Numerical Approach to Optimize the Dynamic Behaviour of Structures Considering Structural Durability
Abstract
1. Introduction
2. Materials and Methods
2.1. Modelling of Dynamic System Behaviour
2.1.1. Model Order Reduction Methods
2.1.2. Modal Approach
2.1.3. System Formulation
2.2. Fatigue Strength Assessment
2.2.1. Linear-Elastic Approaches
2.2.2. Application for Welded Joints
2.3. Application Model
2.3.1. Finite-Element Model
2.3.2. Verification
3. Results and Discussion
3.1. Optimization
3.1.1. Mono-Criterial Optimization
3.1.2. Multi-Criterial Optimization
4. Conclusions
- Numerically efficient assessment of dynamically loaded structures with critical welds is possible using reduced order model methods and structural stress approach;
- For a limited number of design variables, a full factorial simulation helps to understand the system and identify conflicting objectives between different criteria;
- If a single cost function is defined combining the different objectives, a careful selection of the optimization algorithm and start values is recommended in order to avoid trusting optimization results arising from local minima;
- Moreover, the robustness of the optimum should be analysed with respect to the optimization parameters. In case of doubt, a robust, less good design point is preferable to an optimal but very sensitive design point.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD | Computer-Aided Design |
DOF | Degree Of Freedom |
FE | Finite Element |
FEM | Finite Element Method |
FOM | Full Order Model |
MDO | Multidisciplinary Optimization |
MOR | Model Order Reduction |
MPC | Multi-Point Constraint |
ODE | Ordinary Differential Equation |
RBE | Rigid Body Element |
ROM | Reduced Order Model |
TMD | Tuned Mass Damper |
Nomenclature | |
maximum displacement range | |
mean displacement | |
N | number of cycles |
D | damage |
damage threshold | |
E | Young’s modulus |
G | shear modulus |
Poisson’s ratio | |
k | slope of S–N curve |
h | thickness of sheet metal |
maximum principal stress | |
S | overall cost function |
structural dynamics cost function based on | |
structural dynamics cost function based on | |
lightweight cost function | |
durability cost function based on D | |
t | time |
time step | |
simulation time | |
M | mass |
S | dimensionless goal function |
absorber mass | |
mass of the base structure | |
absorber stiffness | |
absorber eigenfrequency | |
damping ratio of absorber | |
optimization parameter in weighting function | |
optimization parameter in weighting function | |
input displacement | |
output displacement | |
u | relative displacement |
welds | |
H | Heaviside step function |
second order stress tensor | |
second order strain tensor | |
fourth order material tensor | |
u | displacement |
displacement vector | |
modal coordinate vector | |
stiffness matrix | |
damping matrix | |
mass matrix | |
output matrix | |
input matrix | |
modal matrix | |
modal stress matrix |
References
- Alexandrov, N.M.; Hussaini, M.Y. (Eds.) Multidisciplinary Design Optimization: State of the Art; SIAM Proceedings Series; SIAM: Philadelphia, PA, USA, 1997. [Google Scholar]
- Blachut, J. Emerging Methods for Multidisciplinary Optimization; CISM International Centre for Mechanical Sciences; Springer International Publishing: Cham, Switzerland, 2021; Volume 425. [Google Scholar]
- Salagame, R.R.; Ramu, P.; Narayanaswamy, I.; Saxena, D.K. Advances in Multidisciplinary Analysis and Optimization; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- El-Sayed, M.; Lund, E. Structural optimization with fatigue life constraints. Eng. Fract. Mech. 1990, 37, 1149–1156. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, B.; Han, Y.; Xue, J.; Rong, J. Structural topological optimization with dynamic fatigue constraints subject to dynamic random loads. Eng. Struct. 2020, 205, 110089. [Google Scholar] [CrossRef]
- Zeiler, T. Use of structural dynamic and fatigue sensitivity derivatives in an automotive design optimization. Struct. Multidiscip. Optim. 2002, 23, 390–397. [Google Scholar] [CrossRef]
- Häußler, P.; Albers, A. Shape optimization of structural parts in dynamic mechanical systems based on fatigue calculations. Struct. Multidiscip. Optim. 2005, 29, 361–373. [Google Scholar] [CrossRef]
- Miao, B.; Luo, Y.; Peng, Q.; Qiu, Y.; Chen, H.; Yang, Z. Multidisciplinary design optimization of lightweight carbody for fatigue assessment. Mater. Des. 2020, 194, 108910. [Google Scholar] [CrossRef]
- Han, Y.; Xu, B.; Duan, Z.; Huang, X. Stress-based bi-directional evolutionary structural topology optimization considering nonlinear continuum damage. Comput. Methods Appl. Mech. Eng. 2022, 396, 115086. [Google Scholar] [CrossRef]
- Chen, Z.; Long, K.; Wen, P.; Nouman, S. Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage. Adv. Eng. Softw. 2020, 150, 102924. [Google Scholar] [CrossRef]
- Faes, M.G.; Valdebenito, M.A. Fully decoupled reliability-based design optimization of structural systems subject to uncertain loads. Comput. Methods Appl. Mech. Eng. 2020, 371, 113313. [Google Scholar] [CrossRef]
- Martins, J.R.R.A.; Lambe, A.B. Multidisciplinary Design Optimization: A Survey of Architectures. AIAA J. 2013, 51, 2049–2075. [Google Scholar] [CrossRef]
- Meng, D.; Yang, S.; Zhang, Y.; Zhu, S.P. Structural reliability analysis and uncertainties-based collaborative design and optimization of turbine blades using surrogate model. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1219–1227. [Google Scholar] [CrossRef]
- Mahiddini, B.; Chettibi, T.; Benfriha, K.; Aoussat, A. Multidisciplinary design optimization of a gear train transmission. Concurr. Eng. 2019, 27, 268–281. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Zhu, J.; Taylor, R.L. The Finite Element Method: Its Basis and Fundamentals, 7th ed.; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA; Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Pozrikidis, C. Introduction to Finite and Spectral Element Methods Using MATLAB®, 2nd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Breitbach, E. Modal Synthesis Modal Correction—Modal Coupling. In Identification of Vibrating Structures; Natke, H.G., Ed.; Springer: Vienna, Austria, 1982; pp. 321–348. [Google Scholar]
- Qu, Z.Q. Model Order Reduction Techniques: With Applications in Finite Element Analysis; Springer: London, UK, 2004. [Google Scholar]
- Pelayo, F.; Skafte, A.; Aenlle, M.L.; Brincker, R. Modal Analysis Based Stress Estimation for Structural Elements Subjected to Operational Dynamic Loadings. Exp. Mech. 2015, 55, 1791–1802. [Google Scholar] [CrossRef]
- ASTM E1049-85; Standard Practice for Cycle Counting in Fatigue Analysis. ASTM: West Conshohocken, PA, USA, 2005.
- Hobbacher, A.F. Recommendations for Fatigue Design of Welded Joints and Components; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Baumgartner, J.; Waterkotte, R.; Hesseler, J. Fatigue assessment of a welded automotive differential under multiaxial and variable amplitude loading. Int. J. Fatigue 2021, 149, 106292. [Google Scholar] [CrossRef]
- Rennert, R.; Kullig, E.; Vormwald, M.; Esderts, A.; Siegele, D. Analytical strength assessment of components: FKM Guideline, 7th ed.; VDMA: Frankfurt, Germany, 2020. [Google Scholar]
- Radaj, D.; Sonsino, C.M.; Fricke, W. Fatigue Assessment of Welded Joints by Local Approaches; Woodhead Publishing Limited: Soston, UK, 2006. [Google Scholar] [CrossRef]
- Niemi, E.; Fricke, W.; Maddox, S.J. Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Baumgartner, J.; Hobbacher, A.F.; Rennert, R. Fatigue assessment of welded thin sheets with the notch stress approach—Proposal for recommendations. Int. J. Fatigue 2020, 140, 105844. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS Software Package Version 2021 R2; ANSYS Inc.: Canonsburg, PA, USA, 2021; Available online: https://www.ansys.com (accessed on 26 June 2023).
- Hoffman, J.; Frankel, S. Numerical Methods for Engineers and Scientists; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- The MathWorks Inc. Software, MATLAB Version: 9.9.0.1718557 (R2020b); The MathWorks Inc.: Natick, MA, USA, 2020; Available online: https://www.mathworks.com (accessed on 26 June 2023).
- Zienkiewicz, O.C. The Finite Element Method in Engineering Science, 2nd ed.; McGraw-Hill: London, UK, 1971. [Google Scholar]
- Haupt, P. Continuum Mechanics and Theory of Materials, 2nd ed.; Advanced Texts in Physics; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Clough, R.; Penzien, J. Dynamics of Structures; International Student Edition; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Gunantara, N. A review of multi-objective optimization: Methods and its applications. Cogent Eng. 2018, 5, 1502242. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395. [Google Scholar] [CrossRef]
- Mirjalili, S.; Jangir, P.; Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 2017, 46, 79–95. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Sawaragi, Y.; Nakayama, H.; Tanino, T. Theory of Multiobjective Optimization; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Koessler, E.; Almomani, A. Hybrid particle swarm optimization and pattern search algorithm. Optim. Eng. 2021, 22, 1539–1555. [Google Scholar] [CrossRef]
- Muñiz-Calvente, M.; Álvarez-Vázquez, A.; Pelayo, F.; Aenlle, M.; García-Fernández, N.; Lamela-Rey, M.J. A comparative review of time- and frequency-domain methods for fatigue damage assessment. Int. J. Fatigue 2022, 163, 107069. [Google Scholar] [CrossRef]
Section | Length | Width | Thickness | Add. Mass | Base Stiff. |
---|---|---|---|---|---|
m | m | m | kg | N/m | |
Outer | 0.20 | 0.07 | 2 × 10−3 | 0.5 | - |
Inner | 0.25 | 0.07 | 4 × 10−3 | 0.5 | - |
Mid | 0.10 | 0.07 | 10 × 10−3 | - | 1 × 10−8 |
Type | FOM 1 s | ROM ANSYS 1 s | ROM 1 s | ROM 30 s |
---|---|---|---|---|
Time |
Goal | |||||||
---|---|---|---|---|---|---|---|
kg | N/m | Hz | |||||
0.255 | 780 | 8.85 | 0.4297 | 0.4176 | 1.1275 | 0.3688 | |
0.135 | 580 | 10.50 | 0.5224 | 0.3959 | 1.0675 | 0.2930 | |
M | 0.000 | - | - | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
D | 0.060 | 300 | 10.98 | 0.6242 | 0.4340 | 1.0300 | 0.2843 |
Method | S | Numb. | ||||
---|---|---|---|---|---|---|
kg | N/m | % | Hz | - | Eval. | |
I | 0.0600 | 340.0 | 3.0 | 11.98 | 0.03443 | 441 |
II | 0.0976 | 412.0 | 3.0 | 10.34 | 0.04260 | 44 |
III | 0.0448 | 239.2 | 3.0 | 11.63 | 0.03096 | 485 |
IV | 0.0581 | 300.4 | 5.9 | 11.44 | 0.02582 | 485 |
Method | ||||
---|---|---|---|---|
I | 0.6309 | 0.4267 | 1.0300 | 0.2925 |
II | 0.5424 | 0.4329 | 1.0488 | 0.3009 |
III | 0.5568 | 0.4227 | 1.0224 | 0.2666 |
IV | 0.4670 | 0.3398 | 1.0291 | 0.2090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaal, W.; Baumgartner, J.; Budnik, M.; Tamm, C. Numerical Approach to Optimize the Dynamic Behaviour of Structures Considering Structural Durability. Vibration 2023, 6, 477-493. https://doi.org/10.3390/vibration6030030
Kaal W, Baumgartner J, Budnik M, Tamm C. Numerical Approach to Optimize the Dynamic Behaviour of Structures Considering Structural Durability. Vibration. 2023; 6(3):477-493. https://doi.org/10.3390/vibration6030030
Chicago/Turabian StyleKaal, William, Jörg Baumgartner, Maximilian Budnik, and Christoph Tamm. 2023. "Numerical Approach to Optimize the Dynamic Behaviour of Structures Considering Structural Durability" Vibration 6, no. 3: 477-493. https://doi.org/10.3390/vibration6030030
APA StyleKaal, W., Baumgartner, J., Budnik, M., & Tamm, C. (2023). Numerical Approach to Optimize the Dynamic Behaviour of Structures Considering Structural Durability. Vibration, 6(3), 477-493. https://doi.org/10.3390/vibration6030030