Curvature Invariants for the Accelerating Natário Warp Drive
Abstract
:1. Introduction
2. Method to Compute the Invariants
3. Warp Drive Spacetimes
4. Invariants for the Accelerating Natário Warp Drive
4.1. Invariant Plots While Varying the Time
4.2. Invariant Plots While Varying the Acceleration
4.3. Invariant Plots While Varying the Skin Depth of the Warp Bubble
4.4. Invariant Plots While Varying the Radius of the Warp Bubble
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Null Vectors of the Natário Metric
Appendix B. Invariant Plots
References
- Alcubierre, M. The Warp drive: Hyperfast travel within general relativity. Class. Quantum Gravity 1994, 11, L73. [Google Scholar] [CrossRef]
- Davis, E.W. Chapter 15: Faster-Than-Light Approaches in General Relativity. In Frontiers of Propulsion Science; (2nd Printing with Corrections, 2012); Progress in Astronautics & Aeronautics Series); American Institution of Aeronautics & Astronautics Press: Reston, VA, USA, 2009; Volume 227, pp. 473–509. [Google Scholar]
- Natário, J. Warp drive with zero expansion. Class. Quantum Gravity 2002, 19, 1157. [Google Scholar] [CrossRef]
- Loup, F. An Extended Version of the Natário Warp Drive Equation Based in the Original 3 + 1 ADM Formalism Which Encompasses Accelerations and Variable Velocities. Ph.D. Thesis, Residencia de Estudantes Universitas, Lisboa, Portugal, 2017. [Google Scholar]
- Loup, F. Six Different Natario Warp Drive Spacetime Metric Equations; Research Report; Residencia de Estudantes Universitas: Lisboa, Portugal, 2018. [Google Scholar]
- Krasnikov, S.V. Hyperfast travel in general relativity. Phys. Rev. D. 1998, 57, 4760. [Google Scholar] [CrossRef] [Green Version]
- Van Den Broeck, C. A ’Warp drive’ with reasonable total energy requirements. Class. Quantum Gravity 1999, 16, 3973. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, time machines, and the weak energy conditions. Phys. Rev. Lett. 1988, 61, 1446–1449. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP Press: New York, NY, USA, 1995. [Google Scholar]
- Lobo, F.S.N. Wormhole Basics. In Wormholes, Warp Drives and Energy Conditions; Lobo, F.S.N., Ed.; Springer: Cham, Switzerland, 2017; pp. 11–33. [Google Scholar] [CrossRef]
- Mattingly, B.; Kar, A.; Julius, W.; Gorban, M.; Watson, C.; Ali, M.D.; Baas, A.; Elmore, C.; Shakerin, B.; Davis, E.W.; et al. Curvature Invariants for Lorentzian Traversable Wormholes. Universe 2020, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Santos-Pereira, O.L.; Abreu, E.M.C.; Ribeiro, M.B. Dust content solutions for the Alcubierre warp drive spacetime. Eur. Phys. J. C 2020, 80, 786. [Google Scholar] [CrossRef]
- Christoffel, E.B. Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades. J. Die Reine Angew. Math. 1869, 70, 46–70. [Google Scholar]
- Zakhary, E.; McIntosh, C.B.G. A Complete Set of Riemann Invariants. Gen. Relat. Gravit. 1997, 29, 539–581. [Google Scholar] [CrossRef]
- Carminati, J.; McLenaghan, R.G. Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space. J. Math. Phys. 1991, 32, 3135–3140. [Google Scholar] [CrossRef] [Green Version]
- Santosuosso, K.; Pollney, D.; Pelavas, N.; Musgrave, P.; Lake, K. Invariants of the Riemann tensor for class B warped product spacetimes. Comput. Phys. Commun. 1998, 115, 381. [Google Scholar] [CrossRef] [Green Version]
- Overduin, J.; Coplan, M.; Wilcomb, K.; Henry, R.C. Curvature Invariants for Charged and Rotating Black Holes. Universe 2020, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Henry, R.C. Kretshmann Scalar for a Kerr-Newman Black Hole. Astrophys. J. 2000, 535, 350–353. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.G.; Campanelli, M. Making use of geometrical invariants in black hole collisions. Phys. Rev. D 2000, 62, 127501. [Google Scholar] [CrossRef] [Green Version]
- Abdelqader, M.; Lake, K. Invariant characterization of the Kerr spacetime: Locating the horizon and measuring the mass and spin of rotating black holes using curvature invariants. Phys. Rev. D 2015, 91, 084017. [Google Scholar] [CrossRef] [Green Version]
- MacCallum, M.A.H. Spacetime Invariants and Their Uses. arXiv 2015, arXiv:1504.06857v1. [Google Scholar]
- Brooks, D.; MacCallum, M.A.H.; Gregoris, D.; Forget, A.; Coley, A.A.; Chavy-Waddy, P.C.; McNutt, D.D. Cartan Invariants and Event Horizon Detection, Extended Version. Gen. Relat. Gravit. 2018, 50, 37. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.A.H.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Arnowitt, R.L.; Deser, S.; Misner, C.W. Dynamical Structure and Definition of Energy in General Relativity. Phys. Rev. 1959, 116, 1322. [Google Scholar] [CrossRef]
- Marquet, P. The Generalized Warp Drive Concept in the EGR Theory. Abraham Zelmanov J. 2009, 2, 261–287. [Google Scholar]
- Bronnikov, K.A. 1973 Scalar-tensor theory and scalar charge. Acta Phys. Pol. 2009, B4, 251–266. [Google Scholar]
- Barcelo, C.; Visser, M. Twilight for the energy conditions? Int. J. Mod. Phys. D 2002, 11, 1553. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N.; Visser, M. Fundamental limitations on ’warp drive’ spacetimes. Class. Quantum Gravity 2004, 21, 5871–5892. [Google Scholar] [CrossRef] [Green Version]
- Woods, R.C.; Baker, R.M.L.; Li, F.; Stephenson, G.V.; Davis, E.W.; Beckwith, A.W. A new theoretical technique for the measurement of high frequency relic gravitational waves. J. Mod. Phys. 2011, 2, 498–518. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattingly, B.; Kar, A.; Gorban, M.; Julius, W.; Watson, C.K.; Ali, M.D.; Baas, A.; Elmore, C.; Lee, J.S.; Shakerin, B.; et al. Curvature Invariants for the Accelerating Natário Warp Drive. Particles 2020, 3, 642-659. https://doi.org/10.3390/particles3030042
Mattingly B, Kar A, Gorban M, Julius W, Watson CK, Ali MD, Baas A, Elmore C, Lee JS, Shakerin B, et al. Curvature Invariants for the Accelerating Natário Warp Drive. Particles. 2020; 3(3):642-659. https://doi.org/10.3390/particles3030042
Chicago/Turabian StyleMattingly, Brandon, Abinash Kar, Matthew Gorban, William Julius, Cooper K. Watson, M.D. Ali, Andrew Baas, Caleb Elmore, Jeffrey S. Lee, Bahram Shakerin, and et al. 2020. "Curvature Invariants for the Accelerating Natário Warp Drive" Particles 3, no. 3: 642-659. https://doi.org/10.3390/particles3030042
APA StyleMattingly, B., Kar, A., Gorban, M., Julius, W., Watson, C. K., Ali, M. D., Baas, A., Elmore, C., Lee, J. S., Shakerin, B., Davis, E. W., & Cleaver, G. B. (2020). Curvature Invariants for the Accelerating Natário Warp Drive. Particles, 3(3), 642-659. https://doi.org/10.3390/particles3030042