The History of the Decline and Fall of the Glial Numbers Legend
Abstract
:- “The various models of worship which prevailed … were all considered by the people as equally true; by the philosopher as equally false”
Glia is … conceived as genetically charged to organize and program neuron activity so that the best interests of the organism will be served; the essential product of glia action is visualized to be what we call innate and acquired behavioural responses. In this scheme, neurons in large part merely execute the instructions glia give them.[20]
“Ignorance more frequently begets confidence than does knowledge: it is those who know little, and not those who know much, who so positively assert that this or that problem will never be solved by science.”.Charles Darwin (1871), The Descent of Man, Volume 1 (Introduction)
Author Contributions
Conflicts of Interest
References
- Hyden, H. Dynamic aspects of the neuron-glia relationship—A study with microchemical methods. In The Neuron; Hyden, H., Ed.; Elsevier: Amsterdam, The Netherlands, 1967; pp. 179–217. [Google Scholar]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science; McGrawhill: New York, NY, USA, 2000. [Google Scholar]
- Bear, M.F.; Connors, B.W.; Paradiso, M.A. Exploring the Brain; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Darlington, C.L. The Female Brain; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Verkhratsky, A.; Butt, A. Glial Neurobiology: A Textbook; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar]
- Verkhratsky, A.; Butt, A.M. Glial Physiology and Pathophysiology; Wiley-Blackwell: Chichester, UK, 2013; p. 560. [Google Scholar]
- Mühlmann, M. About the question of glia formation. Zur neurogliabildungsfrage. Beitr. Pathol. Anat. Allg. Pathol. 1936, 96, 361–374. [Google Scholar]
- Herculano-Houzel, S.; Lent, R. Isotropic fractionator: A simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 2005, 25, 2518–2521. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, F.A.; Carvalho, L.R.; Grinberg, L.T.; Farfel, J.M.; Ferretti, R.E.; Leite, R.E.; Jacob Filho, W.; Lent, R.; Herculano-Houzel, S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 2009, 513, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Von Bartheld, C.S.; Bahney, J.; Herculano-Houzel, S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J. Comp. Neurol. 2016, 524, 3865–3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade-Moraes, C.H.; Oliveira-Pinto, A.V.; Castro-Fonseca, E.; da Silva, C.G.; Guimaraes, D.M.; Szczupak, D.; Parente-Bruno, D.R.; Carvalho, L.R.; Polichiso, L.; Gomes, B.V.; et al. Cell number changes in Alzheimer's disease relate to dementia, not to plaques and tangles. Brain 2013, 136, 3738–3752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurnberger, J.I.; Gordon, M.W. The cell density of neural tissues: Direct counting method and possible applications as a biologic referent. Prog. Neurobiol. 1957, 2, 100–128. [Google Scholar] [PubMed]
- Brizzee, K.R.; Vogt, J.; Kharetchko, X. Postnatal changes in glia/neuron index with a comparison of methods of cell enumeration in the white rat. Prog. Brain Res. 1964, 4, 136–149. [Google Scholar]
- Zamenhof, S. Final number of purkinje and other large cells in the chick cerebellum influenced by incubation temperatures during their proliferation. Brain Res. 1976, 109, 392–394. [Google Scholar] [CrossRef]
- Herculano-Houzel, S.; Dos Santos, S. You don’t mess with the glia. Neuroglia 2018, 1, 13. [Google Scholar]
- Nissl, F. Nervenzellen und graue substanz. Munch. Med. Wochenschr. 1898, 45, 988–992. [Google Scholar]
- Friede, R. Der quantitative anteil der glia and der cortexentwicklung. Acta Anat. (Basel) 1954, 20, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Pfrieger, F.W.; Barres, B.A. What the fly’s glia tell the fly’s brain. Cell 1995, 83, 671–674. [Google Scholar] [CrossRef]
- Fields, R.D. The Other Brain; Simon & Schuster: New York, NY, USA, 2009. [Google Scholar]
- Galambos, R. A glia-neural theory of brain function. Proc. Natl. Acad. Sci. USA 1961, 47, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Nansen, F. The Structure and Combination of the Histological Elements of the Central Nervous System; John Grieg: Bergen, Norway, 1886. [Google Scholar]
- Stout, R.F., Jr.; Verkhratsky, A.; Parpura, V. Caenorhabditis elegans glia modulate neuronal activity and behavior. Front. Cell. Neurosci. 2014, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, G.; Shaham, S. The glia of caenorhabditis elegans. Glia 2011, 59, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Deitmer, J.W.; Rose, C.R.; Munsch, T.; Schmidt, J.; Nett, W.; Schneider, H.P.; Lohr, C. Leech giant glial cell: Functional role in a simple nervous system. Glia 1999, 28, 175–182. [Google Scholar] [CrossRef]
- Edwards, T.N.; Meinertzhagen, I.A. The functional organisation of glia in the adult brain of Drosophila and other insects. Prog. Neurobiol. 2010, 90, 471–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremer, M.C.; Jung, C.; Batelli, S.; Rubin, G.M.; Gaul, U. The glia of the adult Drosophila nervous system. Glia 2017, 65, 606–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pentreath, V.W.; Radojcic, T.; Seal, L.H.; Winstanley, E.K. The glial cells and glia-neuron relations in the buccal ganglia of Planorbis corneus (L.): Cytological, qualitative and quantitative changes during growth and ageing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1985, 307, 399–455. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.R.; Larsen, K.B.; Lisanby, S.H.; Scalia, J.; Arango, V.; Dwork, A.J.; Pakkenberg, B. Neocortical and hippocampal neuron and glial cell numbers in the rhesus monkey. Anat. Rec. (Hoboken) 2007, 290, 330–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidow, M.S.; Song, Z.M. Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons. J. Comp. Neurol. 2001, 435, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Pakkenberg, B.; Gundersen, H.J. Neocortical neuron number in humans: Effect of sex and age. J. Comp. Neurol. 1997, 384, 312–320. [Google Scholar] [CrossRef]
- Eriksen, N.; Pakkenberg, B. Total neocortical cell number in the mysticete brain. Anat. Rec. (Hoboken) 2007, 290, 83–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, A.; Olszewski, J. Glia/nerve cell index for cortex of the whale. Science 1957, 126, 76–77. [Google Scholar] [CrossRef] [PubMed]
- Jelsing, J.; Nielsen, R.; Olsen, A.K.; Grand, N.; Hemmingsen, R.; Pakkenberg, B. The postnatal development of neocortical neurons and glial cells in the gottingen minipig and the domestic pig brain. J. Exp. Biol. 2006, 209, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Tower, D.B. Structural and functional organization of mammalian cerebral cortex; the correlation of neurone density with brain size; cortical neurone density in the fin whale (Balaenoptera Physalus L.) with a note on the cortical neurone density in the indian elephant. J. Comp. Neurol. 1954, 101, 19–51. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, H.S.; Pakkenberg, B.; Dam, M.; Dietz, R.; Sonne, C.; Mikkelsen, B.; Eriksen, N. Quantitative relationships in delphinid neocortex. Front. Neuroanat. 2014, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Kazu, R.S.; Maldonado, J.; Mota, B.; Manger, P.R.; Herculano-Houzel, S. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons. Front. Neuroanat. 2014, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.; Pakkenberg, B. Neocortical glial cell numbers in human brains. Neurobiol. Aging 2008, 29, 1754–1762. [Google Scholar] [CrossRef] [PubMed]
- Pakkenberg, B.; Gundersen, H.J. Total number of neurons and glial cells in human brain nuclei estimated by the disector and the fractionator. J. Microsc. 1988, 150, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Bahney, J.; von Bartheld, C.S. The cellular composition and glia-neuron ratio in the spinal cord of a human and a nonhuman primate: Comparison with other species and brain regions. Anat. Rec. (Hoboken) 2018, 301, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Verkhratsky, A.; Oberheim Bush, N.A.; Nedergaard, M.; Butt, A. The special case of human astrocytes. Neuroglia 2018, 1, 4. [Google Scholar] [CrossRef]
- Oberheim, N.A.; Takano, T.; Han, X.; He, W.; Lin, J.H.; Wang, F.; Xu, Q.; Wyatt, J.D.; Pilcher, W.; Ojemann, J.G.; et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 2009, 29, 3276–3287. [Google Scholar] [CrossRef] [PubMed]
- Verkhratsky, A.; Nedergaard, M. Physiology of astroglia. Physiol. Rev. 2018, 98, 239–389. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Verderosa, A.; Sethares, C. The neuroglial population in the primary visual cortex of the aging rhesus monkey. Glia 2008, 56, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verkhratsky, A.; Butt, A.M. The History of the Decline and Fall of the Glial Numbers Legend. Neuroglia 2018, 1, 188-192. https://doi.org/10.3390/neuroglia1010013
Verkhratsky A, Butt AM. The History of the Decline and Fall of the Glial Numbers Legend. Neuroglia. 2018; 1(1):188-192. https://doi.org/10.3390/neuroglia1010013
Chicago/Turabian StyleVerkhratsky, Alexei, and Arthur M. Butt. 2018. "The History of the Decline and Fall of the Glial Numbers Legend" Neuroglia 1, no. 1: 188-192. https://doi.org/10.3390/neuroglia1010013
APA StyleVerkhratsky, A., & Butt, A. M. (2018). The History of the Decline and Fall of the Glial Numbers Legend. Neuroglia, 1(1), 188-192. https://doi.org/10.3390/neuroglia1010013