The Role of Neuroglia in Neurodevelopmental Disorders and Disruptive Behavior: A Broad Review of Current Literature
Abstract
1. Introduction
2. Neuroglial Insights into Autism Spectrum Disorder
- –
- Molecular level: regulation of ions, protons, reactive oxygen species, neurotransmitters, and metabolites.
- –
- Cellular level: astrocyte roles in neurogenesis and axon guidance.
- –
- Synaptic network level: astrocyte and microglial functions in synaptogenesis, synaptic development, and pruning; myelinating functions of oligodendrocytes and Schwann cells.
- –
- Organ level: astrocyte role in the blood–brain barrier.
- –
- Systemic level: glial cells acting as central chemoreceptors [20].
3. The Role of Neuroglia in Intellectual Disability
- Deficits in intellectual functioning—Including limitations in reasoning, problem-solving, planning, abstract thinking, judgment, academic learning, and learning from experience.
- Impairments in adaptive functioning—Manifesting as significant limitations in personal independence and social responsibility across communication, social participation, and independent living.
- Onset during the developmental period—Symptoms must be evident before the age of 18.
- Mild ID: IQ between 50 and 70 (comprising approximately 85% of cases).
- Moderate ID: IQ between 35 and 50 (about 10%).
- Severe ID: IQ between 20 and 35 (around 4%).
- Profound ID: IQ below 20 (approximately 1%).
3.1. Astrocytes
3.2. Microglias
3.3. Oligodendrocytes
3.4. Glial Coordination: The Microenvironmental Basis of Intellectual Disability
3.5. Clinical Implications and Therapeutic Targets of Glial Dysfunction
4. Attention Deficit/Hyperactivity Disorder and Neuroglia
4.1. Astrocytes and ADHD
4.2. Oligodendrocytes and ADHD
4.3. Microglias and ADHD
5. Tic Disorders and Neuroglia
5.1. Microglia and Inflamation
5.2. Microglia and Neurogenesis
5.3. Neuroinflammation and Tourette Syndrome
5.4. Inflammatory Factors
5.5. Production of Inflammatory Mediators via Peripheral Immune System Activation
5.6. Peripheral Immune System Overactivation
5.7. Microglial Activation Mediated by Inflammatory Factors
- Elevated Blood CCL5 Levels: Pathogenic infections can lead to overactivation of T lymphocytes and increased CCL5 secretion by immune cells. CCL5 can cross the BBB via its receptors CCR1 and CCR5 to enter the central nervous system. Elevated serum CCL5 levels in TS patients suggest a possible role of this chemokine in neuroinflammation [224,225]. The CCL5–CCR1 interaction may promote microglial activation via the CCR1/TPR1/ERK1/2 pathway, while CCL5–CCR5 signaling may induce neuronal pyroptosis through the CCR5/PKA/CREB/NLRP1 axis, contributing to neural dysfunction and tic expression [226,227].
- Upregulated Immune-Related Genes: Several hub genes, such as ICAM1, CCL2, HMOX1, MYC, and SOCS3, have been found to be upregulated in TS. These genes are involved in immune and inflammatory processes, particularly those related to interleukin and interferon signaling pathways [228]. Gene expression analyses in the caudate nucleus and putamen reveal that the majority of upregulated genes in these regions are immune-related and may enhance microglial activation and inflammatory responses [229].
- Histamine Deficiency: Histamine deficiency increases the secretion of pro-inflammatory mediators such as IL-1β, sensitizing microglia to inflammatory stimuli and promoting their polarization toward the M1 phenotype [230]. Histamine normally acts through H4 receptors to suppress microglial inflammatory responses and regulate their function [230,231]. A deficiency of the Hdc gene, known to be associated with TS, results in a reduction in IGF-1-positive protective microglia, increasing susceptibility to neuronal damage [231,232]. Enhanced M1 polarization, especially in the striatum, may lead to dopaminergic neuroinflammation and dysfunction, potentially triggering the development of tics [233,234,235]. These findings indicate a potential interaction between immune responses and dopaminergic dysregulation in TS pathophysiology.
6. Neuroglial Dysfunction in Disruptive Mood Dysregulation Disorder and Irritability
7. Specific Learning Disorder in Terms of Neuroglia
7.1. Microglial Activity and Synaptic Regulation
7.2. Astrocytes and Dyslexia
7.3. Oligodendrocytes and the Relationship of Myelinization with Dyslexia
7.4. The Role of Neuron–Glia Interaction Disorders in Dyslexia
8. Cognitive and Neuropsychological Impacts
Intervention Approaches and Therapeutic Strategies
9. Limitations and Future Directions
10. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Statistical Manual of Mental Disorders: DSM-5TM.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- Sokolova, E.; Oerlemans, A.M.; Rommelse, N.N.; Groot, P.; Hartman, C.A.; Glennon, J.C.; Claassen, T.; Heskes, T.; Buitelaar, J. A causal and mediation analysis of the comorbidity between attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). J. Autism Dev. Disord. 2017, 47, 1595–1604. [Google Scholar] [CrossRef]
- Morris-Rosendahl, D.J.; Crocq, M.A. Neurodevelopmental disorders—The history and future of a diagnostic concept. Dialogues Clin. Neurosci. 2020, 22, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Pekny, M.; Pekna, M.; Messing, A.; Steinhäuser, C.; Lee, J.M.; Parpura, V.; Hol, E.; Sofroniew, M.; Verkhratsky, A. Astrocytes: A central element in neurological diseases. Acta Neuropathol. 2016, 131, 323–345. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, I. Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol. 2017, 27, 645–674. [Google Scholar] [CrossRef]
- Blank, T.; Prinz, M. Microglia as modulators of cognition and neuropsychiatric disorders. Glia 2013, 61, 62–70. [Google Scholar] [CrossRef]
- Scuderi, C.; Stecca, C.; Valenza, M.; Ratano, P.; Bronzuoli, M.R.; Bartoli, S.; Steardo, L.; Pompili, E.; Fumagalli, L.; Campolongo, P. Palmitoylethanolamide controls reactive gliosis and exerts neuroprotective functions in a rat model of Alzheimer’s disease. Cell Death Dis. 2014, 5, e1419. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV; American Psychiatric Association: Washington, DC, USA, 1994; Volume 4. [Google Scholar]
- Pennington, M.L.; Cullinan, D.; Southern, L.B. Defining autism: Variability in state education agency definitions of and evaluations for autism spectrum disorders. Autism Res. Treat. 2014, 2014, 327271. [Google Scholar] [CrossRef]
- Narzisi, A.; Posada, M.; Barbieri, F.; Chericoni, N.; Ciuffolini, D.; Pinzino, M.; Romano, R.; Scattoni, M.; Tancredi, R.; Calderoni, S. Prevalence of Autism Spectrum Disorder in a large Italian catchment area: A school-based population study within the ASDEU project. Epidemiol. Psychiatr. Sci. 2020, 29, e5. [Google Scholar] [CrossRef]
- Durkin, M.S.; Wolfe, B.L. Trends in autism prevalence in the US: A lagging economic indicator? J. Autism Dev. Disord. 2020, 50, 1095–1096. [Google Scholar] [CrossRef]
- Salari, N.; Rasoulpoor, S.; Rasoulpoor, S.; Shohaimi, S.; Jafarpour, S.; Abdoli, N.; Khaledi-Paveh, B.; Mohammadi, M. The global prevalence of autism spectrum disorder: A comprehensive systematic review and meta-analysis. Ital. J. Pediatr. 2022, 48, 112. [Google Scholar] [CrossRef]
- Lever, A.G.; Geurts, H.M. Psychiatric co-occurring symptoms and disorders in young, middle-aged, and older adults with autism spectrum disorder. J. Autism Dev. Disord. 2016, 46, 1916–1930. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Hiremath, C.; Khokhar, S.K.; Bansal, E.; Sagar, K.J.V.; Padmanabha, H.; Girimaji, A.; Narayan, S.; Kishore, M.; Yamini, B. Altered cerebellar lobular volumes correlate with clinical deficits in siblings and children with ASD: Evidence from toddlers. J. Transl. Med. 2023, 21, 246. [Google Scholar] [CrossRef]
- Sun, F.; Chen, Y.; Gao, Q.; Zhao, Z. Abnormal gray matter structure in children and adolescents with high-functioning autism spectrum disorder. Psychiatry Res. Neuroimaging 2022, 327, 111564. [Google Scholar] [CrossRef] [PubMed]
- Krumm, N.; O’Roak, B.J.; Shendure, J.; Eichler, E.E. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 2014, 37, 95–105. [Google Scholar] [CrossRef]
- Ebrahimi-Fakhari, D.; Sahin, M. Autism and the synapse: Emerging mechanisms and mechanism-based therapies. Curr. Opin. Neurol. 2015, 28, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Matta, S.M.; Hill-Yardin, E.L.; Crack, P.J. The influence of neuroinflammation in Autism Spectrum Disorder. Brain Behav. Immun. 2019, 79, 75–90. [Google Scholar] [CrossRef]
- Lamanna, J.; Meldolesi, J. Autism Spectrum disorder: Brain areas involved, neurobiological mechanisms, diagnoses and therapies. Int. J. Mol. Sci. 2024, 25, 2423. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Ho, M.S.; Zorec, R.; Parpura, V. The concept of neuroglia. Neurogl. Neurodegener. Diseases 2019, 1175, 1–13. [Google Scholar]
- Xiong, Y.; Chen, J.; Li, Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front. Neurosci. 2023, 17, 1125428. [Google Scholar] [CrossRef]
- Matta, S.M.; Moore, Z.; Walker, F.R.; Hill-Yardin, E.L.; Crack, P.J. An altered glial phenotype in the NL3R451C mouse model of autism. Sci. Rep. 2020, 10, 14492. [Google Scholar] [CrossRef]
- Gzielo, K.; Nikiforuk, A. Astroglia in autism spectrum disorder. Int. J. Mol. Sci. 2021, 22, 11544. [Google Scholar] [CrossRef] [PubMed]
- Nassir, N.; Bankapur, A.; Samara, B.; Ali, A.; Ahmed, A.; Inuwa, I.M.; Zarrei, M.; Safizadeh Shabestari, S.; AlBanna, A.; Howe, J. Single-cell transcriptome identifies molecular subtype of autism spectrum disorder impacted by de novo loss-of-function variants regulating glial. Cells Hum. Genom. 2021, 15, 68. [Google Scholar] [CrossRef]
- Djukic, B.; Casper, K.B.; Philpot, B.D.; Chin, L.S.; McCarthy, K.D. Conditional knock-out of Kir4. 1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J. Neurosci. 2007, 27, 11354–11365. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, C.; Verkhratsky, A. The role of neuroglia in autism spectrum disorders. Prog. Mol. Biol. Transl. Sci. 2020, 173, 301–330. [Google Scholar] [PubMed]
- Simhal, A.K.; Zuo, Y.; Perez, M.M.; Madison, D.V.; Sapiro, G.; Micheva, K.D. Multifaceted changes in synaptic composition and astrocytic involvement in a mouse model of fragile X syndrome. Sci. Rep. 2019, 9, 13855. [Google Scholar] [CrossRef]
- Ferrucci, L.; Cantando, I.; Cordella, F.; Di Angelantonio, S.; Ragozzino, D.; Bezzi, P. Microglia at the tripartite synapse during postnatal development: Implications for autism spectrum disorders and schizophrenia. Cells 2023, 12, 2827. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, Y.; Wu, D.Y.; Liu, J.H.; Jie, W.; You, Q.L.; Huang, L.; Hu, J.; Chu, H.D.; Gao, F.; et al. Impaired calcium signaling in astrocytes modulates autism spectrum disorder-like behaviors in mice. Nat. Commun. 2021, 12, 3321. [Google Scholar] [CrossRef]
- Qin, L.; Liu, Z.; Guo, S.; Han, Y.; Wang, X.; Ren, W.; Chen, J.; Zhen, H.; Nie, C.; Xing, K.-K.; et al. Astrocytic Neuroligin-3 influences gene expression and social behavior, but is dispensable for synapse number. Mol. Psychiatry 2025, 30, 84–96. [Google Scholar] [CrossRef]
- Guneykaya, D.; Ugursu, B.; Logiacco, F.; Popp, O.; Feiks, M.A.; Meyer, N.; Wendt, S.; Semtner, M.; Cherif, F.; Gauthier, C.; et al. Sex-specific microglia state in the Neuroligin-4 knock-out mouse model of autism spectrum disorder. Brain Behav. Immun. 2023, 111, 61–75. [Google Scholar] [CrossRef]
- Usui, N.; Kobayashi, H.; Shimada, S. Neuroinflammation and oxidative stress in the pathogenesis of autism spectrum disorder. Int. J. Mol. Sci. 2023, 24, 5487. [Google Scholar] [CrossRef]
- Weinhard, L.; Di Bartolomei, G.; Bolasco, G.; Machado, P.; Schieber, N.L.; Neniskyte, U.; Exiga, M.; Vadisiute, A.; Raggioli, A.; Schertel, A.; et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 2018, 9, 1228. [Google Scholar] [CrossRef]
- Borreca, A.; Mantovani, C.; Desiato, G.; Corradini, I.; Filipello, F.; Elia, C.A.; D’Autilia, F.; Santamaria, G.; Garlanda, C.; Morini, R.; et al. Loss of interleukin 1 signaling causes impairment of microglia-mediated synapse elimination and autistic-like behaviour in mice. Brain Behav. Immun. 2024, 117, 493–509. [Google Scholar] [CrossRef]
- Kim, Y.S.; Choi, J.; Yoon, B.E. Neuron-glia interactions in neurodevelopmental disorders. Cells 2020, 9, 2176. [Google Scholar] [CrossRef]
- Coutinho, E.; Menassa, D.A.; Jacobson, L.; West, S.J.; Domingos, J.; Moloney, T.C.; Lang, B.; Harrison, P.; Bennett, D.; Bannerman, D.; et al. Persistent microglial activation and synaptic loss with behavioral abnormalities in mouse offspring exposed to CASPR2-antibodies in utero. Acta Neuropathol. 2017, 134, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.X.; Kim, G.H.; Tan, J.W.; Riso, A.E.; Sun, Y.; Xu, E.Y.; Liao, G.; Xu, H.; Lee, S.; Do, N.; et al. Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations. Nat. Commun. 2020, 11, 1797. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Guan, A.; Liu, J.; Peng, L.; Zhang, Z.; Wang, S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J. Neuroinflamm. 2023, 20, 223. [Google Scholar] [CrossRef] [PubMed]
- Derecki, N.C.; Cronk, J.C.; Lu, Z.; Xu, E.; Abbott, S.B.G.; Guyenet, P.G.; Kipnis, J. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 2012, 484, 105–109. [Google Scholar] [CrossRef]
- Maezawa, I.; Jin, L.W. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J. Neurosci. 2010, 30, 5346–5356. [Google Scholar] [CrossRef]
- Bar, E.; Barak, B. Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. Glia 2019, 67, 2125–2141. [Google Scholar] [CrossRef]
- Bagni, C.; Zukin, R.S. A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron 2019, 101, 1070–1088. [Google Scholar] [CrossRef]
- Albertini, G.; D’andrea, I.; Druart, M.; Béchade, C.; Nieves-Rivera, N.; Etienne, F.; Le Magueresse, C.; Rebsam, A.; Heck, N.; Maroteaux, L.; et al. Serotonin sensing by microglia conditions the proper development of neuronal circuits and of social and adaptive skills. Mol. Psychiatry 2023, 28, 2328–2342. [Google Scholar] [CrossRef] [PubMed]
- Coomey, R.; Stowell, R.; Majewska, A.; Tropea, D. The role of microglia in neurodevelopmental disorders and their therapeutics. Curr. Top. Med. Chem. 2020, 20, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Yang, J.; Wang, H.; Li, Y. Microglia mediated neuroinflammation in autism spectrum disorder. J. Psychiatr. Res. 2020, 130, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Mordelt, A.; de Witte, L.D. Microglia-mediated synaptic pruning as a key deficit in neurodevelopmental disorders: Hype or hope? Curr. Opin. Neurobiol. 2023, 79, 102674. [Google Scholar] [CrossRef]
- Shi, L.; Smith, S.E.P.; Malkova, N.; Tse, D.; Su, Y.; Patterson, P.H. Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav. Immun. 2009, 23, 116–123. [Google Scholar] [CrossRef]
- Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol. 2021, 17, 564–579. [Google Scholar] [CrossRef]
- Canada, K.; Evans, T.M.; Pelphrey, K.A. Microglial regulation of white matter development and its disruption in autism spectrum disorder. Cereb. Cortex 2025, 35, bhaf109. [Google Scholar] [CrossRef]
- Khelfaoui, H.; Ibaceta-Gonzalez, C.; Angulo, M.C. Functional myelin in cognition and neurodevelopmental disorders. Cell. Mol. Life Sci. 2024, 81, 181. [Google Scholar] [CrossRef]
- Graciarena, M.; Seiffe, A.; Nait-Oumesmar, B.; Depino, A.M. Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Front. Cell Neurosci. 2019, 12, 517. [Google Scholar] [CrossRef]
- Xin, W.; Chan, J.R. Myelin plasticity: Sculpting circuits in learning and memory. Nat. Rev. Neurosci. 2020, 21, 682–694. [Google Scholar] [CrossRef]
- Wedel, M.; Fröb, F.; Elsesser, O.; Wittmann, M.T.; Lie, D.C.; Reis, A.; Wegner, M. Transcription factor Tcf4 is the preferred heterodimerization partner for Olig2 in oligodendrocytes and required for differentiation. Nucleic Acids Res. 2020, 48, 4839–4857. [Google Scholar] [CrossRef]
- Carbonell, A.U.; Cho, C.H.; Tindi, J.O.; Counts, P.A.; Bates, J.C.; Erdjument-Bromage, H.; Cvejic, S.; Iaboni, A.; Kvint, I.; Rosensaft, J.; et al. Haploinsufficiency in the ANKS1B gene encoding AIDA-1 leads to a neurodevelopmental syndrome. Nat. Commun. 2019, 10, 3529. [Google Scholar] [CrossRef]
- Cho, C.H.; Deyneko, I.V.; Cordova-Martinez, D.; Vazquez, J.; Maguire, A.S.; Diaz, J.R.; Carbonell, A.; Tindi, J.; Cui, M.; Fleysher, R.; et al. ANKS1B encoded AIDA-1 regulates social behaviors by controlling oligodendrocyte function. Nat. Commun. 2023, 14, 8499. [Google Scholar] [CrossRef] [PubMed]
- Fischer, I.; Shohat, S.; Leichtmann-Bardoogo, Y.; Nayak, R.; Wiener, G.; Rosh, I.; Shemen, A.; Tripathi, U.; Rokach, M.; Bar, E.; et al. Shank3 mutation impairs glutamate signaling and myelination in ASD mouse model and human iPSC-derived OPCs. Sci. Adv. 2024, 10, eadl4573. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Patel, D.R.; Apple, R.; Kanungo, S.; Akkal, A. Narrative review of intellectual disability: Definitions, evaluation and principles of treatment. Pediatr. Med. 2018, 1, 11. [Google Scholar] [CrossRef]
- Patel, D.R.; Greydanus, D.E.; Merrick, J.; Rubin, I.L. Introduction to Intellectual and Developmental Disabilities. In Health Care for People with Intellectual and Developmental Disabilities Across the Lifespan; Springer International Publishing: Cham, Switzerland, 2016; pp. 5–12. [Google Scholar]
- Snell, M.E.; Luckasson, R.; Borthwick-Duffy, W.S.; Bradley, V.; Buntinx, W.H.E.; Coulter, D.L.; Craig, E.P.; Gomez, S.C.; Lachapelle, Y.; Reeve, A.; et al. Characteristics and Needs of People with Intellectual Disability Who Have Higher IQs. Intellect. Dev. Disabil. 2009, 47, 220–233. [Google Scholar] [CrossRef]
- Obi, O.; Van Naarden Braun, K.; Baio, J.; Drews-Botsch, C.; Devine, O.; Yeargin-Allsopp, M. Effect of Incorporating Adaptive Functioning Scores on the Prevalence of Intellectual Disability. Am. J. Intellect. Dev. Disabil. 2011, 116, 360–370. [Google Scholar] [CrossRef]
- Hammond, T.R.; Robinton, D.; Stevens, B. Microglia and the Brain: Complementary Partners in Development and Disease. Annu. Rev. Cell Dev. Biol. 2018, 34, 523–544. [Google Scholar] [CrossRef]
- Wang, B.; Zou, L.; Li, M.; Zhou, L. Astrocyte: A Foe or a Friend in Intellectual Disability-Related Diseases. Front. Synaptic. Neurosci. 2022, 14, 877928. [Google Scholar] [CrossRef]
- Fernández-Blanco, Á.; Dierssen, M. Rethinking Intellectual Disability from Neuro- to Astro-Pathology. Int. J. Mol. Sci. 2020, 21, 9039. [Google Scholar] [CrossRef]
- Murphy-Royal, C.; Ching, S.; Papouin, T. Contextual guidance: An integrated theory for astrocytes function in brain circuits and behavior. arXiv 2022, arXiv:2211.09906. [Google Scholar] [CrossRef]
- Khakh, B.S.; Sofroniew, M.V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 2015, 18, 942–952. [Google Scholar] [CrossRef]
- Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010, 119, 7–35. [Google Scholar] [CrossRef]
- Sofroniew, M.V. Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol. 2020, 41, 758–770. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.A.; Ao, Y.; Sofroniew, M.V. Heterogeneity of reactive astrocytes. Neurosci. Lett. 2014, 65, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Escartin, C.; Galea, E.; Lakatos, A.; O’Callaghan, J.P.; Petzold, G.C.; Serrano-Pozo, A.; Steinhäuser, C.; Volterra, A.; Carmignoto, G.; Agarwal, A.; et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 2021, 24, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Khoshnam, S.E.; Winlow, W.; Farzaneh, M.; Farbood, Y.; Moghaddam, H.F. Pathogenic mechanisms following ischemic stroke. Neurol. Sci. 2017, 38, 1167–1186. [Google Scholar] [CrossRef]
- Dringen, R.; Brandmann, M.; Hohnholt, M.C.; Blumrich, E.M. Glutathione-Dependent Detoxification Processes in Astrocytes. Neurochem. Res. 2015, 40, 2570–2582. [Google Scholar] [CrossRef]
- Frade, J.; Pope, S.; Schmidt, M.; Dringen, R.; Barbosa, R.; Pocock, J.; Laranjinha, J.; Heales, S. Glutamate induces release of glutathione from cultured rat astrocytes—A possible neuroprotective mechanism? J. Neurochem. 2008, 105, 1144–1152. [Google Scholar] [CrossRef]
- Carmignoto, G.; Gómez-Gonzalo, M. The contribution of astrocyte signalling to neurovascular coupling. Brain Res. Rev. 2010, 63, 138–148. [Google Scholar] [CrossRef]
- Kowiański, P.; Lietzau, G.; Steliga, A.; Waśkow, M.; Moryś, J. The astrocytic contribution to neurovascular coupling—Still more questions than answers? Neurosci. Res. 2013, 75, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Liebner, S.; Dijkhuizen, R.M.; Reiss, Y.; Plate, K.H.; Agalliu, D.; Constantin, G. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol. 2018, 135, 311–336. [Google Scholar] [CrossRef] [PubMed]
- Magistretti, P.J.; Allaman, I. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging. Neuron 2015, 86, 883–901. [Google Scholar] [CrossRef] [PubMed]
- Cresto, N.; Pillet, L.E.; Billuart, P.; Rouach, N. Do Astrocytes Play a Role in Intellectual Disabilities? Trends Neurosci. 2019, 42, 518–527. [Google Scholar] [CrossRef]
- Giacometti, E.; Luikenhuis, S.; Beard, C.; Jaenisch, R. Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc. Natl. Acad. Sci. USA 2007, 104, 1931–1936. [Google Scholar] [CrossRef]
- Guy, J.; Gan, J.; Selfridge, J.; Cobb, S.; Bird, A. Reversal of Neurological Defects in a Mouse Model of Rett Syndrome. Science 2007, 315, 1143–1147. [Google Scholar] [CrossRef]
- Ballas, N.; Lioy, D.T.; Grunseich, C.; Mandel, G. Non–cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat. Neurosci. 2009, 12, 311–317. [Google Scholar] [CrossRef]
- Cheng, C.; Lau, S.K.M.; Doering, L.C. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model. Mol. Brain 2016, 9, 74. [Google Scholar] [CrossRef]
- Jacobs, S.; Doering, L.C. Astrocytes Prevent Abnormal Neuronal Development in the Fragile X Mouse. J. Neurosci. 2010, 30, 4508–4514. [Google Scholar] [CrossRef]
- Ponroy Bally, B.; Murai, K.K. Astrocytes in Down Syndrome Across the Lifespan. Front. Cell. Neurosci. 2021, 15, 702685. [Google Scholar] [CrossRef]
- Pacey, L.K.K.; Doering, L.C. Developmental expression of FMRP in the astrocyte lineage: Implications for fragile X syndrome. Glia 2007, 55, 1601–1609. [Google Scholar] [CrossRef]
- Reynolds, K.E.; Wong, C.R.; Scott, A.L. Astrocyte-mediated purinergic signaling is upregulated in a mouse model of Fragile X syndrome. Glia 2021, 69, 1816–1832. [Google Scholar] [CrossRef] [PubMed]
- Maezawa, I.; Swanberg, S.; Harvey, D.; LaSalle, J.M.; Jin, L.W. Rett Syndrome Astrocytes Are Abnormal and Spread MeCP2 Deficiency through Gap Junctions. J. Neurosci. 2009, 29, 5051–5061. [Google Scholar] [CrossRef] [PubMed]
- Ramocki, M.B.; Zoghbi, H.Y. Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 2008, 455, 912–918. [Google Scholar] [CrossRef]
- Mizuno, G.O.; Wang, Y.; Shi, G.; Wang, Y.; Sun, J.; Papadopoulos, S.; Broussard, G.J.; Unger, E.K.; Deng, W.; Weick, J.; et al. Aberrant Calcium Signaling in Astrocytes Inhibits Neuronal Excitability in a Human Down Syndrome Stem Cell Model. Cell Rep. 2018, 24, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Ballestín, R.; Blasco-Ibáñez, J.M.; Crespo, C.; Nacher, J.; López-Hidalgo, R.; Gilabert-Juan, J.; Molto, D.; Varea, E. Astrocytes of the murine model for Down Syndrome Ts65Dn display reduced intracellular ionic zinc. Neurochem. Int. 2014, 75, 48–53. [Google Scholar] [CrossRef]
- Wong, M. The role of glia in epilepsy, intellectual disability, and other neurodevelopmental disorders in tuberous sclerosis complex. J. Neurodev. Disord. 2019, 11, 30. [Google Scholar] [CrossRef]
- Jansen, L.A.; Uhlmann, E.J.; Crino, P.B.; Gutmann, D.H.; Wong, M. Epileptogenesis and Reduced Inward Rectifier Potassium Current in Tuberous Sclerosis Complex-1–Deficient Astrocytes. Epilepsia 2005, 46, 1871–1880. [Google Scholar] [CrossRef]
- Woo, D.H.; Han, K.S.; Shim, J.W.; Yoon, B.E.; Kim, E.; Bae, J.Y.; Oh, S.J.; Hwang, E.; Marmorstein, A.; Bae, Y.C.; et al. TREK-1 and Best1 Channels Mediate Fast and Slow Glutamate Release in Astrocytes upon GPCR Activation. Cell 2012, 151, 25–40. [Google Scholar] [CrossRef]
- Xing, L.; Yang, T.; Cui, S.; Chen, G. Connexin Hemichannels in Astrocytes: Role in CNS Disorders. Front. Mol. Neurosci. 2019, 12, 13. [Google Scholar] [CrossRef]
- Olsen, M.L.; Khakh, B.S.; Skatchkov, S.N.; Zhou, M.; Lee, C.J.; Rouach, N. New Insights on Astrocyte Ion Channels: Critical for Homeostasis and Neuron-Glia Signaling. J. Neurosci. 2015, 35, 13827–13835. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, N.L.; Heaven, M.R.; Holt, L.M.; Crossman, D.K.; Boggio, K.J.; Shaffer, S.A.; Flint, D.; Olsen, M. RNA sequencing and proteomics approaches reveal novel deficits in the cortex of Mecp2-deficient mice, a model for Rett syndrome. Mol. Autism. 2017, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Higashimori, H.; Morel, L.; Huth, J.; Lindemann, L.; Dulla, C.; Taylor, A.; Freeman, M.; Yang, Y. Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X mouse. Hum. Mol. Genet. 2013, 22, 2041–2054. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; Zhou, S.; Yang, L.; Shi, Q.; Li, Y.; Zhang, K.; Yang, L.; Zhao, M.; Yang, Q. Imbalance between Glutamate and GABA in Fmr1 Knockout Astrocytes Influences Neuronal Development. Genes 2016, 7, 45. [Google Scholar] [CrossRef]
- Höftberger, R.; Kunze, M.; Weinhofer, I.; Aboul-Enein, F.; Voigtländer, T.; Oezen, I.; Amann, G.; Bernheimer, H.; Budka, H.; Berger, J.; et al. Distribution and cellular localization of adrenoleukodystrophy protein in human tissues: Implications for X-linked adrenoleukodystrophy. Neurobiol. Dis. 2007, 28, 165–174. [Google Scholar] [CrossRef]
- Wong, M.; Ess, K.C.; Uhlmann, E.J.; Jansen, L.A.; Li, W.; Crino, P.B.; Mennerick, S.; Yamada, K.; Gutmann, D. Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann. Neurol. 2003, 54, 251–256. [Google Scholar] [CrossRef]
- Okabe, Y.; Takahashi, T.; Mitsumasu, C.; Kosai, K.; Tanaka, E.; Matsuishi, T. Alterations of Gene Expression and Glutamate Clearance in Astrocytes Derived from an MeCP2-Null Mouse Model of Rett Syndrome. PLoS ONE 2012, 7, e35354. [Google Scholar] [CrossRef]
- Iyer, A.M.; Scheppingen, J.; Milenkovic, I.; Anink, J.J.; Lim, D.; Genazzani, A.A.; Adle-Biassette, H.; Kovacs, G.; Aronica, E. Metabotropic Glutamate Receptor 5 in Down’s Syndrome Hippocampus During Development: Increased Expression in Astrocytes. Curr. Alzheimer Res. 2014, 11, 694–705. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Butt, A.; Li, B.; Illes, P.; Zorec, R.; Semyanov, A.; Tang, Y.; Sofroniew, M. Astrocytes in human central nervous system diseases: A frontier for new therapies. Signal Transduct. Target. Ther. 2023, 8, 396. [Google Scholar] [CrossRef]
- Li, Q.; Barres, B.A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 2018, 18, 225–242. [Google Scholar] [CrossRef]
- Menassa, D.A.; Gomez-Nicola, D. Microglial Dynamics During Human Brain Development. Front. Immunol. 2018, 9, 1014. [Google Scholar] [CrossRef]
- Lago-Baldaia, I.; Fernandes, V.M.; Ackerman, S.D. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front. Cell Dev. Biol. 2020, 8, 611269. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Bisht, K.; Eyo, U.B. A Comparative Biology of Microglia Across Species. Front. Cell Dev. Biol. 2021, 9, 652748. [Google Scholar] [CrossRef] [PubMed]
- Staszewski, O.; Hagemeyer, N. Unique microglia expression profile in developing white matter. BMC Res. Notes 2019, 12, 367. [Google Scholar] [CrossRef]
- Wlodarczyk, A.; Holtman, I.R.; Krueger, M.; Yogev, N.; Bruttger, J.; Khorooshi, R.; Benmamar-Badel, A.; de Boer-Bergsma, J.; Martin, N.; Karram, K.; et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 2017, 36, 3292–3308. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.R.; Liu, J.C.; Bao, J.S.; Bai, Q.Q.; Wang, G.Q. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front Immunol. 2020, 11, 1024. [Google Scholar] [CrossRef]
- Thion, M.S.; Low, D.; Silvin, A.; Chen, J.; Grisel, P.; Schulte-Schrepping, J.; Blecher, R.; Ulas, T.; Squarxoni, P.; Hoeffel, G.; et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell 2018, 172, 500–516.e16. [Google Scholar] [CrossRef]
- Chye, L.; Riek, S.; de Rugy, A.; Carson, R.G.; Carroll, T.J. Unilateral movement preparation causes task-specific modulation of TMS responses in the passive, opposite limb. J. Physiol. 2018, 596, 3725–3738. [Google Scholar] [CrossRef]
- Salter, M.W.; Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 2017, 23, 1018–1027. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Bolasco, G.; Pagani, F.; Maggi, L.; Scianni, M.; Panzanelli, P.; Giustetto, M.; Ferreira, T.; Guiducci, E.; Dumas, L.; et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science 2011, 333, 1456–1458. [Google Scholar] [CrossRef]
- Arcuri, C.; Mecca, C.; Bianchi, R.; Giambanco, I.; Donato, R. The Pathophysiological Role of Microglia in Dynamic Surveillance, Phagocytosis and Structural Remodeling of the Developing CNS. Front. Mol. Neurosci. 2017, 10, 191. [Google Scholar] [CrossRef]
- Kahanovitch, U.; Patterson, K.C.; Hernandez, R.; Olsen, M.L. Glial Dysfunction in MeCP2 Deficiency Models: Implications for Rett Syndrome. Int. J. Mol. Sci. 2019, 20, 3813. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, K.E.; Napier, M.; Fei, F.; Green, K.; Scott, A.L. Dysregulated Purinergic Signalling in Fragile X Syndrome Cortical Astrocytes. Neuromol. Med. 2024, 26, 36. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Xu, R.; Wang, L.; Alam, M.M.; Ma, Z.; Zhu, S.; Martini, A.C.; Jadali, A.; Bernabucci, M.; Xie, P.; et al. Type-I-interferon signaling drives microglial dysfunction and senescence in human iPSC models of Down syndrome and Alzheimer’s disease. Cell Stem Cell 2022, 29, 1135–1153. [Google Scholar] [CrossRef] [PubMed]
- Rahimian, R.; Perlman, K.; Canonne, C.; Mechawar, N. Targeting microglia–oligodendrocyte crosstalk in neurodegenerative and psychiatric disorders. Drug Discov. Today 2022, 27, 2562–2573. [Google Scholar] [CrossRef]
- Boerboom, A.; Reusch, C.; Pieltain, A.; Chariot, A.; Franzen, R. KIAA1199: A novel regulator of MEK/ERK-induced Schwann cell dedifferentiation. Glia 2017, 65, 1682–1696. [Google Scholar] [CrossRef]
- Nave, K.A.; Werner, H.B. Myelination of the Nervous System: Mechanisms and Functions. Annu. Rev. Cell Dev. Biol. 2014, 30, 503–533. [Google Scholar] [CrossRef]
- Cichorek, M.; Kowiański, P.; Lietzau, G.; Lasek, J.; Moryś, J. Neuroglia—Development and role in physiological and pathophysiological processes. Folia Morphol. 2021, 80, 766–775. [Google Scholar] [CrossRef]
- Butt, A.M.; Kalsi, A. Inwardly rectifying potassium channels (Kir) in central nervous system glia: A special role for Kir4.1 in glial functions. J. Cell. Mol. Med. 2006, 10, 33–44. [Google Scholar] [CrossRef]
- Butt, A.M.; Fern, R.F.; Matute, C. Neurotransmitter signaling in white matter. Glia 2014, 62, 1762–1779. [Google Scholar] [CrossRef]
- Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in Development, Myelin Generation and Beyond. Cells 2019, 8, 1424. [Google Scholar] [CrossRef]
- Giotakos, O. Is psychosis a dysmyelination-related information-processing disorder? Psychiatriki 2019, 30, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, H.G.; Keilhoff, G.; Dobrowolny, H.; Guest, P.C.; Steiner, J. Perineuronal oligodendrocytes in health and disease: The journey so far. Rev. Neurosci. 2019, 31, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Janowska, J.; Gargas, J.; Ziemka-Nalecz, M.; Zalewska, T.; Sypecka, J. Oligodendrocyte Response to Pathophysiological Conditions Triggered by Episode of Perinatal Hypoxia-Ischemia: Role of IGF-1 Secretion by Glial. Cells Mol. Neurobiol. 2020, 57, 4250–4268. [Google Scholar] [CrossRef] [PubMed]
- Pijuan, I.; Balducci, E.; Soto-Sánchez, C.; Fernández, E.; Barallobre, M.J.; Arbonés, M.L. Impaired macroglial development and axonal conductivity contributes to the neuropathology of DYRK1A-related intellectual disability syndrome. Sci. Rep. 2022, 12, 19912. [Google Scholar] [CrossRef]
- Maiuolo, J.; Gliozzi, M.; Musolino, V.; Carresi, C.; Nucera, S.; Scicchitano, M.; Scarano, F.; Bosco, F.; Oppedisano, F.; Macri, R.; et al. Environmental and Nutritional “Stressors” and Oligodendrocyte Dysfunction: Role of Mitochondrial and Endoplasmatic Reticulum Impairment. Biomedicines 2020, 8, 553. [Google Scholar] [CrossRef]
- Forbes, T.A.; Goldstein, E.Z.; Dupree, J.L.; Jablonska, B.; Scafidi, J.; Adams, K.L.; Imamura, Y.; Hashimoto-Torii, K.; Gallo, V. Environmental enrichment ameliorates perinatal brain injury and promotes functional white matter recovery. Nat. Commun. 2020, 11, 964. [Google Scholar] [CrossRef]
- Pliszka, S.R.; Crismon, M.L.; Hughes, C.W.; Corners, C.K.; Emslie, G.J.; Jensen, P.S.; McCRACKEN, J.T.; Swanson, J.M.; Lopez, M. The Texas Children’s Medication Algorithm Project: Revision of the Algorithm for Pharmacotherapy of Attention-Deficit/Hyperactivity Disorder. J. Am. Acad. Child. Adolesc. Psychiatry 2006, 45, 642–657. [Google Scholar] [CrossRef]
- Vitola, E.S.; Bau, C.H.D.; Salum, G.A.; Horta, B.L.; Quevedo, L.; Barros, F.C.; Pinheireo, R.T.; Kieling, C.; Rohde, L.A.; Grevet, E. Exploring DSM-5 ADHD criteria beyond young adulthood: Phenomenology, psychometric properties and prevalence in a large three-decade birth cohort. Psychol. Med. 2017, 47, 744–754. [Google Scholar] [CrossRef]
- Willcutt, E.G. The Prevalence of DSM-IV Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review. Neurotherapeutics 2012, 9, 490–499. [Google Scholar] [CrossRef]
- Thomas, R.; Sanders, S.; Doust, J.; Beller, E.; Glasziou, P. Prevalence of Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-analysis. Pediatrics 2015, 135, e994–e1001. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Asherson, P.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Ramos-Quiroga, J.A.; Rohde, L.A.; Sonuga-Barke, E.; Tannock, R.; Franke, B. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 2015, 1, 15020. [Google Scholar] [CrossRef]
- Simon, V.; Czobor, P.; Bálint, S.; Mészáros, Á.; Bitter, I. Prevalence and correlates of adult attention-deficit hyperactivity disorder: Meta-analysis. Br. J. Psychiatry 2009, 194, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Corona, J.C. Role of Oxidative Stress and Neuroinflammation in Attention-Deficit/Hyperactivity Disorder. Antioxidants 2020, 9, 1039. [Google Scholar] [CrossRef] [PubMed]
- Oades, R.D.; Myint, A.M.; Dauvermann, M.R.; Schimmelmann, B.G.; Schwarz, M.J. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: An exploration of associations of cytokines and kynurenine metabolites with symptoms and attention. Behav. Brain Funct. 2010, 6, 32. [Google Scholar] [CrossRef]
- Darwish, A.H.; Elgohary, T.M.; Nosair, N.A. Serum Interleukin-6 Level in Children with Attention-Deficit Hyperactivity Disorder (ADHD). J. Child. Neurol. 2019, 34, 61–67. [Google Scholar] [CrossRef]
- Buske-Kirschbaum, A.; Schmitt, J.; Plessow, F.; Romanos, M.; Weidinger, S.; Roessner, V. Psychoendocrine and psychoneuroimmunological mechanisms in the comorbidity of atopic eczema and attention deficit/hyperactivity disorder. Psychoneuroendocrinology 2013, 38, 12–23. [Google Scholar] [CrossRef]
- Beaulieu, J.M.; Gainetdinov, R.R. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacol. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef]
- Wang, L.J.; Yu, Y.H.; Fu, M.L.; Yeh, W.T.; Hsu, J.L.; Yang, Y.H.; Chen, W.J.; Chiang, B.L.; Pan, W.H. Attention deficit–hyperactivity disorder is associated with allergic symptoms and low levels of hemoglobin and serotonin. Sci. Rep. 2018, 8, 10229. [Google Scholar] [CrossRef]
- Bauer, J.; Werner, A.; Kohl, W.; Kugel, H.; Shushakova, A.; Pedersen, A.; Ohrmann, P. Hyperactivity and impulsivity in adult attention-deficit/hyperactivity disorder is related to glutamatergic dysfunction in the anterior cingulate cortex. World J. Biol. Psychiatry 2018, 19, 538–546. [Google Scholar] [CrossRef]
- Bollmann, S.; Ghisleni, C.; Poil, S.S.; Martin, E.; Ball, J.; Eich-Höchli, D.; Edden, R.; Klaver, P.; Michels, L.; Brandeis, D.; et al. Developmental changes in gamma-aminobutyric acid levels in attention-deficit/hyperactivity disorder. Transl. Psychiatry 2015, 5, e589. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Liu, A.; Shi, M.Y.; Yan, Z. Disrupted Glutamatergic Transmission in Prefrontal Cortex Contributes to Behavioral Abnormality in an Animal Model of ADHD. Neuropsychopharmacology 2017, 42, 2096–2104. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.S.; Grevet, E.H.; Silva, L.C.F.; Ramos, J.K.N.; Rovaris, D.L.; Bau, C.H.D. An overview on neurobiology and therapeutics of attention-deficit/hyperactivity disorder. Discov. Ment. Health 2023, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Passarelli, F.; Donfrancesco, R.; Nativio, P.; Pascale, E.; Trani, M.D.; Patti, A.M.; Vulcano, A.; Gozzo, P.; Villa, P.M. Anti-Purkinje cell antibody as a biological marker in attention deficit/hyperactivity disorder: A pilot study. J. Neuroimmunol. 2013, 258, 67–70. [Google Scholar] [CrossRef]
- Donfrancesco, R.; Nativio, P.; Di Benedetto, A.; Villa, M.P.; Andriola, E.; Melegari, M.G.; Cipriano, E.; Trani, M.D. Anti-Yo Antibodies in Children with ADHD: First Results About Serum Cytokines. J. Atten. Disord. 2020, 24, 1497–1502. [Google Scholar] [CrossRef]
- Giana, G.; Romano, E.; Porfirio, M.C.; D’Ambrosio, R.; Giovinazzo, S.; Troianiello, M.; Barlocci, E.; Travaglini, D.; Granstrem, O.; Pascale, E.; et al. Detection of auto-antibodies to DAT in the serum: Interactions with DAT genotype and psycho-stimulant therapy for ADHD. J. Neuroimmunol. 2015, 278, 212–222. [Google Scholar] [CrossRef]
- Toto, M.; Margari, F.; Simone, M.; Craig, F.; Petruzzelli, M.G.; Tafuri, S.; Margari, L. Antibasal Ganglia Antibodies and Antistreptolysin O in Noncomorbid ADHD. J. Atten. Disord. 2015, 19, 965–970. [Google Scholar] [CrossRef]
- Gnanavel, S.; Sharma, P.; Kaushal, P.; Hussain, S. Attention deficit hyperactivity disorder and comorbidity: A review of literature. World J. Clin. Cases 2019, 7, 2420–2426. [Google Scholar] [CrossRef]
- Spencer, T.J.; Biederman, J.; Mick, E. Attention-Deficit/Hyperactivity Disorder: Diagnosis, Lifespan, Comorbidities, and Neurobiology. J. Pediatr. Psychol. 2007, 32, 631–642. [Google Scholar] [CrossRef]
- Seo, J.C.; Jon, D.I.; Shim, S.H.; Sung, H.M.; Woo, Y.S.; Hong, J.; Park, S.Y.; Seo, J.S.; Bahk, W.M. Prevalence and Comorbidities of Attention Deficit Hyperactivity Disorder Among Adults and Children/Adolescents in Korea. Clin. Psychopharmacol. Neurosci. 2022, 20, 126–134. [Google Scholar] [CrossRef]
- Jensen, C.M.; Steinhausen, H.C. Comorbid mental disorders in children and adolescents with attention-deficit/hyperactivity disorder in a large nationwide study. ADHD Atten. Deficit Hyperact. Disord. 2015, 7, 27–38. [Google Scholar] [CrossRef]
- Akmatov, M.K.; Ermakova, T.; Bätzing, J. Psychiatric and Nonpsychiatric Comorbidities Among Children with ADHD: An Exploratory Analysis of Nationwide Claims Data in Germany. J. Atten. Disord. 2021, 25, 874–884. [Google Scholar] [CrossRef]
- Martins-Macedo, J.; Lepore, A.C.; Domingues, H.S.; Salgado, A.J.; Gomes, E.D.; Pinto, L. Glial restricted precursor cells in central nervous system disorders: Current applications and future perspectives. Glia 2021, 69, 513–531. [Google Scholar] [CrossRef] [PubMed]
- Aloisi, F. Immune function of microglia. Glia 2001, 36, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Sofroniew, M.V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 2015, 16, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Elkabes, S.; DiCicco-Bloom, E.; Black, I. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J. Neurosci. 1996, 16, 2508–2521. [Google Scholar] [CrossRef]
- Nakajima, K.; Honda, S.; Tohyama, Y.; Imai, Y.; Kohsaka, S.; Kurihara, T. Neurotrophin secretion from cultured microglia. J Neurosci. Res. 2001, 65, 322–331. [Google Scholar] [CrossRef]
- Greter, M.; Merad, M. Regulation of microglia development and homeostasis. Glia 2013, 61, 121–127. [Google Scholar] [CrossRef]
- Eftekharian, M.M.; Ghafouri-Fard, S.; Noroozi, R.; Omrani, M.D.; Arsang-jang, S.; Ganji, M.; Gharzi, V.; Noroozi, H.; Komaki, A.; Mazdeh, M.; et al. Cytokine profile in autistic patients. Cytokine 2018, 108, 120–126. [Google Scholar] [CrossRef]
- Patterson, S.L. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity. Neuropharmacology 2015, 96, 11–18. [Google Scholar] [CrossRef]
- Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Pessah, I.; Van de Water, J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun. 2011, 25, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Dejardin, S.; Dubois, S.; Bodart, J.M.; Schiltz, C.; Delinte, A.; Michel, C.; Roucoux, A.; Crommelinck, M. PET study of human voluntary saccadic eye movements in darkness: Effect of task repetition on the activation pattern. Eur. J. Neurosci. 1998, 10, 2328–2336. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yoon, B.E.; Berglund, K.; Oh, S.J.; Park, H.; Shin, H.S.; Augustine, G.J.; Lee, C.J. Channel-mediated tonic GABA release from glia. Science 2010, 330, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Todd, R.D.; Botteron, K.N. Is attention-deficit/hyperactivity disorder an energy deficiency syndrome? Biol. Psychiatry 2001, 50, 151–158. [Google Scholar] [CrossRef]
- Sandau, U.S.; Alderman, Z.; Corfas, G.; Ojeda, S.R.; Raber, J. Astrocyte-Specific Disruption of SynCAM1 Signaling Results in ADHD-Like Behavioral Manifestations. PLoS ONE 2012, 7, e36424. [Google Scholar] [CrossRef]
- Espenshade, P.J. SREBPs: Sterol-regulated transcription factors. J. Cell Sci. 2006, 119, 973–976. [Google Scholar] [CrossRef]
- Won, H.; Mah, W.; Kim, E.; Kim, J.W.; Hahm, E.K.; Kim, M.H.; Cho, S.; Kim, J.; Jang, H.; Cho, S.C.; et al. GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nat. Med. 2011, 17, 566–572. [Google Scholar] [CrossRef]
- DeLong, M.R.; Wichmann, T. Circuits and Circuit Disorders of the Basal Ganglia. Arch. Neurol. 2007, 64, 20. [Google Scholar] [CrossRef]
- Nagai, J.; Rajbhandari, A.K.; Gangwani, M.R.; Hachisuka, A.; Coppola, G.; Masmanidis, S.C.; Fanselow, M.; Khakh, B.S. Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. Cell 2019, 177, 1280–1292.e20. [Google Scholar] [CrossRef]
- Dury, L.C.; Yde Ohki, C.M.; Lesch, K.P.; Walitza, S.; Grünblatt, E. The role of astrocytes in attention-deficit hyperactivity disorder: An update. Psychiatry Res. 2025, 350, 116558. [Google Scholar] [CrossRef]
- Lee, K.W.; Lim, S.; Kim, K.D. The Function of N-Myc Downstream-Regulated Gene 2 (NDRG2) as a Negative Regulator in Tumor Cell Metastasis. Int. J. Mol. Sci. 2022, 23, 9365. [Google Scholar] [CrossRef] [PubMed]
- Vegt, R.; Bertoli-Avella, A.M.; Tulen, J.H.M.; de Graaf, B.; Verkerk, A.J.M.H.; Vervoort, J.; Twigt, C.M.; Maat-Kievit, A.; van Tuijl, R.; van. der. Lijn, M.; et al. Genome-wide linkage analysis in a Dutch multigenerational family with attention deficit hyperactivity disorder. Eur. J. Human Genet. 2010, 18, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Takeichi, T.; Takarada-Iemata, M.; Hashida, K.; Sudo, H.; Okuda, T.; Kokame, K.; Hatano, T.; Takanashi, M.; Funabe, S.; Hattori, N.; et al. The effect of Ndrg2 expression on astroglial activation. Neurochem. Int. 2011, 59, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Yin, A.; Guo, H.; Tao, L.; Cai, G.; Wang, Y.; Yao, L.; Xiong, L.; Zhang, J.; Li, Y. NDRG2 Protects the Brain from Excitotoxicity by Facilitating Interstitial Glutamate Uptake. Transl. Stroke Res. 2020, 11, 214–227. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, Z.Y.; Wang, Y.Z.; Ji, S.P.; Liu, X.P.; Liu, X.W.; Che, H.L.; Wei, L.; Xia, L.; Jian, Z.; et al. Immunohistochemical detection of Ndrg2 in the mouse nervous system. Neuroreport 2008, 19, 927–931. [Google Scholar] [CrossRef]
- Li, Y.; Yin, A.; Sun, X.; Zhang, M.; Zhang, J.; Wang, P.; Xie, R.; Li, W.; Fan, Z.; Zhu, Y.; et al. Deficiency of tumor suppressor NDRG2 leads to attention deficit and hyperactive behavior. J. Clin. Investig. 2017, 127, 4270–4284. [Google Scholar] [CrossRef]
- Cavaliere, C.; Cirillo, G.; Bianco, M.R.; Adriani, W.; De Simone, A.; Leo, D.; Perrone-Capano, C.; Papa, M. Methylphenidate administration determines enduring changes in neuroglial network in rats. Eur. Neuropsychopharmacol. 2012, 22, 53–63. [Google Scholar] [CrossRef]
- Bacchi, A.D. Beyond the Neuron: The Integrated Role of Glia in Psychiatric Disorders. Neuroglia 2025, 6, 15. [Google Scholar] [CrossRef]
- Rivera, A.D.; Chacon-De-La-Rocha, I.; Pieropan, F.; Papanikolau, M.; Azim, K.; Butt, A.M. Keeping the ageing brain wired: A role for purine signalling in regulating cellular metabolism in oligodendrocyte progenitors. Pflugers Arch. 2021, 473, 775–783. [Google Scholar] [CrossRef]
- Ribasés, M.; Hervás, A.; Ramos-Quiroga, J.A.; Bosch, R.; Bielsa, A.; Gastaminza, X.; Anguiano, F.M.; Nogueira, M.; Gomez-Barros, N.; Valero, S.; et al. Association Study of 10 Genes Encoding Neurotrophic Factors and Their Receptors in Adult and Child Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry 2008, 63, 935–945. [Google Scholar] [CrossRef]
- Pasquin, S.; Sharma, M.; Gauchat, J.F. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev. 2015, 26, 507–515. [Google Scholar] [CrossRef]
- Anand, D.; Colpo, G.D.; Zeni, G.; Zeni, C.P.; Teixeira, A.L. Attention-Deficit/Hyperactivity Disorder And Inflammation: What Does Current Knowledge Tell Us? A Systematic Review. Front. Psychiatry 2017, 8, 228. [Google Scholar] [CrossRef] [PubMed]
- Lesch, K. Editorial: Can dysregulated myelination be linked to ADHD pathogenesis and persistence? J. Child Psychol. Psychiatry 2019, 60, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Demontis, D.; Walters, R.K.; Martin, J.; Mattheisen, M.; Als, T.D.; Agerbo, E.; Baldursson, G.; Belliveau, R.; Bybjerg-Grauholm, J.; Hansen, B.M.; et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 2019, 51, 63–75. [Google Scholar] [CrossRef]
- Yoo, S.; Motari, M.G.; Susuki, K.; Prendergast, J.; Mountney, A.; Hurtado, A.; Schnaar, R.L. Sialylation regulates brain structure and function. FASEB J. 2015, 29, 3040–3053. [Google Scholar] [CrossRef]
- Rathinam, V.A.K.; Fitzgerald, K.A. Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell 2016, 165, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Kayagaki, N.; Stowe, I.B.; Lee, B.L.; O’Rourke, K.; Anderson, K.; Warming, S.; Cuellar, T.; Haley, B.; Roose-Girma, M.; Phung, Q.T.; et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015, 526, 666–671. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526, 660–665. [Google Scholar] [CrossRef]
- Crawley, J.N. Mouse Behavioral Assays Relevant to the Symptoms of Autism*. Brain Pathol. 2007, 17, 448–459. [Google Scholar] [CrossRef]
- Daley, D. Attention deficit hyperactivity disorder: A review of the essential facts. Child Care Health Dev. 2006, 32, 193–204. [Google Scholar] [CrossRef]
- Ferencova, N.; Visnovcova, Z.; Ondrejka, I.; Hrtanek, I.; Bujnakova, I.; Kovacova, V.; Macejova, A.; Tonhajzerova, I. Peripheral Inflammatory Markers in Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder at Adolescent Age. In. J. Mol. Sci. 2023, 24, 11710. [Google Scholar] [CrossRef] [PubMed]
- Asadi, S.; Jamali, M.; Gholizadeh, Z. Assessment of Genetic Mutations in Genes DSM-IV, DRD4, SERT, HTR1B, SNAP25, GRIN2A, ADRA2A, TPH2 and BDNF Induced Attention Deficit Disorder and Hyperactivity in Children. J. Neurol. Disord. 2016, 4, 1–4. [Google Scholar] [CrossRef]
- Camberos-Barraza, J.; Guadrón-Llanos, A.M.; De la Herrán-Arita, A.K. The Gut Microbiome-Neuroglia Axis: Implications for Brain Health, Inflammation, and Disease. Neuroglia 2024, 5, 254–273. [Google Scholar] [CrossRef]
- Carias, E.; Hamilton, J.; Robison, L.S.; Delis, F.; Eiden, R.; Quattrin, T.; Hadjiargyrou, M.; Komatsu, D.; Thanos, P.K. Chronic oral methylphenidate treatment increases microglial activation in rats. J. Neural. Transm. 2018, 125, 1867–1875. [Google Scholar] [CrossRef]
- Sadasivan, S.; Pond, B.B.; Pani, A.K.; Qu, C.; Jiao, Y.; Smeyne, R.J. Methylphenidate Exposure Induces Dopamine Neuron Loss and Activation of Microglia in the Basal Ganglia of Mice. PLoS ONE 2012, 7, e33693. [Google Scholar] [CrossRef]
- McAfoose, J.; Baune, B.T. Evidence for a cytokine model of cognitive function. Neurosci. Biobehav. Rev. 2009, 33, 355–366. [Google Scholar] [CrossRef]
- Brydon, L.; Harrison, N.A.; Walker, C.; Steptoe, A.; Critchley, H.D. Peripheral Inflammation is Associated with Altered Substantia Nigra Activity and Psychomotor Slowing in Humans. Biol. Psychiatry 2008, 63, 1022–1029. [Google Scholar] [CrossRef]
- Buderath, P.; Gärtner, K.; Frings, M.; Christiansen, H.; Schoch, B.; Konczak, J.; Gizewski, E.R.; Hebebrand, J.; Timmann, D. Postural and gait performance in children with attention deficit/hyperactivity disorder. Gait Posture 2009, 29, 249–254. [Google Scholar] [CrossRef]
- Sun, M.; You, H.; Hu, X.; Luo, Y.; Zhang, Z.; Song, Y.; An, J.; Lu, H. Microglia–Astrocyte Interaction in Neural Development and Neural Pathogenesis. Cells 2023, 12, 1942. [Google Scholar] [CrossRef]
- Forrest, S.L.; Kim, J.H.; Crockford, D.R.; Huynh, K.; Cheong, R.; Knott, S.; Kane, M.A.; Ittner, L.M.; Halliday, G.M.; Kril, J.J. Distribution Patterns of Astrocyte Populations in the Human Cortex. Neurochem. Res. 2023, 48, 1222–1232. [Google Scholar] [CrossRef]
- Zhou, B.; Zuo, Y.; Jiang, R. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci. Ther. 2019, 25, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury, M. Microglia and Astrocytes in Alzheimer’s Disease: Implications for Therapy. Curr. Neuropharmacol. 2018, 16, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener. 2020, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tang, Y.; Feng, J. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci. 2011, 89, 141–146. [Google Scholar] [CrossRef]
- Frey, J.; Malaty, I.A. Tourette Syndrome Treatment Updates: A Review and Discussion of the Current and Upcoming Literature. Curr. Neurol. Neurosci. Rep. 2022, 22, 123–142. [Google Scholar] [CrossRef]
- Szejko, N.; Robinson, S.; Hartmann, A.; Ganos, C.; Debes, N.M.; Skov, L.; Haas, M.; Rizzo, R.; Stern, J.; Münchau, A.; et al. European clinical guidelines for Tourette syndrome and other tic disorders—Version 2.0. Part I Assess. Eur Child Adolesc Psychiatry 2022, 31, 383–402. [Google Scholar] [CrossRef]
- Chou, C.Y.; Agin-Liebes, J.; Kuo, S.H. Emerging therapies and recent advances for Tourette syndrome. Heliyon 2023, 9, e12874. [Google Scholar] [CrossRef]
- Peterson, B.S.; Pine, D.S.; Cohen, P.; Brook, J.S. Prospective, Longitudinal Study of Tic, Obsessive-Compulsive, and Attention-Deficit/Hyperactivity Disorders in an Epidemiological Sample. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 685–695. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Yang, H.; Li, Y.; Gui, J.; Cui, Y. Profiles of Proinflammatory Cytokines and T Cells in Patients with Tourette Syndrome: A Meta-Analysis. Front. Immunol. 2022, 13, 843247. [Google Scholar] [CrossRef]
- Swedo, S.E.; Leonard, H.L.; Garvey, M.; Mittleman, B.; Allen, A.J.; Perlmutter, S.; Dow, S.; Zamkoff, J.; Dubbert, B.K.; Lougee, L. Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections: Clinical Description of the First 50 Cases. Am. J. Psychiatry 1998, 155, 264–271. [Google Scholar] [CrossRef]
- Lepri, G.; Rigante, D.; Bellando Randone, S.; Meini, A.; Ferrari, A.; Tarantino, G.; Cunningham, M.W.; Falcini, F. Clinical-Serological Characterization and Treatment Outcome of a Large Cohort of Italian Children with Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infection and Pediatric Acute Neuropsychiatric Syndrome. J. Child Adolesc. Psychopharmacol. 2019, 29, 608–614. [Google Scholar] [CrossRef]
- Wu, X.; Hao, J.; Jiang, K.; Wu, M.; Zhao, X.; Zhang, X. Neuroinflammation and pathways that contribute to tourette syndrome. Ital. J. Pediatr. 2025, 51, 63. [Google Scholar] [CrossRef] [PubMed]
- Kawikova, I.; Leckman, J.F.; Kronig, H.; Katsovich, L.; Bessen, D.E.; Ghebremichael, M.; Bothwell, A.L.M. Decreased Numbers of Regulatory T Cells Suggest Impaired Immune Tolerance in Children with Tourette Syndrome: A Preliminary Study. Biol. Psychiatry 2007, 61, 273–278. [Google Scholar] [CrossRef]
- Li, E.; Ruan, Y.; Chen, Q.; Cui, X.; Lv, L.; Zheng, P.; Wang, L. Streptococcal infection and immune response in children with Tourette’s syndrome. Child’s Nerv. Syst. 2015, 31, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Leckman, J.F.; Katsovich, L.; Kawikova, I.; Lin, H.; Zhang, H.; Krönig, H.; Morshed, S.; Parveen, S.; Grantz, H.; Lombroso, P.J.; et al. Increased serum levels of interleukin-12 and tumor necrosis factor-alpha in Tourette’s syndrome. Biol. Psychiatry 2005, 57, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Gabbay, V.; Coffey, B.J.; Guttman, L.E.; Gottlieb, L.; Katz, Y.; Babb, J.S.; Hamamoto, M.M.; Gonzalez, C.J. A cytokine study in children and adolescents with Tourette’s disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 967–971. [Google Scholar] [CrossRef]
- Ma, X.; Yan, W.; Zheng, H.; Du, Q.; Zhang, L.; Ban, Y.; Li, N.; Wei, F. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Res 2015, 4, 1465. [Google Scholar] [CrossRef]
- Möller, J.C.; Tackenberg, B.; Heinzel-Gutenbrunner, M.; Burmester, R.; Oertel, W.H.; Bandmann, O.; Müller-Vahl, K.R. Immunophenotyping in Tourette syndrome—A pilot study. Eur. J. Neurol. 2008, 15, 749–753. [Google Scholar] [CrossRef]
- Brunner, T.; Mogil, R.J.; LaFace, D.; Yoo, N.J.; Mahboubi, A.; Echeverri, F.; Martin, S.J.; Force, W.R.; Lynch, D.H.; Ware, C.F.; et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 1995, 373, 441–444. [Google Scholar] [CrossRef]
- Weidinger, E.; Krause, D.; Wildenauer, A.; Meyer, S.; Gruber, R.; Schwarz, M.J.; Müller, N. Impaired activation of the innate immune response to bacterial challenge in Tourette syndrome. World J. Biol. Psychiatry 2014, 15, 453–458. [Google Scholar] [CrossRef]
- Cauwels, A.; Frei, K.; Sansano, S.; Fearns, C.; Ulevitch, R.; Zimmerli, W.; Landmann, R. The origin and function of soluble CD14 in experimental bacterial meningitis. J. Immunol. 1999, 162, 4762–4772. [Google Scholar] [CrossRef]
- Riazi, K.; Galic, M.A.; Kuzmiski, J.B.; Ho, W.; Sharkey, K.A.; Pittman, Q.J. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc. Natl. Acad. Sci. USA 2008, 105, 17151–17156. [Google Scholar] [CrossRef]
- Prossin, A.R.; Yolken, R.H.; Kamali, M.; Heitzeg, M.M.; Kaplow, J.B.; Coryell, W.H.; McInnis, M.G. Cytomegalovirus Antibody Elevation in Bipolar Disorder: Relation to Elevated Mood States. Neural Plast. 2015, 2015, 939780. [Google Scholar] [CrossRef] [PubMed]
- Alshammery, S.; Patel, S.; Jones, H.F.; Han, V.X.; Gloss, B.S.; Gold, W.A.; Dale, R.C. Common targetable inflammatory pathways in brain transcriptome of autism spectrum disorders and Tourette syndrome. Front. Neurosci. 2022, 16, 999346. [Google Scholar] [CrossRef] [PubMed]
- Lennington, J.B.; Coppola, G.; Kataoka-Sasaki, Y.; Fernandez, T.V.; Palejev, D.; Li, Y.; Huttner, A.; Pletikos, M.; Sestan, N.; Leckman, J.F.; et al. Transcriptome Analysis of the Human Striatum in Tourette Syndrome. Biol. Psychiatry 2016, 79, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.; Santos, T.; Gonçalves, J.; Baltazar, G.; Ferreira, L.; Agasse, F.; Bernardino, L. Histamine modulates microglia function. J. Neuroinflammation 2012, 9, 90. [Google Scholar] [CrossRef]
- Frick, L.; Rapanelli, M.; Abbasi, E.; Ohtsu, H.; Pittenger, C. Histamine regulation of microglia: Gene-environment interaction in the regulation of central nervous system inflammation. Brain Behav. Immun. 2016, 57, 326–337. [Google Scholar] [CrossRef]
- Ercan-Sencicek, A.G.; Stillman, A.A.; Ghosh, A.K.; Bilguvar, K.; O’Roak, B.J.; Mason, C.E.; Abbot, T.; Gupta, A.; King, R.A.; Pauls, D.L.; et al. L-Histidine Decarboxylase and Tourette’s Syndrome. New Engl. J. Med. 2010, 362, 1901–1908. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Chen, L.; Zhang, X. The inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk involved in Tourette syndrome development. Front. Immunol. 2023, 14, 1178113. [Google Scholar] [CrossRef]
- Guo, S.; Wang, H.; Yin, Y. Microglia Polarization from M1 to M2 in Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 815347. [Google Scholar] [CrossRef]
- Jha, M.K.; Lee, W.H.; Suk, K. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders. Biochem. Pharmacol. 2016, 103, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Toohey, M.J.; Di Giuseppe, R. Defining and measuring irritability: Construct clarification and differentiation. Clin. Psychol. Rev. 2017, 53, 93–108. [Google Scholar] [CrossRef]
- Roy, A.K.; Lopes, V.; Klein, R.G. Disruptive mood dysregulation disorder: A new diagnostic approach to chronic irritability in youth. Am. J. Psychiatry 2014, 171, 918–924. Available online: https://pubmed.ncbi.nlm.nih.gov/25178749/ (accessed on 29 June 2025). [CrossRef] [PubMed]
- Wiggins, J.L.; Brotman, M.A.; Adleman, N.E.; Kim, P.; Oakes, A.H.; Reynolds, R.C.; Chen, G.; Pine, D.S.; Leibenluft, E. Neural correlates of irritability in disruptive mood dysregulation and bipolar disorders. Am. J. Psychiatry 2016, 173, 722–730. Available online: https://pubmed.ncbi.nlm.nih.gov/26892942/ (accessed on 29 June 2025). [CrossRef] [PubMed]
- Brænden, A.; Coldevin, M.; Zeiner, P.; Stubberud, J.; Melinder, A. Executive function in children with disruptive mood dysregulation disorder compared to attention-deficit/hyperactivity disorder and oppositional defiant disorder, and in children with different irritability levels. Eur. Child Adolesc. Psychiatry 2024, 33, 115–125. Available online: https://pubmed.ncbi.nlm.nih.gov/36680626/ (accessed on 29 June 2025). [CrossRef]
- Bell, E.; Boyce, P.; Porter, R.J.; Bryant, R.A.; Malhi, G.S. Irritability in Mood Disorders: Neurobiological Underpinnings and Implications for Pharmacological Intervention. CNS Drugs 2021, 35, 619–641. [Google Scholar] [CrossRef]
- Beauchaine, T.P.; Tackett, J.L. Irritability as a Transdiagnostic Vulnerability Trait: Current Issues and Future Directions. Behav. Ther. 2020, 51, 350–364. [Google Scholar] [CrossRef]
- Hoogland, I.C.M.; Houbolt, C.; van Westerloo, D.J.; van Gool, W.A.; van de Beek, D. Systemic inflammation and microglial activation: Systematic review of animal experiments. J. Neuroinflammation 2015, 12, 114. [Google Scholar] [CrossRef]
- Martins-Ferreira, R.; Calafell-Segura, J.; Leal, B.; Rodríguez-Ubreva, J.; Martínez-Saez, E.; Mereu, E.; Costa, P.P.E.; Laguna, A.; Ballestar, E. The Human Microglia Atlas (HuMicA) unravels changes in disease-associated microglia subsets across neurodegenerative conditions. Nat. Commun. 2025, 16, 739. Available online: https://www.nature.com/articles/s41467-025-56124-1 (accessed on 29 June 2025). [CrossRef]
- Gosselin, D.; Skola, D.; Coufal, N.G.; Holtman, I.R.; Schlachetzki, J.C.M.; Sajti, E.; Jaeger, B.N.; O’Connor, C.; Fitzpatrick, C.; Pasillas, M.P.; et al. An environment-dependent transcriptional network specifies human microglia identity. Science 2017, 356, 1248–1259. [Google Scholar] [CrossRef]
- Brites, D.; Fernandes, A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front. Cell Neurosci. 2015, 9, 476. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, Y.; Sun, Z.; Ren, S.; Liu, M.; Wang, G.; Yang, J. Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression. J. Neuroinflamm. 2022, 19, 132. [Google Scholar] [CrossRef] [PubMed]
- Klawonn, A.M.; Fritz, M.; Castany, S.; Pignatelli, M.; Canal, C.; Similä, F.; Tejeda, H.A.; Levinsson, J.; Jaarola, M.; Jakobsson, J.; et al. Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons. Immunity 2021, 54, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Badimon, A.; Strasburger, H.J.; Ayata, P.; Chen, X.; Nair, A.; Ikegami, A.; Hwang, P.; Chan, A.T.; Graves, S.M.; Uweru, J.O.; et al. Negative feedback control of neuronal activity by microglia. Nature 2020, 586, 417–423. [Google Scholar] [CrossRef]
- Umpierre, A.D.; Wu, L.J. How microglia sense and regulate neuronal activity. Glia 2021, 69, 1637–1653. [Google Scholar] [CrossRef]
- Singhal, G.; Baune, B.T. Microglia: An interface between the loss of neuroplasticity and depression. Front. Cell Neurosci. 2017, 11, 270. [Google Scholar] [CrossRef]
- Li, B.; Yang, W.; Ge, T.; Wang, Y.; Cui, R. Stress induced microglial activation contributes to depression. Pharmacol. Res. 2022, 179, 106145. [Google Scholar] [CrossRef]
- Wang, Y.F.; Chen, C.Y.; Lei, L.; Zhang, Y. Regulation of the microglial polarization for alleviating neuroinflammation in the pathogenesis and therapeutics of major depressive disorder. Life Sci. 2025, 362, 123373. [Google Scholar] [CrossRef]
- Bin, K.J.; Park, D.J.; Shah, M.A.; Kim, M.O.; Koh, P.O. Lipopolysaccharide induces neuroglia activation and NF-κB activation in cerebral cortex of adult mice. Lab. Anim. Res. 2019, 35, 19. [Google Scholar]
- Zhang, L.; Cao, C.; Luo, C.; Ruan, H.; Xu, C.; Wang, Y.; Jiang, X.; Mao, G. Comparison of chronic restraint stress-and lipopolysaccharide-induced mouse models of depression: Behavior, c-Fos expression, and microglial and astrocytic activation. J. Neurorestoratology 2024, 12, 100130. [Google Scholar] [CrossRef]
- Qiu, T.; Guo, J.; Wang, L.; Shi, L.; Ai, M.; Xia, Z.; Peng, Z.; Kuang, L. Dynamic microglial activation is associated with LPS-induced depressive-like behavior in mice: An [18F] DPA-714 PET imaging study. Bosn. J. Basic. Med. Sci. 2022, 22, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.U.; Ali, T.; Alam, S.I.; Ullah, R.; Zeb, A.; Lee, K.W.; Rutten, B.P.F.; Kim, M.O. Ferulic Acid Rescues LPS-Induced Neurotoxicity via Modulation of the TLR4 Receptor in the Mouse Hippocampus. Mol. Neurobiol. 2019, 56, 2774–2790. [Google Scholar] [CrossRef]
- Joshi, L.; Plastira, I.; Bernhart, E.; Reicher, H.; Triebl, A.; Köfeler, H.C.; Sattler, W. Inhibition of autotaxin and lysophosphatidic acid receptor 5 attenuates neuroinflammation in lps-activated bv-2 micro-glia and a mouse endotoxemia model. Int. J. Mol. Sci. 2021, 22, 8519. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, T.; Ikram, M.; Ullah, R.; Rehman, S.U.; Kim, M.O. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients 2019, 11, 648. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Shen, Y.; Liu, P.; Shen, Y.; Hu, Y.; Li, P.; Zhang, Y.; Miao, F.; Zhang, J. NLRC5 Deficiency Reduces LPS-Induced Microglial Activation via Inhibition of NF-κB Signaling and Ameliorates Mice’s Depressive-like Behavior. Int. J. Mol. Sci. 2023, 24, 13265. [Google Scholar] [CrossRef]
- Tizabi, Y.; Getachew, B.; Hauser, S.R.; Tsytsarev, V.; Manhães, A.C.; da Silva, V.D.A. Role of Glial Cells in Neuronal Function, Mood Disorders, and Drug Addiction. Brain Sci. 2024, 14, 558. [Google Scholar] [CrossRef]
- Albini, M.; Krawczun-Rygmaczewska, A.; Cesca, F. Astrocytes and brain-derived neurotrophic factor (BDNF). Neurosci. Res. 2023, 197, 42–51. Available online: https://pubmed.ncbi.nlm.nih.gov/36780947/ (accessed on 29 June 2025). [CrossRef]
- Nagai, J.; Yu, X.; Papouin, T.; Cheong, E.; Freeman, M.R.; Monk, K.R.; Hastings, M.H.; Haydon, P.G.; Rowitch, D.; Shaham, S.; et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 2021, 109, 576–596. [Google Scholar] [CrossRef]
- Goenaga, J.; Araque, A.; Kofuji, P.; Herrera Moro Chao, D. Calcium signaling in astrocytes and gliotransmitter release. Front. Synaptic Neurosci. 2023, 15, 1138577. [Google Scholar] [CrossRef]
- Guerra-Gomes, S.; Sousa, N.; Pinto, L.; Oliveira, J.F. Functional roles of astrocyte calcium elevations: From synapses to behavior. Front. Cell Neurosci. 2018, 11, 427. [Google Scholar] [CrossRef]
- Imrie, G.; Farhy-Tselnicker, I. Astrocyte regulation of behavioral outputs: The versatile roles of calcium. Front. Cell Neurosci. 2025, 19, 1606265. [Google Scholar] [CrossRef]
- Ahmadpour, N.; Kantroo, M.; Stobart, J.L. Extracellular calcium influx pathways in astrocyte calcium microdomain physiology. Biomolecules 2021, 11, 1467. [Google Scholar] [CrossRef]
- Bazargani, N.; Attwell, D. Astrocyte calcium signaling: The third wave. Nat. Neurosci. 2016, 19, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Bozzi, Y. Unraveling white matter alterations in autism: The role of oligodendrocytes, microglia, and neuroinflammation. Cerebral. Cortex 2025, 35, bhaf094. [Google Scholar] [CrossRef] [PubMed]
- Pfau, M.L.; Ménard, C.; Russo, S.J. Inflammatory Mediators in Mood Disorders: Therapeutic Opportunities. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Wu, D.; Du, J.; Liu, G.; Ji, G.; Wang, Z.; Peng, F.; Man, L.; Zhou, W.; Hao, A. Folic Acid Attenuates Glial Activation in Neonatal Mice and Improves Adult Mood Disorders Through Epigenetic Regulation. Front. Pharmacol. 2022, 13, 818423. [Google Scholar] [CrossRef]
- Banasr, M.; Chowdhury, G.M.I.; Terwilliger, R.; Newton, S.S.; Duman, R.S.; Behar, K.L.; Sanacora, G. Glial pathology in an animal model of depression: Reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol. Psychiatry 2010, 15, 501–511. [Google Scholar] [CrossRef]
- Czéh, B.; Di Benedetto, B. Antidepressants act directly on astrocytes: Evidences and functional consequences. Eur. Neuropsychopharmacol. 2013, 23, 171–185. [Google Scholar] [CrossRef]
- Sanacora, G.; Banasr, M. From pathophysiology to novel antidepressant drugs: Glial contributions to the pathology and treatment of mood disorders. Biol. Psychiatry 2013, 73, 1172–1179. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, C. Navigating the Complex Terrain of Dysregulated Microglial Function in Depressive Disorders: Insights, Challenges and Future Directions. Aging Dis. 2024, 16, 1023–1035. [Google Scholar] [CrossRef]
- Wagner, R.K.; Zirps, F.A.; Edwards, A.A.; Wood, S.G.; Joyner, R.E.; Becker, B.J. The prevalence of dyslexia: A new approach to its estimation. J. Learn Disabil. 2020, 53, 354–365. [Google Scholar] [CrossRef]
- Doust, C.; Fontanillas, P.; Eising, E.; Gordon, S.D.; Wang, Z.; Alagöz, G. Discovery of 42 genome-wide significant loci associated with dyslexia. Nat. Genet. 2022, 54, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Richlan, F. The functional neuroanatomy of developmental dyslexia across languages and writing systems. Front. Psychol. 2020, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Luciano, M.; Gow, A.J.; Pattie, A.; Bates, T.C.; Deary, I.J. The influence of dyslexia candidate genes on reading skill in old age. Behav. Genet. 2018, 48, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Fields, R.D.; Araque, A.; Johansen-Berg, H.; Lim, S.S.; Lynch, G.; Nave, K.A. Glial biology in learning and cognition. Neurosci. 2014, 20, 426–431. [Google Scholar] [CrossRef]
- Sancho, L.; Contreras, M.; Allen, N.J. Glia as sculptors of synaptic plasticity. Neurosci. Res. 2020, 167, 17–29. [Google Scholar] [CrossRef]
- Du, Y.; Brennan, F.H.; Popovich, P.G.; Zhou, M. Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia 2022, 70, 1359–1379. [Google Scholar] [CrossRef]
- Cserép, C.; Pósfai, B.; Lénárt, N.; Fekete, R.; László, Z.I.; Lele, Z.; Orsolits, B.; Molnar, G.; Heindl, S.; Shwarcz, A.D.; et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 2020, 367, 528–537. [Google Scholar] [CrossRef]
- Schafer, D.P.; Lehrman, E.K.; Kautzman Amanda G and Koyama, R.; Mardinly, A.R.; Yamasaki, R.; Ransohoff, R.M.; Greenberg, M.E.; Barres, B.A.; Stevens, B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012, 74, 691–705. [Google Scholar] [CrossRef]
- Stobart, J.L.; Anderson, C.M. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front. Cell Neurosci. 2013, 7, 38. [Google Scholar] [CrossRef]
- Hertz, L. Astrocytic energy metabolism and glutamate formation—Relevance for 13C-NMR spectroscopy and importance of cytosolic/mitochondrial trafficking. Magn. Reson. Imaging 2011, 29, 1319–1329. [Google Scholar] [CrossRef] [PubMed]
- Kossowski, B.; Chyl, K.; Kacprzak, A.; Bogorodzki, P.; Jednoróg, K. Dyslexia and age related effects in the neurometabolites concentration in the visual and temporo-parietal cortex. Sci. Rep. 2019, 9, 5096. [Google Scholar] [CrossRef] [PubMed]
- Colombo, X.; Farina, E. Astrocytes: Key regulators of neuroinflammation. Trends Immunol. 2016, 37, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Verkhratsky, X.; Nedergaard, A. Physiology of astroglia. Physiol. Rev. 2018, 98, 239–389. [Google Scholar] [CrossRef]
- Burda, X.; Sofroniew, J.E. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 2014, 81, 229–248. [Google Scholar] [CrossRef]
- Peterson, R.L.; Pennington, B.F. Developmental dyslexia. Lancet 2012, 379, 1997–2007. [Google Scholar] [CrossRef]
- Fields, R.D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008, 31, 361–370. [Google Scholar] [CrossRef]
- Skeide, M.A.; Bazin, P.L.; Trampel, R.; Schäfer, A.; Männel, C.; von Kriegstein, K. Hypermyelination of the left auditory cortex in developmental dyslexia. Neurology 2018, 90, e492–e497. [Google Scholar] [CrossRef]
- Carreiras, M.; Seghier, M.L.; Baquero, S.; Estévez, A.; Lozano, A.; Devlin, J.T. An anatomical signature for literacy. Nature 2009, 461, 983–986. [Google Scholar] [CrossRef]
- Makinodan, M.; Rosen, K.M.; Ito, S.; Corfas, G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science (1979) 2012, 337, 1357–1360. [Google Scholar] [CrossRef]
- Schafer, X.; Stevens, D.P. Microglia function in central nervous system development and plasticity. Cold Spring Harb. Perspect. Biol. 2015, 7, a020545. [Google Scholar] [CrossRef]
- Farah, R.; Ionta, S.; Horowitz-Kraus, T. Neuro-behavioral correlates of executive dysfunctions in dyslexia over development from childhood to adulthood. Front. Psychol. 2021, 12, 708863. [Google Scholar] [CrossRef]
- Stüber, C.; Morawski, M.; Schäfer, A.; Labadie, C.; Wähnert, M.; Leuze, C. Myelin and iron concentration in the human brain: A quantitative study of MRI contrast. Neuroimage 2014, 93, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, C. Myelin water imaging demonstrates lower brain myelination in children and adolescents with poor reading ability. Front. Hum. Neurosci. 2020, 14, 568395. [Google Scholar] [CrossRef] [PubMed]
- Sinisa Pajevicdietmar Plenzpeter, J.B.D. Oligodendrocyte-mediated myelin plasticity and its role in neural synchronization. eLife 2023, 12, e81982. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y. The multifaceted roles of embryonic microglia in the developing brain. Front. Cell Neurosci. 2023, 17, 988952. [Google Scholar] [CrossRef]
- Fields, R.D. Glial regulation of synaptic function and plasticity in health and disease. Physiol. Rev. 2022, 102, 1251–1286. [Google Scholar]
- Mount, C.W.; Monje, M. Wrapped to adapt: Experience-dependent myelination. Neuron 2017, 95, 743–756. [Google Scholar] [CrossRef]
- Costanzo, F.; Varuzza, C.; Rossi, S.; Sdoia, S.; Varvara, P.; Oliveri, M. Evidence for reading improvement following tDCS treatment in children and adolescents with dyslexia. Restor. Neurol. Neurosci. 2016, 34, 215–226. [Google Scholar] [CrossRef]
- Cancer, A.; Antonietti, A. tDCS modulatory effect on reading processes: A review of studies on typical readers and individuals with dyslexia. Front. Behav. Neurosci. 2018, 12, 162. [Google Scholar] [CrossRef]
- Battisti, A.; Lazzaro, G.; Varuzza, C.; Vicari, S.; Menghini, D. Effects of online tDCS and hf-tRNS on reading performance in children and adolescents with developmental dyslexia: A study protocol for a cross sectional, within-subject, randomized, double-blind, and sham-controlled trial. Front. Neurol. 2024, 15, 1338430. [Google Scholar] [CrossRef]
- Gallagher, L.; McGrath, J. Autism spectrum disorders: Current issues and future directions. Ir. J. Psychol. Med. 2022, 39, 237–239. [Google Scholar] [CrossRef]
- Parellada, M.; Andreu-Bernabeu, Á.; Burdeus, M.; San Jose Caceres, A.; Urbiola, E.; Carpenter, L.L.; Kraguljac, N.; McDonald, W.; Nemeroff, C.; Rodriguez, C. In search of biomarkers to guide interventions in autism spectrum disorder: A systematic review. Am. J. Psychiatry 2023, 180, 23–40. [Google Scholar] [CrossRef]
- Graf, W.D.; Miller, G.; Epstein, L.G.; Rapin, I. The autism “epidemic” Ethical, legal, and social issues in a developmental spectrum disorder. Neurology 2017, 88, 1371–1380. [Google Scholar] [CrossRef]
- McClure, L.A.; Lee, N.L.; Sand, K.; Vivanti, G.; Fein, D.; Stahmer, A.; Robins, D. Connecting the Dots: A cluster-randomized clinical trial integrating standardized autism spectrum disorders screening, high-quality treatment, and long-term outcomes. Trials 2021, 22, 319. [Google Scholar] [CrossRef]
Biomarker | Glial Origin | Associated ID Subtypes | Clinical Relevance |
---|---|---|---|
GFAP | Astrocytes | Down syndrome | Neuroinflammation marker |
S100B | Astrocytes | Fragile X, DS | Oxidative stress, neurotoxicity |
IL-1β | Microglia | Rett syndrome | Pro-inflammatory signature |
CX3CL1 | Neuron–microglia axis | Various | Synaptic modulation, immune crosstalk |
CELL FUNCTIONS | ROLE IN THE PATHOPHYSIOLOGY OF ID |
---|---|
ASTROCYTES
|
|
MICROGLIAS
|
|
OLIGODENDROCYTES
|
|
Glial Cell Type | Possible Dysfunction | Impact on Learning Function |
---|---|---|
Microglia | Excessive or insufficient synaptic regulation | Lack or excess of connectivity in optimal reading network formation |
Astrocyte | Slowness in glutamate reuptake, inadequate metabolic support | Prolongation of synaptic signals, neuronal over/underexcitation, mental fatigue, and processing inefficiency during reading |
Oligodendrocyte | Delayed/deficient myelination | Decreased neural conduction velocity, impaired synchrony between brain regions, decreased reading speed and fluency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çetin, S.; Uysal, S.; Girgin, D.; Alp, A.; Kiliç, E.; Çiray, O. The Role of Neuroglia in Neurodevelopmental Disorders and Disruptive Behavior: A Broad Review of Current Literature. Neuroglia 2025, 6, 34. https://doi.org/10.3390/neuroglia6030034
Çetin S, Uysal S, Girgin D, Alp A, Kiliç E, Çiray O. The Role of Neuroglia in Neurodevelopmental Disorders and Disruptive Behavior: A Broad Review of Current Literature. Neuroglia. 2025; 6(3):34. https://doi.org/10.3390/neuroglia6030034
Chicago/Turabian StyleÇetin, Samet, Serap Uysal, Dilara Girgin, Ayşenur Alp, Ecem Kiliç, and Oğulcan Çiray. 2025. "The Role of Neuroglia in Neurodevelopmental Disorders and Disruptive Behavior: A Broad Review of Current Literature" Neuroglia 6, no. 3: 34. https://doi.org/10.3390/neuroglia6030034
APA StyleÇetin, S., Uysal, S., Girgin, D., Alp, A., Kiliç, E., & Çiray, O. (2025). The Role of Neuroglia in Neurodevelopmental Disorders and Disruptive Behavior: A Broad Review of Current Literature. Neuroglia, 6(3), 34. https://doi.org/10.3390/neuroglia6030034