# S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. General Theory

#### 2.1. Derivation of the $\mathcal{S}$-Matrix in Terms of the Grand Canonical Partition Function

#### 2.2. Propagator Splitting

#### 2.3. Derivation of the $\mathcal{S}$-Matrix in the Representation of Basis Functions (Discrete Lattice of Functions)

#### 2.4. Majorant and Variational Principle

#### 2.5. Derivation of the $\mathcal{S}$-Matrix in the Representation of Basis Functions (Continuous Lattice of Functions)

#### 2.6. Redefinition of the $\mathcal{S}$-Matrix and Variational Principle

## 3. Polynomial Theory ${\mathit{\phi}}_{\mathit{D}}^{\mathbf{4}}$

#### 3.1. $\mathcal{S}$-Matrix of the ${\phi}_{D}^{4}$ Theory in the Representation of Basis Functions (Discrete Lattice of Functions)

#### 3.2. Majorant of the $\mathcal{S}$-Matrix of the ${\phi}_{D}^{4}$ Theory (Discrete Lattice of Functions)

#### 3.3. Integral Equation with Separable Kernel (Discrete Lattice of Functions)

#### 3.4. Majorant of the $\mathcal{S}$-Matrix of the ${\phi}_{D}^{4}$ Theory (Continuous Lattice of Functions)

#### 3.5. Integral Equation with Separable Kernel (Continuous Lattice of Functions)

## 4. Nonpolynomial Sine-Gordon Theory

#### 4.1. Majorant of the $\mathcal{S}$-Matrix of the Sine-Gordon Theory (Discrete Lattice of Functions)

#### 4.2. Estimates for the Solution of the Variational Principle Equations (Discrete Lattice of Functions)

#### 4.2.1. Upper Bound

#### 4.2.2. Lower Bound

#### 4.3. Simple Majorant of $\mathcal{G}$ on the Discrete Lattice of Functions

#### 4.4. Majorant of the $\mathcal{S}$-Matrix of the Sine-Gordon Theory (Continuous Lattice of Functions)

#### 4.5. Estimates for the Solution of the Variational Principle Equations (Continuous Lattice of Functions)

#### 4.5.1. Upper Bound

#### 4.5.2. Lower Bound

#### 4.6. Simple Majorant of $\mathcal{G}$ on the Continuous Lattice of Functions

## 5. From D = 1 to D = 26 and Beyond

#### 5.1. Polynomial Theory ${\phi}_{1}^{4}$

#### 5.1.1. Analytics

#### 5.1.2. Plots

#### 5.2. Nonpolynomial Sine-Gordon Theory

#### 5.2.1. Analytics

#### 5.2.2. Plots

#### 5.3. Nonlocal QFT and Compactification Process

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

QFT | Quantum Field Theory |

QED | Quantum Electrodynamics |

QCD | Quantum Chromodynamics |

SM | Standard Model |

RG | Renormalization Group |

FRG | Functional Renormalization Group |

## References

- Kulish, P.P.; Reshetikhin, N.Y.; Sklyanin, E.K. Yang–Baxter Equation and Representation Theory: I. Lett. Math. Phys.
**1981**, 5, 393–403. [Google Scholar] [CrossRef] - Reshetikhin, N.Y. A Method of Functional Equations in the Theory of Exactly Solvable Quantum Systems. Lett. Math. Phys.
**1983**, 7, 205–213. [Google Scholar] [CrossRef] - Reshetikhin, N.Y. O(N) Invariant Quantum Field Theoretical Models: Exact Solution. Nucl. Phys. B
**1985**, 251, 565–580. [Google Scholar] [CrossRef] - Ogievetsky, E.; Reshetikhin, N.; Wiegmann, P. The Principal Chiral Field in Two Dimensions on Classical Lie Algebras: The Bethe Ansatz Solution and Factorized Theory of Scattering. Nucl. Phys. B
**1987**, 280, 45–96. [Google Scholar] [CrossRef] - Reshetikhin, N.Y.; Wiegmann, P.B. Towards the Classification of Completely Integrable Quantum Field Theories: The Bethe Ansatz Associated with Dynkin Diagrams and Their Automorphisms. Phys. Lett. B
**1987**, 189, 125–131. [Google Scholar] [CrossRef] - Izergin, A.G.; Korepin, V.E.; Reshetikhin, N.Y. Conformal Dimensions in Bethe Ansatz Solvable Models. J. Phys. A
**1989**, 22, 2615–2620. [Google Scholar] [CrossRef] - Reshetikhin, N.; Smirnov, F. Hidden Quantum Group Symmetry and Integrable Perturbations of Conformal Field Theories. Commun. Math. Phys.
**1990**, 131, 157–177. [Google Scholar] [CrossRef] - Reshetikhin, N.Y.; Saleur, H. Lattice Regularization of Massive and Massless Integrable Field Theories. Nucl. Phys. B
**1994**, 419, 507–528. [Google Scholar] [CrossRef] - Reshetikhin, N.; Vertman, B. Combinatorial Quantum Field Theory and Gluing Formula for Determinants. Lett. Math. Phys.
**2015**, 105, 309–340. [Google Scholar] [CrossRef] - Mohaupt, T. Introduction to String Theory; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Polchinski, J. String Theory; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Efimov, G.V. Nonlocal Quantum Field Theory, Nonlinear Interaction Lagrangians, and Convergence of the Perturbation Theory Series. Theor. Math. Phys.
**1970**, 2, 217–223. [Google Scholar] [CrossRef] - Efimov, G.V. Nonlocal Interactions of Quantized Fields; Nauka: Moscow, Russia, 1977. (In Russian) [Google Scholar]
- Efimov, G.V. Problems of the Quantum Theory of Nonlocal Interactions; Nauka: Moscow, Russia, 1985. (In Russian) [Google Scholar]
- Petrina, D.Y.; Skripnik, V.I. Kirkwood–Salzburg Equations for the Coefficient Functions of the Scattering Matrix. Theor. Math. Phys.
**1971**, 8, 896–904. [Google Scholar] [CrossRef] - Rebenko, A.L. On Equations for the Matrix Elements of Euclidean Quantum Electrodynamics. Theor. Math. Phys.
**1972**, 11, 525–536. [Google Scholar] [CrossRef] - Basuev, A.G. Convergence of the Perturbation Series for a Nonlocal Nonpolynomial Theory. Theor. Math. Phys.
**1973**, 16, 835–842. [Google Scholar] [CrossRef] - Basuev, A.G. Convergence of the Perturbation Series for the Yukawa Interaction. Theor. Math. Phys.
**1975**, 22, 142–148. [Google Scholar] [CrossRef] - Brydges, D.C.; Martin, P.A. Coulomb Systems at Low Density: A Review. J. Stat. Phys.
**1999**, 96, 1163–1330. [Google Scholar] [CrossRef] - Rebenko, A.L. Mathematical Foundations of Equilibrium Classical Statistical Mechanics of Charged Particles. Russ. Math. Surv.
**1988**, 43, 65–116. [Google Scholar] [CrossRef] - Brydges, D.C.; Federbush, P. Debye Screening. Commun. Math. Phys.
**1980**, 73, 197–246. [Google Scholar] [CrossRef] - Polyakov, A.M. Gauge Fields and Strings; Harwood Academic Publishers GmbH: Chur, Switzerland, 1987. [Google Scholar]
- Polyakov, A.M. Quark Confinement and Topology of Gauge Theories. Nucl. Phys. B
**1977**, 120, 429–458. [Google Scholar] [CrossRef] - Samuel, S. Grand Partition Function in Field Theory with Applications to Sine-Gordon Field Theory. Phys. Rev. D
**1978**, 18, 1916. [Google Scholar] [CrossRef] - O’Raifeartaigh, L.; Pawlowski, J.M.; Sreedhar, V.V. Duality in Quantum Liouville Theory. Ann. Phys.
**1999**, 277, 117–143. [Google Scholar] [CrossRef] - Efimov, G.V.; Ivanov, M.A. Nonlocal Quark Model. Sov. J. Part. Nucl.
**1981**, 12, 489–508. [Google Scholar] - Efimov, G.V.; Ivanov, M.A. Confinement and Quark Structure of Light Hadrons. Int. J. Mod. Phys. A
**1989**, 4, 2031–2060. [Google Scholar] [CrossRef] - Efimov, G.V.; Ivanov, M.A. The Quark Confinement Model of Hadrons; Taylor and Francis Group: New York, NY, USA, 1993. [Google Scholar]
- Efimov, G.V. Amplitudes in Nonlocal Theories at High Energies. Theor. Math. Phys.
**2001**, 128, 1169–1175. [Google Scholar] [CrossRef] - Efimov, G.V. Blokhintsev and Nonlocal Quantum Field Theory. Phys. Part. Nucl.
**2004**, 35, 598–618. [Google Scholar] - Kopietz, P.; Bartosch, L.; Schütz, F. Introduction to the Functional Renormalization Group; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Wipf, A. Statistical Approach to Quantum Field Theory; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Rosten, O.J. Fundamentals of the Exact Renormalization Group. Phys. Rep.
**2012**, 511, 177–272. [Google Scholar] [CrossRef] - Igarashi, Y.; Itoh, K.; Sonoda, H. Realization of Symmetry in the ERG Approach to Quantum Field Theory. Prog. Theor. Phys. Suppl.
**2009**, 181, 1–166. [Google Scholar] [CrossRef] - Efimov, G.V. Construction of a Local Quantum Field Theory without Ultraviolet Divergences. JETP
**1963**, 17, 1417–1423. [Google Scholar] - Efimov, G.V. Nonlinear Interaction Lagrangians. JETP
**1965**, 21, 395–401. [Google Scholar] - Efimov, G.V. Nonlocal Quantum Theory of the Scalar Field. Commun. Math. Phys.
**1967**, 5, 42–56. [Google Scholar] [CrossRef] - Efimov, G.V. Essentially Nonlinear Interaction Lagrangians and Nonlocalized Quantum Field Theory. Theor. Math. Phys.
**1970**, 2, 26–40. [Google Scholar] [CrossRef] - Efimov, G.V. On the Proof that the Scattering Matrix is Unitary. Theor. Math. Phys.
**1975**, 25, 951–957. [Google Scholar] [CrossRef] - Fradkin, E.S. Application of Functional Methods in Quantum Field Theory and Quantum Statistics: (I). Divergence-Free Field Theory with Local Nonlinear Interaction. Nucl. Phys.
**1963**, 49, 624–640. [Google Scholar] [CrossRef] - Fradkin, E.S. Application of Functional Methods in Quantum Field Theory and Quantum Statistics: (II). Nucl. Phys.
**1966**, 76, 588–624. [Google Scholar] [CrossRef] - Fradkin, E.S. Selected Papers on Theoretical Physics; Papers in English and Russian; Nauka: Moscow, Russia, 2007. [Google Scholar]
- Volkov, M.K. Quantum Field Model with Unrenormalizable Interaction. Commun. Math. Phys.
**1968**, 7, 289–304. [Google Scholar] [CrossRef] - Volkov, M.K. Green Functions in the Theory of Local Unrenormalizable Interactions. Commun. Math. Phys.
**1969**, 15, 69–82. [Google Scholar] [CrossRef] - Volkov, M.K. A Method of Describing Nonrenormalizable Interactions, Taking Account of Unitarity. Theor. Math. Phys.
**1970**, 2, 144–152. [Google Scholar] [CrossRef] - Lee, B.W.; Zumino, B. Some Considerations on the Efimov–Fradkin Method in Nonlinear Field Theories. Nucl. Phys. B
**1969**, 13, 671–686. [Google Scholar] [CrossRef] - Delbourgo, R.; Salam, A.; Strathdee, J. Infinities of Nonlinear and Lagrangian Theories. Phys. Rev.
**1969**, 187, 1999. [Google Scholar] [CrossRef] - Salam, A.; Strathdee, J. Momentum-Space Behavior of Integrals in Nonpolynomial Lagrangian Theories. Phys. Rev. D
**1970**, 1, 3296. [Google Scholar] [CrossRef] - Fivel, D.I.; Mitter, P.K. Theory of Weak Interactions without Divergences. Phys. Rev. D
**1970**, 1, 3270. [Google Scholar] [CrossRef] - Graffi, S.; Grecchi, V. Asymptotic Expansions and Nonlinear Field Theories. Phys. Rev. D
**1972**, 6, 493. [Google Scholar] [CrossRef] - Horvath, Z.; Pocsik, G. High-Energy Summation of Ladder Diagrams in Nonpolynomial Field Theories. Ann. Phys.
**1972**, 74, 555–566. [Google Scholar] [CrossRef] - la Camera, M.; Wataghin, A. Nonpolynomial Interactions at High Energies. Nuov. Cim. A
**1973**, 17, 526–534. [Google Scholar] [CrossRef] - Biswas, S.N.; Malik, G.P.; Sudarshan, E.C.G. Superpropagator for a Nonpolynomial Field. Phys. Rev. D
**1973**, 7, 2884. [Google Scholar] [CrossRef] - Basuev, A.G.; Vasil’ev, A.N. Method of Summing the Perturbation Series in Scalar Theories. Theor. Math. Phys.
**1974**, 18, 129–135. [Google Scholar] [CrossRef] - Belokurov, V.V.; Solov’ev, Y.P.; Shavgulidze, E.T. Perturbation Theory with Convergent Series: I. Toy Models. Theor. Math. Phys.
**1996**, 109, 1287–1293. [Google Scholar] [CrossRef] - Belokurov, V.V.; Solov’ev, Y.P.; Shavgulidze, E.T. Perturbation Theory with Convergent Series: II. Functional Integrals in Hilbert Space. Theor. Math. Phys.
**1996**, 109, 1294–1301. [Google Scholar] [CrossRef] - Korsun, L.D.; Sisakyan, A.N.; Solovtsov, I.L. Variational Perturbation Theory. The Phi-2k Oscillator. Theor. Math. Phys.
**1992**, 90, 22–34. [Google Scholar] [CrossRef] - Kazakov, D.I.; Tarasov, O.V.; Shirkov, D.V. Analytical Continuation of Perturbative Results of the g-Phi-4 Model into the Region g is Greater than or Equal to 1. Theor. Math. Phys.
**1979**, 38, 9–16. [Google Scholar] [CrossRef] - Kazakov, D.I. A Method for Summing Nonalternating Asymptotic Series. Theor. Math. Phys.
**1981**, 46, 227–236. [Google Scholar] [CrossRef] - Kazakov, D.I. On a Generalization of Renormalization Group Equations to Quantum Field Theories of an Arbitrary Type. Theor. Math. Phys.
**1988**, 75, 440–442. [Google Scholar] [CrossRef] - Moffat, J.W. Finite Quantum Field Theory Based On Superspin Fields. Phys. Rev. D
**1989**, 39, 3654–3671. [Google Scholar] [CrossRef] - Moffat, J.W. Finite Nonlocal Gauge Field Theory. Phys. Rev. D
**1990**, 41, 1177–1184. [Google Scholar] [CrossRef] - Evens, D.; Kleppe, G.; Moffat, J.W.; Woodard, R.P. Nonlocal Regularizations of Gauge Theories. Phys. Rev. D
**1991**, 43, 499–519. [Google Scholar] [CrossRef] - Moffat, J.W. Finite Electroweak Theory without a Higgs Particle. Mod. Phys. Lett. A
**1991**, 6, 1011–1021. [Google Scholar] [CrossRef] - Clayton, M.A.; Demopoulos, L.; Moffat, J.W. Abelian Anomalies in Nonlocal Regularization. Int. J. Mod. Phys. A
**1994**, 9, 4549–4564. [Google Scholar] [CrossRef] - Moffat, J.W. Ultraviolet Complete Quantum Gravity. Eur. Phys. J. Plus
**2011**, 126, 43. [Google Scholar] [CrossRef] - Moffat, J.W. Ultraviolet Complete Electroweak Model Without a Higgs Particle. Eur. Phys. J. Plus
**2011**, 126, 53. [Google Scholar] [CrossRef] - Moffat, J.W. Quantum Gravity and the Cosmological Constant Problem. In The First Karl Schwarzschild Meeting on Gravitational Physics; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Efimov, G.V.; Alebastrov, V.A. A Proof of the Unitarity of Scattering Matrix in a Nonlocal Quantum Field Theory. Commun. Math. Phys.
**1973**, 31, 1–24. [Google Scholar] - Efimov, G.V.; Alebastrov, V.A. Causality in Quantum Field Theory with Nonlocal Interaction. Commun. Math. Phys.
**1974**, 38, 11–28. [Google Scholar] - Efimov, G.V. Strong Coupling in the Quantum Field Theory with Nonlocal Nonpolynomial Interaction. Commun. Math. Phys.
**1977**, 57, 235–258. [Google Scholar] [CrossRef] - Efimov, G.V. Vacuum Energy in g-Phi-4 Theory for Infinite g. Commun. Math. Phys.
**1979**, 65, 15–44. [Google Scholar] [CrossRef] - Bogoliubov, N.N.; Shirkov, D.V. Introduction to the Theory of Quantized Fields; A Wiley-Intersciense Publication; John Wiley and Sons Inc.: New York City, NY, USA, 1980. [Google Scholar]
- Bogoliubov, N.N.; Shirkov, D.V. Quantum Fields; Benjiamin/Cummings Publishing Company Inc.: San Francisco, CA, USA, 1983. [Google Scholar]
- Bogolyubov, N.N.; Logunov, A.A.; Oksak, A.I.; Todorov, I.T. General Principles of Quantum Field Theory. In Mathematical Physics and Applied Mathematics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Vasiliev, A.N. The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; Clarendon: Oxford, UK, 1989. [Google Scholar]
- Dineykhan, M.; Efimov, G.V.; Ganbold, G.; Nedelko, S.N. Oscillator Representation in Quantum Physics; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- West, P. A Brief Review of E Theory. Int. J. Mod. Phys. A
**2016**, 31, 1630043. [Google Scholar] [CrossRef] - Bateman, H.; Erdelyi, A. Higher Transcendental Functions; Robert E. Krieger Publishing Company Inc.: Malabar, FL, USA, 1981. [Google Scholar]
- Blokhintsev, D.I. Space and Time in the Microworld; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1973. [Google Scholar]
- Namsrai, K. Noncommutative Field Theory. Int. J. Theor. Phys.
**2003**, 42, 2609–2704. [Google Scholar] [CrossRef] - Douglas, M.R.; Nekrasov, N.A. Noncommutative Field Theory. Rev. Mod. Phys.
**2001**, 73, 977–1029. [Google Scholar] [CrossRef] - Volovich, I.V. P-Adic Spacetime and String Theory. Theor. Math. Phys.
**1987**, 71, 574–576, Volovich, I.V. P-Adic String. Class. Quantum Grav.**1987**, 4, L83–L87. [Google Scholar] [CrossRef] - Efimov, G.V. The Bethe–Salpeter Equation with Fermions. Few-Body Syst.
**2007**, 41, 157–184. [Google Scholar] [CrossRef] - Efimov, G.V. Bound States in the Quantum Scalar Electrodynamics. Few-Body Syst.
**2010**, 47, 137–155. [Google Scholar] [CrossRef] - Efimov, G.V. Elastic Scattering and the Path Integral. Theor. Math. Phys.
**2014**, 179, 695–711. [Google Scholar] [CrossRef] - Efimov, G.V. Quantum Particle in a Random Medium. Theor. Math. Phys.
**2015**, 185, 1433–1444. [Google Scholar] [CrossRef]

**Figure 1.**Dependence of the variational functions ${q}_{s}$ on s for different values of the parameters of width w and $\epsilon $. At the same time, we chose the following system of units: the product $\sqrt{g\left(0\right)}{D}^{2}\left(0\right)=1$, as well as the width of the basis functions ${\psi}_{s}\left(x\right)$.

**Figure 2.**Dependence of the functions ${q}_{s}$ on s for different values of the amplitude of the coupling constant $g\left(0\right)$. The parameters w and $\epsilon $ are fixed and equal to $w=100$ and $\epsilon =0.5$, respectively. The amplitude of the propagator $D\left(0\right)=1$ (in this case, the variation of the product $\sqrt{g\left(0\right)}{D}^{2}\left(0\right)$ means the variation of the $g\left(0\right)$).

**Figure 3.**Dependence of the majorant ${F}_{\mathrm{sep}}$ on the width w of the coupling constant $g\left(x\right)$ for different values of the parameters $\epsilon $ and the amplitude of the coupling constant $g\left(0\right)$. (

**Left**) $\sqrt{g\left(0\right)}{D}^{2}\left(0\right)=1$. (

**Right**) $\epsilon =0.5$; $D\left(0\right)=1$.

**Figure 4.**Dependence of the majorant ${F}_{\mathrm{sep}}$ on the amplitude of the coupling constant $g\left(0\right)$ for different values of $\epsilon $. The width parameter $w=100$, the propagator amplitude $D\left(0\right)=1$ (which demonstrates the dynamics with respect to the value $g\left(0\right)$).

**Figure 5.**Dependence of the variational functions ${q}_{s}^{(+)}$ on s. (

**Left**) w changes, $\epsilon =0.5$. (

**Right**) $\epsilon $ changes, $w=200$. For both plots $g\left(0\right)=100$.

**Figure 6.**Dependence of the functions ${q}_{s}^{(+)}$ on s for different values of the amplitude of the coupling constant $g\left(0\right)$. The parameters w and $\epsilon $ are fixed and equal to $w=200$ and $\epsilon =0.5$, respectively.

**Figure 7.**Dependence of the variational functions ${q}_{s}^{(-)}$ on s. (

**Left**) w changes, $\epsilon =0.5$. (

**Right**) $\epsilon $ changes, $w=200$. For both plots $g\left(0\right)=100$.

**Figure 8.**Dependence of the functions ${q}_{s}^{(-)}$ on s for different values of the amplitude of the coupling constant $g\left(0\right)$. The parameters w and $\epsilon $ are fixed and equal to $w=200$ and $\epsilon =0.5$, respectively.

**Figure 9.**Dependence of the ratios ${q}_{s}/{q}_{s}^{(-)}$ on s. (

**Left**) w changes, $\epsilon =0.5$. (

**Right**) $\epsilon $ changes, $w=200$. For both plots $g\left(0\right)=100$.

**Figure 10.**Dependence of the ratios ${q}_{s}/{q}_{s}^{(-)}$ on s for different values of the amplitude of the coupling constant $g\left(0\right)$. The parameters w and $\epsilon $ are fixed and equal to $w=200$ and $\epsilon =0.5$, respectively.

**Figure 11.**Dependence of the majorant ${F}_{\mathrm{simple}}+g$ on the width of the coupling constant w for different values of the parameters $\epsilon $ and the amplitude of the coupling constant $g\left(0\right)$. (

**Left**) $g\left(0\right)=100$. (

**Right**) $\epsilon =0.5$.

**Figure 12.**Dependence of the majorant ${F}_{\mathrm{simple}}+g$ on the amplitude of the coupling constant $g\left(0\right)$ for different values of the parameter $\epsilon $. The width parameter $w=200$.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chebotarev, I.V.; Guskov, V.A.; Ogarkov, S.L.; Bernard, M.
*S*-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation. *Particles* **2019**, *2*, 103-139.
https://doi.org/10.3390/particles2010009

**AMA Style**

Chebotarev IV, Guskov VA, Ogarkov SL, Bernard M.
*S*-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation. *Particles*. 2019; 2(1):103-139.
https://doi.org/10.3390/particles2010009

**Chicago/Turabian Style**

Chebotarev, Ivan V., Vladislav A. Guskov, Stanislav L. Ogarkov, and Matthew Bernard.
2019. "*S*-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation" *Particles* 2, no. 1: 103-139.
https://doi.org/10.3390/particles2010009