Linear Matrix Inequality Approach to Designing Damping and Tracking Control for Nanopositioning Application
Abstract
1. Introduction
2. Preliminary Definitions
3. Controller Design
3.1. PPF Controller Design
3.2. PVPF and PAVPF Controller Design
4. Comparative Closed-Loop Performance Evaluation
Closed-Loop Analysis against Frequency-Domain Performance Metrics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fanson, J.L.; Caughey, T.K. Positive position feedback control for large space structures. AIAA J. 1990, 28, 717–723. [Google Scholar] [CrossRef]
- Bhikkaji, B.; Ratnam, M.; Fleming, A.J.; Moheimani, S.O.R. High-performance control of piezoelectric tube scanners. IEEE Trans. Control Syst. Technol. 2007, 15, 853–866. [Google Scholar] [CrossRef]
- Tao, Y.; Li, L.; Li, H.; Zhu, L. High-Bandwidth Tracking Control of Piezoactuated Nanopositioning Stages via Active Modal Control. IEEE Trans. Autom. Sci. Eng. 2021, 19, 2998–3006. [Google Scholar] [CrossRef]
- Li, L.; Li, C.X.; Gu, G.; Zhu, L.M. Positive acceleration, velocity and position feedback based damping control approach for piezo-actuated nanopositioning stages. Mechatronics 2017, 47, 97–104. [Google Scholar] [CrossRef]
- Syed, H.H. Comparative study between positive position feedback and negative derivative feedback for vibration control of a flexible arm featuring piezoelectric actuator. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417718801. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H. Adaptive sliding mode control for uncertain active suspension systems with prescribed performance. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 6414–6422. [Google Scholar] [CrossRef]
- Devasia, S.; Eleftheriou, E.; Moheimani, S.O.R. Survey of Control Issues in Nanopositioning. IEEE Trans. Control. Syst. Technol. 2007, 15, 802–823. [Google Scholar] [CrossRef]
- Aphale, S.S.; Bhikkaji, B.; Moheimani, S.O.R. Minimizing scanning errors in piezoelectric stack-actuated nanopositioning platforms. IEEE Trans. Nanotechnol. 2008, 7, 79–90. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Zhu, Z.; Zhu, L. Simultaneous damping and tracking control of a normal-stressed electromagnetic actuated nanopositioning stage. Sens. Actuators Phys. 2022, 338, 113467. [Google Scholar] [CrossRef]
- Russell, D.; Fleming, A.J.; Aphale, S.S. Simultaneous Optimization of Damping and Tracking Controller Parameters Via Selective Pole Placement for Enhanced Positioning Bandwidth of Nanopositioners. ASME 2015, 137, 101004. [Google Scholar] [CrossRef]
- Babarinde, A.K.; Li, L.; Zhu, L.; Aphale, S.S. Experimental validation of the simultaneous damping and tracking controller design strategy for high-bandwidth nanopositioning—A PAVPF approach. IET Control Theory Appl. 2020, 14, 3506–3514. [Google Scholar] [CrossRef]
- Visalakshi, V.; Khare, S.; Moheimani, S.O.R.; Bhikkaji, B. Design of Positive Position Feedback Controllers for Collocated Systems. In Proceedings of the American Control Conference (ACC), Atlanta, GA, USA, 25–28 May 2021; pp. 4791–4796. [Google Scholar]
- Mahmoud Abdallah, M.; Fareh, R. Fractional order active disturbance rejection control for trajectory tracking for 4-DOF serial link manipulator. Int. J. Model. Identif. Control. 2020, 36, 57–65. [Google Scholar] [CrossRef]
- Algrnaodi, M.M.; Maarouf Saad, M.; Saad, M.; Fareh, R.; Brahmi, A. Trajectory tracking for mobile manipulator based on nonlinear active disturbance rejection control. Int. J. Model. Identif. Control 2021, 37, 95–105. [Google Scholar] [CrossRef]
Controller | Damping | Tracking | dB Bandwidth (Hz) |
---|---|---|---|
PPF + I | 536 | ||
PVPF + I | 805 | ||
PAVPF + I | 808 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babarinde, A.K.; Aphale, S.S. Linear Matrix Inequality Approach to Designing Damping and Tracking Control for Nanopositioning Application. Vibration 2022, 5, 846-859. https://doi.org/10.3390/vibration5040050
Babarinde AK, Aphale SS. Linear Matrix Inequality Approach to Designing Damping and Tracking Control for Nanopositioning Application. Vibration. 2022; 5(4):846-859. https://doi.org/10.3390/vibration5040050
Chicago/Turabian StyleBabarinde, Adedayo K., and Sumeet S. Aphale. 2022. "Linear Matrix Inequality Approach to Designing Damping and Tracking Control for Nanopositioning Application" Vibration 5, no. 4: 846-859. https://doi.org/10.3390/vibration5040050
APA StyleBabarinde, A. K., & Aphale, S. S. (2022). Linear Matrix Inequality Approach to Designing Damping and Tracking Control for Nanopositioning Application. Vibration, 5(4), 846-859. https://doi.org/10.3390/vibration5040050