Characterizing Secondary and Atypical Parkinsonisms: Defining Features and Clinical Variability
Abstract
:1. Introduction
2. Secondary Parkinsonism
2.1. Early-Onset Parkinsonism
2.2. Drug-Induced Parkinsonism
2.3. Hyperpyrexia Parkinsonism Syndrome
2.4. Vascular Parkinsonism
2.5. Viral Parkinsonism
Parkinsonism and COVID-19
3. Atypical Parkinsonism
3.1. Dementia with Lewy Bodies
3.2. Multiple System Atrophy
3.3. Progressive Supranuclear Palsy
3.4. Corticobasal Degeneration
4. Discussion
Parkinsonism | Diagnostic Method | Treatments |
---|---|---|
EOP | Identification of genetic mutations [17,24,25], clinical history of early onset, bradykinesia, and symmetric rigidity without prominent tremor [17,19,22]. | Levodopa (limited administration to avoid dyskinesias), dopaminergic agonists (pramipexole or ropinirole), MAO-B inhibitors (rasagiline, selegiline) [19,32,34]. |
DIP | Review of recent medications, evaluation of bilateral parkinsonian symptoms, PET/SPECT imaging for nigrostriatal pathways, limited response to levodopa [6,9,41]. | Discontinuation of the causative drug, levodopa in cases where underlying PD is unmasked, close monitoring of patients using neuroleptics [6,9,38]. |
VP | Magnetic resonance imaging for microinfarcts and lesions in basal ganglia, temporal relationship between vascular event and symptoms, evaluation of dopaminergic transporters (SPECT imaging) [9,60,61]. | Control of cardiovascular risk factors (hypertension, diabetes), vitamin D supplementation, anti-inflammatory flavonoids (quercetin, naringenin) [60,63,70]. |
ViP | Parkinsonian clinical symptoms following infections (HIV, dengue, SARS-CoV-2), fMRI or PET techniques to rule out other causes, history of opportunistic infections or immunosuppression [73,75,76,81,83]. | Antiretroviral therapy (in cases of HIV), levodopa for symptomatic management (variable response), control of persistent inflammation [73,75,76,81,83]. |
DLB | Analysis of dopamine transporter (PET/SPECT), magnetic resonance imaging for temporal and hippocampal regions, study of sleep patterns and cognitive fluctuations [95,135]. | Acetylcholinesterase inhibitors (donepezil, galantamine), low doses of levodopa to avoid hallucinations, NMDA antagonists (memantine) for cognitive impairment [95,98,99]. |
MSA | Clinical diagnosis based on autonomic insufficiency, magnetic resonance imaging for brain atrophies, autonomic function tests such as orthostatic hypotension [108,109]. | Levodopa combined with carbidopa or benserazide, botulinum toxin type A for dystonia, management of specific autonomic and respiratory symptoms [104,109,110]. |
PSP | Advanced imaging: morphometric analysis of basal ganglia, magnetic resonance imaging for mesencephalic atrophies, differentiation of PD through eye movement studies [119,120]. | Levodopa for initial symptoms (limited effects with progression), occupational therapy and physiotherapy, statins to mitigate motor symptoms [119,122,123]. |
CBD | Imaging analysis for mesencephalic and frontal atrophy, clinical evaluation of asymmetric symptoms, exclusion of similar neurodegenerative diseases [119,120,129]. | Botulinum toxin type A for focal dystonia, functional support and occupational therapies, management of insomnia and abnormal sleep patterns [129,132,145]. |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Galvan, A.; Wichmann, T. Pathophysiology of Parkinsonism. Clin. Neurophysiol. 2008, 119, 1459–1474. [Google Scholar] [CrossRef]
- Levin, J.; Kurz, A.; Arzberger, T.; Giese, A.; Höglinger, G.U. The Differential Diagnosis and Treatment of Atypical Parkinsonism. Dtsch. Arztebl. Int. 2016, 113, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, G.; Avenali, M.; Schindler, A.; Pizzorni, N.; Montomoli, C.; Abbruzzese, G.; Antonini, A.; Barbiera, F.; Benazzo, M.; Benarroch, E.E.; et al. A multinational consensus on dysphagia in Parkinson’s disease: Screening, diagnosis and prognostic value. J. Neurol. 2022, 269, 1335–1352. [Google Scholar] [CrossRef]
- Celaya, L.V.; Rodríguez, A.T.; Pérez JR, G.; Márquez, G.M.; Cárdenas, M.R.T.; Castilla, P.C.; Hernández, L.G. Enfermedad de Parkinson más allá de lo motor. Neurobiol. Rev. Electron. 2019, 10, 23. [Google Scholar]
- Tinaz, S. Functional Connectome in Parkinson’s Disease and Parkinsonism. Curr. Neurol. Neurosci. Rep. 2021, 21, 24. [Google Scholar] [CrossRef]
- Brigo, F.; Erro, R.; Marangi, A.; Bhatia, K.; Tinazzi, M. Differentiating drug-induced parkinsonism from Parkinson’s disease: An update on non-motor symptoms and investigations. Park. Relat. Disord. 2014, 20, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Marsili, L.; Truong, D.D. Parkinsonism in viral, paraneoplastic, and autoimmune diseases. J. Neurol. Sci. 2022, 433, 120014. [Google Scholar] [CrossRef]
- Akdemir, Ü.Ö.; Bora Tokçaer, A.; Atay, L.Ö. Dopamine transporter SPECT imaging in Parkinson’s disease and parkinsonian disorders. Turk. J. Med. Sci. 2021, 51, 400–410. [Google Scholar] [CrossRef]
- Höllerhage, M. Secondary parkinsonism due to drugs, vascular lesions, tumors, trauma, and other insults. Int. Rev. Neurobiol. 2019, 149, 377–418. [Google Scholar] [CrossRef]
- Castillo-Rangel, C.; Marin, G.; Hernández-Contreras, K.A.; Vichi-Ramírez, M.M.; Zarate-Calderon, C.; Torres-Pineda, O.; Diaz-Chiguer, D.L.; González, D.D.l.M.; Apo, E.G.; Teco-Cortes, J.A.; et al. Neuroinflammation in Parkinson’s Disease: From Gene to Clinic: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 5792. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener. 2015, 4, 19. [Google Scholar] [CrossRef]
- Sliter, D.A.; Martinez, J.; Hao, L.; Chen, X.; Sun, N.; Fischer, T.D.; Burman, J.L.; Li, Y.; Zhang, Z.; Narendra, D.P.; et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 2018, 561, 258–262. [Google Scholar] [CrossRef]
- Ryan, B.J.; Hoek, S.; Fon, E.A.; Wade-Martins, R. Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Trends Biochem. Sci. 2015, 40, 200–210. [Google Scholar] [CrossRef]
- West, A.P.; Shadel, G.S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 2017, 17, 363–375. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- Camerucci, E.; Stang, C.D.; Hajeb, M.; Turcano, P.; Mullan, A.F.; Martin, P.; Ross, O.A.; Bower, J.H.; Mielke, M.M.; Savica, R. Early-Onset Parkinsonism and Early-Onset Parkinson’s Disease: A Population-Based Study (2010–2015). J. Park. Dis. 2021, 11, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Riboldi, G.M.; Frattini, E.; Monfrini, E.; Frucht, S.J.; Di Fonzo, A. A Practical Approach to Early-Onset Parkinsonism. J. Park. Dis. 2022, 12, 1–26. [Google Scholar] [CrossRef]
- Schrag, A.; Schott, J.M. Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol. 2006, 5, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Camerucci, E.; Mullan, A.F.; Turcano, P.; Bower, J.; Piat, C.; Ahlskog, J.; Savica, R. 40-Year Incidence of Early-Onset Parkinson’s Disease in Southeast Minnesota. J. Park. Dis. 2023, 13, 893–898. [Google Scholar] [CrossRef]
- Post, B.; van den Heuvel, L.; van Prooije, T.; van Ruissen, X.; van de Warrenburg, B.; Nonnekes, J. Young Onset Parkinson’s Disease: A Modern and Tailored Approach. J. Park. Dis. 2020, 10, S29–S36. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Latapi, P.; Marras, C. Epidemiological Evidence for an Immune Component of Parkinson’s Disease. J. Park. Dis. 2022, 12, S29–S43. [Google Scholar] [CrossRef]
- Tse, W.; Cersosimo, M.G.; Gracies, J.-M.; Morgello, S.; Olanow, C.W.; Koller, W. Movement disorders and AIDS: A review. Park. Relat. Disord. 2004, 10, 323–334. [Google Scholar] [CrossRef]
- Gershanik, O.S. Early onset parkinsonism. Front. Biosci. 2003, 8, 1100. [Google Scholar] [CrossRef] [PubMed]
- Bonifati, V.; Rohé, C.F.; Breedveld, G.J.; Fabrizio, E.; De Mari, M.; Tassorelli, C.; Tavella, A.; Marconi, R.; Nicholl, D.J.; Chien, H.F.; et al. Early-onset parkinsonism associated with PINK1 mutations: Frequency, genotypes, and phenotypes. Neurology 2005, 65, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Valente, E.M.; Salvi, S.; Ialongo, T.; Marongiu, R.; Elia, A.E.; Caputo, V.; Romito, L.; Albanese, A.; Dallapiccola, B.; Bentivoglio, A.R. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann. Neurol. 2004, 56, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Borsche, M.; Pereira, S.L.; Klein, C.; Grünewald, A. Mitochondria and Parkinson’s Disease: Clinical, Molecular, and Translational Aspects. J. Park. Dis. 2021, 11, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Booth, H.D.E.; Hirst, W.D.; Wade-Martins, R. The Role of Astrocyte Dysfunction in Parkinson’s Disease Pathogenesis. Trends Neurosci. 2017, 40, 358–370. [Google Scholar] [CrossRef]
- McGeer, P.L.; McGeer, E.G. Inflammation and neurodegeneration in Parkinson’s disease. Park. Relat. Disord. 2004, 10, S3–S7. [Google Scholar] [CrossRef]
- Kam, T.-I.; Hinkle, J.T.; Dawson, T.M.; Dawson, V.L. Microglia and astrocyte dysfunction in parkinson’s disease. Neurobiol. Dis. 2020, 144, 105028. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, E.C.; Vyas, S.; Hunot, S. Neuroinflammation in Parkinson’s disease. Park. Relat. Disord. 2012, 18, S210–S212. [Google Scholar] [CrossRef]
- McCarter, S.J.; Camerucci, E.; Mullan, A.F.; Stang, C.D.; Turcano, P.; Louis, E.K.S.; Boeve, B.F.; Savica, R. Sleep Disorders in Early-Onset Parkinsonism: A Population-Based Study. J. Park. Dis. 2023, 13, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, R.; Jankovic, J. Young-onset Parkinson’s disease: Its unique features and their impact on quality of life. Park. Relat. Disord. 2019, 65, 39–48. [Google Scholar] [CrossRef]
- Bovenzi, R.; Conti, M.; Degoli, G.R.; Cerroni, R.; Simonetta, C.; Liguori, C.; Salimei, C.; Pisani, A.; Pierantozzi, M.; Stefani, A.; et al. Shaping the course of early-onset Parkinson’s disease: Insights from a longitudinal cohort. Neurol. Sci. 2023, 44, 3151–3159. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, I.A.P.d.S.; Nobrega, K.C.C.; Souza, B.R.A.; Barone, I.C.; Checchio, G.; Ponciano, V.P.; de Paula, C.G.C.; Possani, A.N.; Penha, N.C.; Helene, A.F.; et al. Comparison of disability level between Early and Late Onset Parkinson’s Disease using WHODAS 2. Front. Neurol. 2023, 14, 1281537. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-S.; Yoo, S.-W.; Lyoo, C.H.; Kim, J.-S. Decreased thalamic monoamine availability in drug-induced parkinsonism. Sci. Rep. 2022, 12, 3749. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, E.; Coelho, M.; Gallardo, M. DAT imaging in drug-induced and psychogenic parkinsonism. Mov. Disord. 2003, 18, S28–S33. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Sisay, M.; Tariku, M.; Mekuria, A.N.; Desalew, A. Antipsychotic-induced extrapyramidal side effects: A systematic review and meta-analysis of observational studies. PLoS ONE 2021, 16, e0257129. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Cho, H.; Kim, Y.J.; Ma, H.-I.; Jang, S. Drug-induced Parkinsonism: A strong predictor of idiopathic Parkinson’s disease. PLoS ONE 2021, 16, e0247354. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Builes, S.; Salazar-Duque, C.; Tieck-Fernández, M.P.; Rojas-Gallego, I.C.; Díaz-Silva, G.A. Drug-induced parkinsonism: What should a psychiatrist know? Rev. Mex. Neurocienc. 2021, 22, 146–151. [Google Scholar] [CrossRef]
- Han, S.; Kim, S.; Kim, H.; Shin, H.-W.; Na, K.-S.; Suh, H.S. Prevalence and incidence of Parkinson’s disease and drug-induced parkinsonism in Korea. BMC Public. Health 2019, 19, 1328. [Google Scholar] [CrossRef] [PubMed]
- Shiraiwa, N.; Tamaoka, A.; Ohkoshi, N. Clinical features of drug-induced Parkinsonism. Neurol. Int. 2018, 10, 103–106. [Google Scholar] [CrossRef]
- Shuaib, U.A.; Rajput, A.H.; Robinson, C.A.; Rajput, A. Neuroleptic-induced Parkinsonism: Clinicopathological study. Mov. Disord. 2016, 31, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Dold, M.; Samara, M.T.; Li, C.; Tardy, M.; Leucht, S. Haloperidol versus first-generation antipsychotics for the treatment of schizophrenia and other psychotic disorders. Cochrane Database Syst. Rev. 2015, 2015, CD009831. [Google Scholar] [CrossRef] [PubMed]
- Mena, M.A.; de Yébenes, J.G. Drug-induced parkinsonism. Expert Opin. Drug Saf. 2006, 5, 759–771. [Google Scholar] [CrossRef]
- Ahn, H.J.; Yoo, W.-K.; Park, J.; Ma, H.-I.; Kim, Y.J. Cognitive Dysfunction in Drug-induced Parkinsonism Caused by Prokinetics and Antiemetics. J. Korean Med. Sci. 2015, 30, 1328. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-W.; Chung, S.J. Drug-Induced Parkinsonism. J. Clin. Neurol. 2012, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Niimi, Y.; Mano, T.; Iwata, A.; Iwatsubo, T. Time to onset of drug-induced parkinsonism: Analysis using a large Japanese adverse event self-reporting database. Biosci. Trends 2022, 16, 151–157. [Google Scholar] [CrossRef]
- Feldman, M.; Marmol, S.; Margolesky, J. Updated Perspectives on the Management of Drug-Induced Parkinsonism (DIP): Insights from the Clinic. Ther. Clin. Risk Manag. 2022, 18, 1129–1142. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.W.; Shin, N.-Y.; Yoon, U.; Sin, I.; Lee, S.-K. Shared functional neural substrates in Parkinson’s disease and drug-induced parkinsonism: Association with dopaminergic depletion. Sci. Rep. 2020, 10, 11617. [Google Scholar] [CrossRef] [PubMed]
- Mentzel, C.L.; Bakker, P.R.; van Os, J.; Drukker, M.; Matroos, G.E.; Tijssen, M.A.J.; van Harten, P.N. Blink rate is associated with drug-induced parkinsonism in patients with severe mental illness, but does not meet requirements to serve as a clinical test: The Curacao extrapyramidal syndromes study XIII. J. Negat. Results Biomed. 2017, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Cheon, S.-M.; Suh, H.S. Association Between Drug Exposure and Occurrence of Parkinsonism in Korea: A Population-Based Case-Control Study. Ann. Pharmacother. 2019, 53, 1102–1110. [Google Scholar] [CrossRef]
- Mörkl, S.; Seltenreich, D.; Letmaier, M.; Bengesser, S.; Wurm, W.; Grohmann, R.; Bleich, S.; Toto, S.; Stübner, S.; Butler, M.I.; et al. Extrapyramidal reactions following treatment with antidepressants: Results of the AMSP multinational drug surveillance programme. World J. Biol. Psychiatry 2020, 21, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Castela, M.D.; Fernández, P.P.; Bruck, S.H.; Martín, E.S.S.; Fernández, C.G.; Álvarez, J.S.; Aragoneses, B.L.; Ayala, A.S.; Liébana, E.S.; Carriles, J.; et al. Parkinsonism-hyperpyrexia, a rare consequence of deep brain stimulator malfunction in advanced Parkinson’s disease. Clin. Park. Relat. Disord. 2024, 10, 100246. [Google Scholar] [CrossRef] [PubMed]
- Azar, J.; Jaber, Y.; Ayyad, M.; Abu Alia, W.; Owda, F.; Sharabati, H.; Zeid, H.; Khreshi, S.; AlBandak, M.; Ahmad, D.S. Parkinsonism-Hyperpyrexia Syndrome: A Case Series and Literature Review. Cureus 2022, 14, e29646. [Google Scholar] [CrossRef] [PubMed]
- Camacho Velásquez, J.L.; Rivero Sanz, E.; Cruz Tabuenca, H.; López del Val, J.; Mauri Llerda, J.A. Síndrome de parkinsonismo-hiperpirexia. Neurología 2018, 33, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Newman, E.J.; Grosset, D.G.; Kennedy, P.G.E. The Parkinsonism-Hyperpyrexia Syndrome. Neurocrit Care 2009, 10, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Y.; Huang, J.-F.; Zhu, S.-G.; Huang, S.-S.; Liu, R.-P.; Hu, B.-L.; Zhu, J.-H.; Zhang, X. Parkinsonism-Hyperpyrexia Syndrome and Dyskinesia-Hyperpyrexia Syndrome in Parkinson’s Disease: Two Cases and Literature Review. J. Park. Dis. 2022, 12, 1727–1735. [Google Scholar] [CrossRef] [PubMed]
- Vale, T.C.; Barbosa, M.T.; Caramelli, P.; Cardoso, F. Vascular Parkinsonism and cognitive impairment: Literature review, Brazilian studies and case vignettes. Dement. Neuropsychol. 2012, 6, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.K.Y.; Lin, S.; Mok, V.C.T. Neuroimaging in Vascular Parkinsonism. Curr. Neurol. Neurosci. Rep. 2019, 19, 102. [Google Scholar] [CrossRef] [PubMed]
- Holm, H.; Gundersen, V.; Dietrichs, E. Vascular parkinsonism. Tidsskr. Den. Nor. Legeforening 2023, 251, 513–524. [Google Scholar] [CrossRef]
- Rektor, I.; Bohnen, N.I.; Korczyn, A.D.; Gryb, V.; Kumar, H.; Kramberger, M.G.; de Leeuw, F.-E.; Pirtošek, Z.; Rektorová, I.; Schlesinger, I.; et al. An updated diagnostic approach to subtype definition of vascular parkinsonism—Recommendations from an expert working group. Park. Relat. Disord. 2018, 49, 9–16. [Google Scholar] [CrossRef]
- Raccagni, C.; Nonnekes, J.; Bloem, B.R.; Peball, M.; Boehme, C.; Seppi, K.; Wenning, G.K. Gait and postural disorders in parkinsonism: A clinical approach. J. Neurol. 2020, 267, 3169–3176. [Google Scholar] [CrossRef] [PubMed]
- Venegas-Francke, P. Transcranial Sonography in the Discrimination of Parkinson’s Disease Versus Vascular Parkinsonism. Int. Rev. Neurobiol. 2010, 90, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Caba, L.M.; Ferrairó, J.I.T.; Torres, I.M.; Costa, J.F.V.; Muñoz, R.B.; Martin, A.L. El índice de pulsatilidad intracraneal elevado apoya el diagnóstico de parkinsonismo vascular frente a enfermedad de Parkinson idiopática. Neurología 2020, 35, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Fan, J.; Li, Y.; Liu, X.; Yu, Z.; Zhuang, L. Electro-acupuncture on Vascular Parkinsonism with multiple sleep disorders: A Case Report. Front. Neurol. 2022, 13, 1057095. [Google Scholar] [CrossRef] [PubMed]
- Levin, O.S.; Chimagomedova ASh Skripkina, N.A.; Lyashenko, E.A.; Babkina, O.V. Nonmotor Symptoms in Vascular and Other Secondary Parkinsonism. Int. Rev. Neurobiol. 2017, 134, 1303–1334. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Lu, J.; Shao, A.; Zhang, J.H.; Zhang, J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front. Immunol. 2020, 11, 294. [Google Scholar] [CrossRef]
- Benakis, C.; Simats, A.; Tritschler, S.; Heindl, S.; Besson-Girard, S.; Llovera, G.; Pinkham, K.; Kolz, A.; Ricci, A.; Theis, F.J.; et al. T cells modulate the microglial response to brain ischemia. Elife 2022, 11, e82031. [Google Scholar] [CrossRef]
- Mantese, C.E.; Hainzenreder, T.B. Neuromelanin accumulation in Substantia nigra in vascular parkinsonism. J. Neural Transm. 2020, 127, 1089–1091. [Google Scholar] [CrossRef] [PubMed]
- del Toro-Pérez, C.; Guevara-Sánchez, E.; Martínez-Sánchez, P. Treatment of Vascular Parkinsonism: A Systematic Review. Brain Sci. 2023, 13, 489. [Google Scholar] [CrossRef]
- Lu, W.; Chen, Z.; Wen, J. Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells. Biomed. Pharmacother. 2024, 170, 115847. [Google Scholar] [CrossRef] [PubMed]
- Leta, V.; Urso, D.; Batzu, L.; Lau, Y.H.; Mathew, D.; Boura, I.; Raeder, V.; Falup-Pecurariu, C.; van Wamelen, D.; Chaudhuri, K.R. Viruses, parkinsonism and Parkinson’s disease: The past, present and future. J. Neural Transm. 2022, 129, 1119–1132. [Google Scholar] [CrossRef]
- Hopkins, H.K.; Traverse, E.M.; Barr, K.L. Viral Parkinsonism: An underdiagnosed neurological complication of Dengue virus infection. PLoS Negl. Trop. Dis. 2022, 16, e0010118. [Google Scholar] [CrossRef]
- Malek, N.; Kanavou, S.; Lawton, M.A.; Pitz, V.; Grosset, K.A.; Bajaj, N.; Barker, R.A.; Ben-Shlomo, Y.; Burn, D.J.; Foltynie, T.; et al. L-dopa responsiveness in early Parkinson’s disease is associated with the rate of motor progression. Park. Relat. Disord. 2019, 65, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Limphaibool, N.; Iwanowski, P.; Holstad, M.J.V.; Kobylarek, D.; Kozubski, W. Infectious Etiologies of Parkinsonism: Pathomechanisms and Clinical Implications. Front. Neurol. 2019, 10, 652. [Google Scholar] [CrossRef] [PubMed]
- Amod, F.; Holla, V.V.; Ojha, R.; Pandey, S.; Yadav, R.; Pal, P.K. A review of movement disorders in persons living with HIV. Park. Relat. Disord. 2023, 114, 105774. [Google Scholar] [CrossRef] [PubMed]
- Dehner, L.F.; Spitz, M.; Pereira, J.S. Parkinsonism in HIV infected patients during antiretroviral therapy—Data from a Brazilian tertiary hospital. Braz. J. Infect. Dis. 2016, 20, 499–501. [Google Scholar] [CrossRef]
- Almajali, M.; Almajali, F.; Kafaie, J.; Chand, P. Successful Utilization of Levodopa in HIV-Induced Parkinsonism. Cureus 2020, 12, 12. [Google Scholar] [CrossRef]
- Azmin, S.; Sahathevan, R.; Suehazlyn, Z.; Law, Z.K.; Rabani, R.; Nafisah, W.Y.; Tan, H.J.; Norlinah, M.I. Post-dengue parkinsonism. BMC Infect. Dis. 2013, 13, 179. [Google Scholar] [CrossRef]
- Kuraning, K.; Kv, V.G.; Murthy, P.; Ak, A.K.; Nikhil, N.; Ganaraja, V.H. An Interesting Case of Dengue Encephalitis With Parkinsonism Sequela. Cureus 2023, 15, e44970. [Google Scholar] [CrossRef] [PubMed]
- Bouali-Benazzouz, R.; Benazzouz, A. Covid-19 Infection and Parkinsonism: Is There a Link? Mov. Disord. 2021, 36, 1737–1743. [Google Scholar] [CrossRef] [PubMed]
- Cartella, S.M.; Terranova, C.; Rizzo, V.; Quartarone, A.; Girlanda, P. Covid-19 and Parkinson’s disease: An overview. J. Neurol. 2021, 268, 4415–4421. [Google Scholar] [CrossRef]
- Cavallieri, F.; Fioravanti, V.; Bove, F.; Del Prete, E.; Meoni, S.; Grisanti, S.; Zedde, M.; Pascarella, R.; Moro, E.; Valzania, F. COVID-19 and Parkinsonism: A Critical Appraisal. Biomolecules 2022, 12, 970. [Google Scholar] [CrossRef]
- Tekin, S. Neurological Symptoms Common in COVID-19 Patients: A Retrospective Observational Study. Acta Clin. Croat. 2022, 61, 386–393. [Google Scholar] [CrossRef]
- Boika, A.V. A Post-COVID-19 Parkinsonism in the Future? Mov. Disord. 2020, 35, 1094. [Google Scholar] [CrossRef] [PubMed]
- Sulzer, D.; Antonini, A.; Leta, V.; Nordvig, A.; Smeyne, R.J.; Goldman, J.E.; Al-Dalahmah, O.; Zecca, L.; Sette, A.; Bubacco, L.; et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: From bench to bedside. NPJ Park. Dis. 2020, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Guerrero, A.; Laespada-García, M.I.; Gómez-Grande, A.; Ruiz-Ortiz, M.; Blanco-Palmero, V.A.; Azcarate-Diaz, F.J.; Rábano-Suárez, P.; Álvarez-Torres, E.; de Fuenmayor-Fernández de la Hoz, C.P.; Pérez, D.V.; et al. Acute hypokinetic-rigid syndrome following SARS-CoV-2 infection. Neurology 2020, 95, e2109–e2118. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Kim, T.W.; Han, Y.; Nair, M.S.; Harschnitz, O.; Zhu, J.; Wang, P.; Koo, S.Y.; Lacko, L.A.; Chandar, V.; et al. SARS-CoV-2 infection causes dopaminergic neuron senescence. Cell Stem Cell 2024, 31, 196–211.e6. [Google Scholar] [CrossRef]
- Ali, S.S.; Mumtaz, A.; Qamar, M.A.; Tebha, S.S.; Parhin, A.; Butt, M.; Essar, M.Y. New-onset Parkinsonism as a Covid-19 infection sequela: A systematic review and meta-analysis. Ann. Med. Surg. 2022, 80, 104281. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Natoli, S.; Gardoni, F.; Di Luca, M.; Pisani, A. Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19. Int. J. Mol. Sci. 2023, 24, 5618. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wu, H.; Sun, L.; Wei, J. Role of Inflammation in the Development of COVID-19 to Parkinson’s Disease. J. Inflamm. Res. 2024, 17, 3259–3282. [Google Scholar] [CrossRef]
- Saeed, U.; Lang, A.E.; Masellis, M. Neuroimaging Advances in Parkinson’s Disease and Atypical Parkinsonian Syndromes. Front. Neurol. 2020, 11, 572976. [Google Scholar] [CrossRef] [PubMed]
- McFarland, N.; Hess, C. Recognizing Atypical Parkinsonisms: “Red Flags” and Therapeutic Approaches. Semin. Neurol. 2017, 37, 215–227. [Google Scholar] [CrossRef]
- Stamelou, M.; Hoeglinger, G.U. Atypical parkinsonism. Curr. Opin. Neurol. 2013, 26, 401–405. [Google Scholar] [CrossRef]
- Outeiro, T.F.; Koss, D.J.; Erskine, D.; Walker, L.; Kurzawa-Akanbi, M.; Burn, D.; Donaghy, P.; Morris, C.; Taylor, J.-P.; Thomas, A.; et al. Dementia with Lewy bodies: An update and outlook. Mol. Neurodegener. 2019, 14, 5. [Google Scholar] [CrossRef]
- Moretti, D.V. Available and future treatments for atypical parkinsonism. A systematic review. CNS Neurosci. Ther. 2019, 25, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Katta, M.R.; Abhishek, S.; Sridhar, R.; Valisekka, S.S.; Hameed, M.; Kaur, J.; Walia, N. Recent advances in Lewy body dementia: A comprehensive review. Disease-a-Month 2023, 69, 101441. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J. Advances in dementia with Lewy bodies. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211057666. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.-P.; McKeith, I.G.; Burn, D.J.; Boeve, B.F.; Weintraub, D.; Bamford, C.; Allan, L.M.; Thomas, A.J.; O'Brien, J.T. New evidence on the management of Lewy body dementia. Lancet Neurol. 2020, 19, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, T.; Dervenoulas, G.; Valkimadi, P.-E.; Politis, M. Neuroimaging in Lewy body dementia. J. Neurol. 2019, 266, 1–26. [Google Scholar] [CrossRef]
- Jellinger, K.A.; Korczyn, A.D. Are dementia with Lewy bodies and Parkinson’s disease dementia the same disease? BMC Med. 2018, 16, 34. [Google Scholar] [CrossRef]
- Saha, A.; Banerjee, D. Neuroimaging in Dementia With Lewy Bodies. Cureus 2021, 13, e15694. [Google Scholar] [CrossRef] [PubMed]
- Ishizawa, K.; Fujita, Y.; Nagashima, K.; Nakamura, T.; Shibata, M.; Kasahara, H.; Makioka, K.; Taketomi-Takahashi, A.; Hirasawa, H.; Higuchi, T.; et al. Striatal dopamine transporter binding differs between dementia with Lewy bodies and Parkinson’s disease with dementia. J. Neurol. Sci. 2023, 451, 120713. [Google Scholar] [CrossRef]
- Abbott, S.M.; Videnovic, A. Sleep Disorders in Atypical Parkinsonism. Mov. Disord. Clin. Pract. 2014, 1, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Amin, J.; Gee, C.; Stowell, K.; Coulthard, D.; Boche, D. T Lymphocytes and Their Potential Role in Dementia with Lewy Bodies. Cells 2023, 12, 2283. [Google Scholar] [CrossRef]
- Hershey, L.A.; Coleman-Jackson, R. Pharmacological Management of Dementia with Lewy Bodies. Drugs Aging 2019, 36, 309–319. [Google Scholar] [CrossRef]
- Poewe, W.; Stankovic, I.; Halliday, G.; Meissner, W.G.; Wenning, G.K.; Pellecchia, M.T.; Seppi, K.; Palma, J.-A.; Kaufmann, H. Multiple system atrophy. Nat. Rev. Dis. Primers 2022, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Diez-Fairen, M.; Alvarez Jerez, P.; Berghausen, J.; Bandres-Ciga, S. The Genetic Landscape of Parkinsonism-Related Dystonias and Atypical Parkinsonism-Related Syndromes. Int. J. Mol. Sci. 2021, 22, 8100. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K. How Certain Are You When Making the Diagnosis of Multiple System Atrophy? Neurology 2023, 101, 1081–1082. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.Y.; Saunders, E.; Pavey, S.; Rushton, E.; Quinn, N.; Houlden, H.; Chelban, V. Multiple system atrophy. Pract. Neurol. 2023, 23, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, Z.; Shang, H. Multiple system atrophy: An update and emerging directions of biomarkers and clinical trials. J. Neurol. 2024, 271, 2324–2344. [Google Scholar] [CrossRef]
- Overk, C.; Rockenstein, E.; Valera, E.; Stefanova, N.; Wenning, G.; Masliah, E. Multiple system atrophy: Experimental models and reality. Acta Neuropathol. 2018, 135, 33–47. [Google Scholar] [CrossRef]
- Campabadal, A.; Abos, A.; Segura, B.; Monte-Rubio, G.; Perez-Soriano, A.; Giraldo, D.M.; Muñoz, E.; Compta, Y.; Junque, C.; Marti, M.J. Differentiation of multiple system atrophy subtypes by gray matter atrophy. J. Neuroimaging 2022, 32, 80–89. [Google Scholar] [CrossRef]
- Leńska-Mieciek, M.; Madetko-Alster, N.; Alster, P.; Królicki, L.; Fiszer, U.; Koziorowski, D. Inflammation in multiple system atrophy. Front. Immunol. 2023, 14, 1214677. [Google Scholar] [CrossRef] [PubMed]
- Burns, M.R.; McFarland, N.R. Current Management and Emerging Therapies in Multiple System Atrophy. Neurotherapeutics 2020, 17, 1582–1602. [Google Scholar] [CrossRef] [PubMed]
- Sidoroff, V.; Bower, P.; Stefanova, N.; Fanciulli, A.; Stankovic, I.; Poewe, W.; Seppi, K.; Wenning, G.K.; Krismer, F. Disease-Modifying Therapies for Multiple System Atrophy: Where Are We in 2022? J. Park. Dis. 2022, 12, 1369–1387. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Liu, H.; Liu, G.; Zhao, L.; Dai, C.; Liang, Y.; Du, J.; Zhou, X.; Mo, L.; Tan, C.; et al. A review on pathology, mechanism, and therapy for cerebellum and tremor in Parkinson’s disease. NPJ Park. Dis. 2022, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Baschieri, F.; Vitiello, M.; Cortelli, P.; Calandra-Buonaura, G.; Morgante, F. Autonomic dysfunction in progressive supranuclear palsy. J. Neurol. 2023, 270, 109–129. [Google Scholar] [CrossRef] [PubMed]
- Deutschländer, A.B.; Ross, O.A.; Dickson, D.W.; Wszolek, Z.K. Atypical parkinsonian syndromes: A general neurologist’s perspective. Eur. J. Neurol. 2018, 25, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Stang, C.D.; Turcano, P.; Mielke, M.M.; Josephs, K.A.; Bower, J.H.; Ahlskog, J.E.; Boeve, B.F.; Martin, P.R.; Upadhyaya, S.G.; Savica, R. Incidence and Trends of Progressive Supranuclear Palsy and Corticobasal Syndrome: A Population-Based Study. J. Park. Dis. 2020, 10, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Lyons, S.; Trépel, D.; Lynch, T.; Walsh, R.; O’Dowd, S. The prevalence and incidence of progressive supranuclear palsy and corticobasal syndrome: A systematic review and meta-analysis. J. Neurol. 2023, 270, 4451–4465. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef]
- Clark, H.M.; Stierwalt, J.A.G.; Tosakulwong, N.; Botha, H.; Ali, F.; Whitwell, J.L.; Josephs, K.A. Dysphagia in Progressive Supranuclear Palsy. Dysphagia 2020, 35, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Alster, P.; Madetko-Alster, N.; Migda, A.; Migda, B.; Kutyłowski, M.; Królicki, L.; Friedman, A. Sleep disturbances in progressive supranuclear palsy syndrome (PSPS) and corticobasal syndrome (CBS). Neurol. Neurochir. Pol. 2023, 57, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Madetko-Alster, N.; Otto-Ślusarczyk, D.; Wiercińska-Drapało, A.; Koziorowski, D.; Szlufik, S.; Samborska-Ćwik, J.; Struga, M.; Friedman, A.; Alster, P. Clinical Phenotypes of Progressive Supranuclear Palsy—The Differences in Interleukin Patterns. Int. J. Mol. Sci. 2023, 24, 15135. [Google Scholar] [CrossRef]
- Rowe, J.B.; Holland, N.; Rittman, T. Progressive supranuclear palsy: Diagnosis and management. Pract. Neurol. 2021, 21, 376–383. [Google Scholar] [CrossRef]
- Mangalore, S.; Kumar, M.; Pal, P.; Saini, J.; Pasha, S.; Yadav, R. Role of Multivoxel MR Spectroscopy Progressive Supranuclear Palsy—A Preliminary Study. Neurol. India 2022, 70, 2388–2391. [Google Scholar] [CrossRef] [PubMed]
- Zanigni, S.; Calandra-Buonaura, G.; Manners, D.N.; Testa, C.; Gibertoni, D.; Evangelisti, S.; Sambati, L.; Guarino, M.; De Massis, P.; Gramegna, L.L.; et al. Accuracy of MR markers for differentiating Progressive Supranuclear Palsy from Parkinson’s disease. Neuroimage Clin. 2016, 11, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Parmera, J.B.; Oliveira MCB de Rodrigues, R.D.; Coutinho, A.M. Progressive supranuclear palsy and corticobasal degeneration: Novel clinical concepts and advances in biomarkers. Arq. Neuropsiquiatr. 2022, 80, 126–136. [Google Scholar] [CrossRef]
- Bayram, E.; Marras, C.; Standaert, D.G.; Kluger, B.M.; Bordelon, Y.M.; Shprecher, D.R.; Litvan, I. Progressive Supranuclear Palsy and Statin Use. Mov. Disord. 2020, 35, 1253–1257. [Google Scholar] [CrossRef]
- Dunning, E.E.; Decourt, B.; Zawia, N.H.; Shill, H.A.; Sabbagh, M.N. Pharmacotherapies for the Treatment of Progressive Supranuclear Palsy: A Narrative Review. Neurol. Ther. 2024, 13, 975–1013. [Google Scholar] [CrossRef] [PubMed]
- Constantinides, V.C.; Paraskevas, G.P.; Paraskevas, P.G.; Stefanis, L.; Kapaki, E. Corticobasal degeneration and corticobasal syndrome: A review. Clin. Park. Relat. Disord. 2019, 1, 66–71. [Google Scholar] [CrossRef]
- Aiba, I.; Hayashi, Y.; Shimohata, T.; Yoshida, M.; Wakabayashi, K.; Komori, T.; Hasegawa, M.; Ikeuchi, T.; Tokumaru, A.M.; Sakurai, K.; et al. Clinical course of pathologically confirmed corticobasal degeneration and corticobasal syndrome. Brain Commun. 2023, 5, fcad296. [Google Scholar] [CrossRef] [PubMed]
- Lo, R.Y. Epidemiology of atypical parkinsonian syndromes. Tzu Chi Med. J. 2022, 34, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Walker, Z.; Gandolfo, F.; Orini, S.; Garibotto, V.; Agosta, F.; Arbizu, J.; Bouwman, F.; Drzezga, A.; Nestor, P. Clinical utility of FDG PET in Parkinson’s disease and atypical parkinsonism associated with dementia. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1534–1545. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.J.; Cho, H.J.; Jang, W.; Hur, D.Y.; Kim, Y.S.; Lee, K.-H.; Kim, S.J. A Case of Pathologically Confirmed Corticobasal Degeneration Initially Presenting as Progressive Supranuclear Palsy Syndrome. J. Korean Med. Sci. 2022, 37, e183. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef]
- Kumaresan, M.; Khan, S. Spectrum of Non-Motor Symptoms in Parkinson’s Disease. Cureus 2021, 13, e13275. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021, 20, 385–397. [Google Scholar] [CrossRef]
- Wichmann, T. Changing views of the pathophysiology of Parkinsonism. Mov. Disord. 2019, 34, 1130–1143. [Google Scholar] [CrossRef]
- Bologna, M.; Truong, D.; Jankovic, J. The etiopathogenetic and pathophysiological spectrum of parkinsonism. J. Neurol. Sci. 2022, 433, 120012. [Google Scholar] [CrossRef] [PubMed]
- Koziorowski, D.; Figura, M.; Milanowski, L.M.; Szlufik, S.; Alster, P.; Madetko, N.; Friedman, A. Mechanisms of Neurodegeneration in Various Forms of Parkinsonism—Similarities and Differences. Cells 2021, 10, 656. [Google Scholar] [CrossRef] [PubMed]
- Paisán-Ruiz, C.; Guevara, R.; Federoff, M.; Hanagasi, H.; Sina, F.; Elahi, E.; Schneider, S.A.; Schwingenschuh, P.; Bajaj, N.; Emre, M.; et al. Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and spatacsin mutations. Mov. Disord. 2010, 25, 1791–1800. [Google Scholar] [CrossRef] [PubMed]
- Vaiman, E.E.; Shnayder, N.A.; Khasanova, A.K.; Strelnik, A.I.; Gayduk, A.J.; Al-Zamil, M.; Sapronova, M.R.; Zhukova, N.G.; Smirnova, D.A.; Nasyrova, R.F. Pathophysiological Mechanisms of Antipsychotic-Induced Parkinsonism. Biomedicines 2022, 10, 2010. [Google Scholar] [CrossRef]
- Alster, P.; Madetko, N.; Koziorowski, D.; Friedman, A. Microglial Activation and Inflammation as a Factor in the Pathogenesis of Progressive Supranuclear Palsy (PSP). Front. Neurosci. 2020, 14, 893. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhou, L.-Q.; Ma, X.-T.; Hu, Z.-W.; Yang, S.; Chen, M.; Bosco, D.B.; Wu, L.-J.; Tian, D.-S. Dual Functions of Microglia in Ischemic Stroke. Neurosci. Bull. 2019, 35, 921–933. [Google Scholar] [CrossRef]
- Koutsilieri, E.; Sopper, S.; Scheller, C.; ter Meulen, V.; Riederer, P. Parkinsonism in HIV dementia. J. Neural Transm. 2002, 109, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Basurco, L.; Abellanas, M.A.; Ayerra, L.; Conde, E.; Vinueza-Gavilanes, R.; Luquin, E.; Vales, A.; Vilas, A.; Martin-Uriz, P.S.; Tamayo, I.; et al. Microglia and astrocyte activation is region-dependent in the α-synuclein mouse model of Parkinson’s disease. Glia 2023, 71, 571–587. [Google Scholar] [CrossRef]
- Sun, H.-Y.; Wu, J.; Wang, R.; Zhang, S.; Xu, H.; Kaznacheyeva, E.; Lu, X.-J.; Ren, H.-G.; Wang, G.-H. Pazopanib alleviates neuroinflammation and protects dopaminergic neurons in LPS-stimulated mouse model by inhibiting MEK4-JNK-AP-1 pathway. Acta Pharmacol. Sin. 2023, 44, 1135–1148. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Gao, W.; Saiyin, H.; Li, Y.; Zeng, Y.; Zhang, Z.; Li, X.; Liu, Z.; Gao, Q.; An, P.; et al. MLKL deficiency alleviates neuroinflammation and motor deficits in the α-synuclein transgenic mouse model of Parkinson’s disease. Mol. Neurodegener. 2023, 18, 94. [Google Scholar] [CrossRef]
- Li, X.; Deng, R.; Li, J.; Li, H.; Xu, Z.; Zhang, L.; Feng, L.; Shu, C.; Zhen, M.; Wang, C. Oral [60]fullerene reduces neuroinflammation to alleviate Parkinson’s disease via regulating gut microbiome. Theranostics 2023, 13, 4936–4951. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gao, H.; Qin, Q.; Li, J.; Zhao, J.; Qu, Y.; Li, J.; Xiong, Y.; Min, Z.; Mao, Z.; et al. MicroRNA-218-5p-Ddx41 axis restrains microglia-mediated neuroinflammation through downregulating type I interferon response in a mouse model of Parkinson’s disease. J. Transl. Med. 2024, 22, 63. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Ibrahim, N.; Lin, C.H. Early Onset Parkinsonism: Differential diagnosis and what not to miss. Park. Relat. Disord. 2024, 2024, 107100. [Google Scholar] [CrossRef]
- Alvarez, M.V.G.; Evidente, V.G.H. Understanding drug-induced parkinsonism. Neurology 2008, 70, e32–e34. [Google Scholar] [CrossRef] [PubMed]
- George, P.; Roushdy, T.; Fathy, M.; Hamid, E.; Ibrahim, Y.A.; El-Belkimy, M.; Abdulghani, M.O.; Shalash, A. The clinical and neuroimaging differences between vascular parkinsonism and Parkinson’s disease: A case-control study. BMC Neurol. 2024, 24, 56. [Google Scholar] [CrossRef] [PubMed]
- Kiesmann, M.; Martin, R.E.; Sauleau, E.; Bulubas, I.; Fleury, M.C.; Perisse, J.; Kaltenbach, G.; Schmitt, E. Diagnosis of vascular parkinsonism: A new tool for gait hypokinesia occurring in older persons. Park. Relat. Disord. 2023, 109, 105360. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Xu, W.; Chen, J.; Tuo, J.; Wen, Y.; Huang, Z.; Zeng, R. Serum Sirtuin1 level decreases in Parkinson’s disease and vascular parkinsonism: A prospective observational study. Clin. Neurol. Neurosurg. 2023, 225, 107595. [Google Scholar] [CrossRef]
- Ganaraja, V.H.; Kamble, N.; Netravathi, M.; Holla, V.V.; Koti, N.; Pal, P.K. Stereotypy with Parkinsonism as a Rare Sequelae of Dengue Encephalitis: A Case Report and Literature Review. Tremor Other Hyperkinetic Mov. 2021, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Panda, P.K.; Sharawat, I.K.; Bolia, R.; Shrivastava, Y. Case Report: Dengue Virus–Triggered Parkinsonism in an Adolescent. Am. J. Trop. Med. Hyg. 2020, 103, 851–854. [Google Scholar] [CrossRef] [PubMed]
- McKeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.-P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attems, J.; Ballard, C.G.; et al. Diagnosis and management of dementia with Lewy bodies. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef]
- Wenning, G.K.; Stankovic, I.; Vignatelli, L.; Fanciulli, A.; Calandra-Buonaura, G.; Seppi, K.; Palma, J.; Meissner, W.G.; Krismer, F.; Berg, D.; et al. The Movement Disorder Society Criteria for the Diagnosis of Multiple System Atrophy. Mov. Disord. 2022, 37, 1131–1148. [Google Scholar] [CrossRef] [PubMed]
- Höglinger, G.U.; Respondek, G.; Stamelou, M.; Kurz, C.; Josephs, K.A.; Lang, A.E.; Mollenhauer, B.; Müller, U.; Nilsson, C.; Whitwell, J.L.; et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov. Disord. 2017, 32, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Caixeta, L.; Caixeta, V.d.M.; Nogueira, Y.L.; Aversi-Ferreira, T.A. Pharmacological interventions in corticobasal degeneration: A review. Dement. Neuropsychol. 2020, 14, 243–247. [Google Scholar] [CrossRef]
Symptoms | EOP | DIP | VP | ViP | AP | |||||
---|---|---|---|---|---|---|---|---|---|---|
HIV | Dengue | COVID-19 | DLB | MSA | PSP | CBD | ||||
Akinesia/Bradykinesia | x | x | x | x | x | x | x | x | x | |
Muscle rigidity | x | x | x | x | x | x | x | x | x | x |
Resting tremor | x | x | x | x | x | x | x | x | x | x |
Postural instability | x | x | x | x | x | |||||
Dystonia | x | x | x | x | x | x | x | |||
Gait disturbances | x | x | x | x | x | x | x | |||
Cognitive impairment | x | x | ||||||||
Sexual dysfunction | x | x | ||||||||
Symmetric alterations | x | x | ||||||||
Hyperreflexia (lower limbs) | x | x | ||||||||
Psychiatric symptoms | x | x | x | x | x | x | x | |||
Antisymmetric alterations | x | x | ||||||||
Oromandibular dyskinesia | x | x | ||||||||
Hyposmia | x | x | x | |||||||
Urinary incontinence | x | x | x | x | x | x | x | |||
Dementia | x | |||||||||
Speech difficulty | x | x | x | |||||||
Visual hallucinations | x | x | x | |||||||
Ataxia | x | x | x | |||||||
Psychosocial disorders | x | x | x | |||||||
Disequilibrium/Confusion | x | x | x | |||||||
Spasms | x | x | x | x | ||||||
Hypophonia | x | x | x | x | ||||||
Visual symptoms | x | x | x | |||||||
Hyperthermia | x | |||||||||
References | [17,18,24,31,153] | [6,39,41,46,154] | [62,155,156,157] | [76,77,78] | [74,79,158,159] | [83] | [97,160] | [110,161] | [126,129,162] | [134,163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viveros-Martínez, I.; Zarate-Calderon, C.; Chi-Castañeda, D.; Carrillo, P.; Aranda-Abreu, G.E.; Martínez, A.J.; Manzo, J.; Coria, G.A.; García, L.I. Characterizing Secondary and Atypical Parkinsonisms: Defining Features and Clinical Variability. Neuroglia 2024, 5, 467-487. https://doi.org/10.3390/neuroglia5040030
Viveros-Martínez I, Zarate-Calderon C, Chi-Castañeda D, Carrillo P, Aranda-Abreu GE, Martínez AJ, Manzo J, Coria GA, García LI. Characterizing Secondary and Atypical Parkinsonisms: Defining Features and Clinical Variability. Neuroglia. 2024; 5(4):467-487. https://doi.org/10.3390/neuroglia5040030
Chicago/Turabian StyleViveros-Martínez, Iraís, Cristofer Zarate-Calderon, Donají Chi-Castañeda, Porfirio Carrillo, Gonzalo E. Aranda-Abreu, Armando J. Martínez, Jorge Manzo, Genaro A. Coria, and Luis I. García. 2024. "Characterizing Secondary and Atypical Parkinsonisms: Defining Features and Clinical Variability" Neuroglia 5, no. 4: 467-487. https://doi.org/10.3390/neuroglia5040030
APA StyleViveros-Martínez, I., Zarate-Calderon, C., Chi-Castañeda, D., Carrillo, P., Aranda-Abreu, G. E., Martínez, A. J., Manzo, J., Coria, G. A., & García, L. I. (2024). Characterizing Secondary and Atypical Parkinsonisms: Defining Features and Clinical Variability. Neuroglia, 5(4), 467-487. https://doi.org/10.3390/neuroglia5040030