.A.F.; Fetal, S.T.G.; Margato, L.M.S.; Ferreira-Marques, R.; Policarpo, A.J.P.L. The GEM scintillation in He CF4, Ar CF4, Ar TEA and Xe TEA mixtures. Nucl. Instrum. Meth. 2003, A504, 88–92. [Google Scholar] [CrossRef]
- Margato, L.M.S.; Morozov, A.; Fraga, M.M.F.R.; Pereira, L.; Fraga, F.A.F. Effective decay time of CF4 secondary scintillation. JINST 2013, 8, P07008. [Google Scholar] [CrossRef]
- Antochi, V.C.; Baracchini, E.; Cavoto, G.; Marco, E.D.; Marafini, M.; Mazzitelli, G.; Pinci, D.; Renga, F.; Tomassini, S.; Voena, C. Combined readout of a triple-GEM detector. JINST 2018, 13, P05001. [Google Scholar] [CrossRef] [Green Version]
- Gondolo, P. Recoil momentum spectrum in directional dark matter detectors. Phys. Rev. D 2002, 66, 103513. [Google Scholar] [CrossRef] [Green Version]
- Phan, N.S.; Lafler, R.; Lauer, R.J.; Lee, E.R.; Loomba, D.; Matthews, J.A.J.; Miller, E.H. The novel properties of SF6 for directional dark matter experiments. JINST 2017, 12, P02012. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.; Shimada, T.; Ishiura, H.; Nakamura, K.D.; Nakamura, T.; Miuchi, K. Development of a negative ion micro TPC detector with SF6 gas for the directional dark matter search. JINST 2020, 15, P07015. [Google Scholar] [CrossRef]
- Lightfoot, P.K.; Spooner, N.J.C.; Lawson, T.B.; Aune, S.; Giomataris, I. First operation of bulk micromegas in low pressure negative ion drift gas mixtures for dark matter searches. Astropart. Phys. 2007, 27, 490–499. [Google Scholar] [CrossRef]
- Ezeribe, A.C.; Lynch, W.; Gregorio, R.R.M.; Mckeand, J.; Scarff, A.; Spooner, N.J.C. Demonstration of radon removal from SF6 using molecular sieves. JINST 2017, 12, P09025. [Google Scholar] [CrossRef] [Green Version]
- Baracchini, E.; Cavoto, G.; Mazzitelli, G.; Murtas, F.; Renga, F.; Tomassini, S. Negative Ion Time Projection Chamber operation with SF6 at nearly atmospheric pressure. JINST 2018, 13, P04022. [Google Scholar] [CrossRef]
- Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.; Cavoto, G.; Cortez, A.; Costa, I.A.; Marco, E.D.; D’Imperio, G.; et al. First evidence of luminescence in a He/CF4 gas mixture induced by non-ionizing electrons. JINST 2020, 15, P08018. [Google Scholar] [CrossRef]
- Costa, I.A.; Baracchini, E.; Bellini, F.; Benussi, L.; Bianco, S.; Caponero, M.; Cavoto, G.; D’Imperio, G.; Marco, E.D.; Maccarrone, G.; et al. Performance of optically readout GEM-based TPC with a 55Fe source. J. Instrum. 2019, 14, P07011. [Google Scholar] [CrossRef] [Green Version]
- Antochi, V.C.; Cavoto, G.; Costa, I.A.; Marco, E.D.; D’Imperio, G.; Iacoangeli, F.; Marafini, M.; Messina, A.; Pinci, D.; Renga, F.; et al. A GEM-based Optically Readout Time Projection Chamber for charged particle tracking. arXiv 2020, arXiv:2005.12272. [Google Scholar]
- Costa, I.A.; Baracchini, E.; Bellini, F.; Benussi, L.; Bianco, S.; Caponero, M.; Cavoto, G.; D’Imperio, G.; Marco, E.D.; Maccarrone, G.; et al. Stability and detection performance of a GEM-based Optical Readout TPC with He/CF4 gas mixtures. J. Instrum. 2020, 15, P10001. [Google Scholar]
- Lewis, P.M.; Vahsen, S.E.; Seong, I.S.; Hedges, M.T.; Jaegle, I.; Thorpe, T.N. Absolute Position Measurement in a Gas Time Projection Chamber via Transverse Diffusion of Drift Charge. Nucl. Instrum. Meth. A 2015, 789, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.; Cavoto, G.; Cortez, A.; Costa, I.A.; Marco, E.D.; D’Imperio, G.; et al. A density-based clustering algorithm for the CYGNO data analysis. JINST 2020, 15, T12003. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-based Algorithm for Discovering Clusters a Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Oregon, Portland, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.A.; Cavoto, G.; Cortez, A.; Costa, I.A.; Marco, E.D.; D’Imperio, G.; et al. Identification of low energy nuclear recoils in a gas TPC with optical readout. arXiv 2020, arXiv:2007.12508. [Google Scholar] [CrossRef]
- Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abdalla, H.; Ahmad, A.; Ahmed, A.; Ahmed, W.; Ali, C.; Asghar, I.; Aspell, P.; et al. Layout and Assembly Technique of the GEM Chambers for the Upgrade of the CMS First Muon Endcap Station. Nucl. Instrum. Meth. A 2019, 918, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Battat, J.B.R.; Daw, E.; Dorofeev, A.; Ezeribe, A.C.; Fox, J.R.; Gauvreau, J.-L.; Gold, M.; Harmon, L.; Harton, J.; Lafler, R.; et al. Reducing DRIFT Backgrounds with a Submicron Aluminized-Mylar Cathode. Nucl. Instrum. Meth. A 2015, 794, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4: A Simulation toolkit. Nucl. Instrum. Meth. A 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.; Cavoto, G.; Cortez, A.; Costa, I.A.; Marco, E.D.; D’Imperio, G.; et al. CYGNO: A gaseous TPC with optical readout for dark matter directional search. JINST 2020, 15, C07036. [Google Scholar] [CrossRef]
- Gonzalez-Diaz, D.; Monrabal, F.; Murphy, S. Gaseous and dual-phase time projection chambers for imaging rare processes. Nucl. Instrum. Meth. A 2018, 878, 200–255. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.; Soffitta, P.; Bellazzini, R.; Brez, A.; Lumb, N.; Spandre, G. An efficient photoelectric x-ray polarimeter for the study of black holes and neutron stars. Nature 2001, 411, 662–665. [Google Scholar] [CrossRef] [Green Version]
- Beceiro-Novo, S.; Ahn, T.; Bazin, D.; Mittig, W. Active targets for the study of nuclei far from stability. Prog. Part. Nucl. Phys. 2015, 84, 124–165. [Google Scholar] [CrossRef]
- Pomorski, M.; Pfützner, M.; Dominik, W.; Grzywacz, R.; Stolz, A.; Baumann, T.; Berryman, J.S.; Czyrkowski, H.; DÄ browski, R.; Fijałkowska, A.; et al. Proton spectroscopy of Ni48,Fe46, and Cr44. Phys. Rev. C 2014, 90, 014311. [Google Scholar] [CrossRef] [Green Version]
FOV [cm] | Length [cm] | Light Yield | Det. Thr. | Energy Res. | Abs. Z Res. | ER/NR Discr. | |
---|---|---|---|---|---|---|---|
LEMOn | 26 × 26 | 20 | 514 /keV | 1 keV | 12% @ 5.9 keV | 15% | 10 @ 5.9 keV |
LIME | 35 × 35 | 50 | 1180 /keV | 0.5 keV | 14% @ 5.9 keV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaro, F.D.; Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.; Cavoto, G.; Cortez, A.; Costa, I.A.; Dané, E.; et al. Directional Dark Matter Searches with CYGNO. Particles 2021, 4, 343-353. https://doi.org/10.3390/particles4030029
Amaro FD, Baracchini E, Benussi L, Bianco S, Capoccia C, Caponero M, Cavoto G, Cortez A, Costa IA, Dané E, et al. Directional Dark Matter Searches with CYGNO. Particles. 2021; 4(3):343-353. https://doi.org/10.3390/particles4030029
Chicago/Turabian StyleAmaro, Fernando Domingues, Elisabetta Baracchini, Luigi Benussi, Stefano Bianco, Cesidio Capoccia, Michele Caponero, Gianluca Cavoto, André Cortez, Igor Abritta Costa, Emiliano Dané, and et al. 2021. "Directional Dark Matter Searches with CYGNO" Particles 4, no. 3: 343-353. https://doi.org/10.3390/particles4030029
APA StyleAmaro, F. D., Baracchini, E., Benussi, L., Bianco, S., Capoccia, C., Caponero, M., Cavoto, G., Cortez, A., Costa, I. A., Dané, E., Dho, G., Di Marco, E., D’Imperio, G., Di Giambattista, F., Gregorio, R. R. M., Iacoangeli, F., Lima Júnior, H. P., Silva Lopes Júnior, A. d., Maccarrone, G., ... Torelli, S. (2021). Directional Dark Matter Searches with CYGNO. Particles, 4(3), 343-353. https://doi.org/10.3390/particles4030029